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a b s t r a c t

We consider optimal coverage problems for a multi-agent network aiming to maximize a joint event
detection probability in an environment with obstacles. The objective function of this problem is non-
concave and no global optimum is guaranteed by gradient-based algorithms developed to date. In order
to obtain a solution provably close to the global optimum, the selection of initial conditions is crucial.
We first formulate the initial agent location generation as an additional optimization problem where
the objective function is monotone submodular, a class of functions for which the performance obtained
through a greedy algorithm solution is guaranteed to be within a provable bound relative to the optimal
performance.We then derive two tighter bounds by exploiting the curvature information (total curvature
and elemental curvature) of the objective function. We further show that the tightness of these lower
bounds is complementary with respect to the sensing capabilities of the agents. The greedy algorithm
solution can be subsequently used as an initial point of a gradient-based algorithm for the original optimal
coverage problem. Simulation results are included to verify that this approach leads to significantly better
performance relative to previously used algorithms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems consist of a team of agents, e.g., vehicles,
robots, or sensor nodes, that cooperatively perform one or more
tasks in a mission space which may contain uncertainties in the
form of obstacles or random event occurrences. Examples of such
tasks include environmental monitoring, surveillance, or animal
population studies among many. Optimization problems formu-
lated in the context of multi-agent systems, more often than not,
involve non-convex objective functions resulting in potential local
optima, while global optimality cannot be easily guaranteed.

One of the fundamental problems in multi-agent systems is
the optimal coverage problem where agents are deployed so as
to cooperatively maximize the coverage of a given mission space
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(Breitenmoser, Schwager,Metzger, Siegwart, &Rus, 2010; Caicedo-
Nuez & Zefran, 2008; Caicedo-Nunez & Zefran, 2008; Cassandras
& Sensor, 2005; Meguerdichian, Koushanfar, Potkonjak, & Srivas-
tava, 2001) where ‘‘coverage’’ is measured in a variety of ways,
often through a joint detection probability of random events co-
operatively detected by the agents. The problem can be solved
by either on-line or off-line methods. Some widely used on-line
methods, such as distributed gradient-based algorithms (Cassan-
dras & Sensor, 2005; Gusrialdi & Zeng, 2011; Zhong & Cassan-
dras, 2011) andVoronoi-partition-based algorithms (Breitenmoser
et al., 2010; Cortes, Martinez, Karatas, & Bullo, 2004; Gusrialdi,
Hirche, Hatanaka, & Fujita, 2008; Kantaros, Thanou, & Tzes, 2015;
Marier, Rabbath, & Léchevin, 2012), typically result in locally op-
timal solutions, hence possibly poor performance. To escape such
local optima, a ‘‘boosting function’’ approach is proposed in Sun,
Cassandras, and Gokbayrak (2014) whose performance can be en-
sured to be no less than that of these local optima. Alternatively, a
‘‘ladybug exploration’’ strategy is applied to an adaptive controller
in Schwager, Bullo, Skelly, and Rus (2008), which aims at balancing
coverage and exploration. However, these on-line approaches can-
not quantify the gap between the local optima they attain and the
global optimum. Off-line algorithms, such as simulated annealing
(Bertsimas & Tsitsiklis, 1993; Van Laarhoven & Aarts, 1987), can,
under certain conditions, converge to a global optimal solution in
probability. However, they are limited by a high computational
load and slow convergence rate.
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Related to the optimal coverage problem is the ‘‘maximum
coverage’’ problem (Berman & Krass, 2002; Khuller, Moss, & Naor,
1999), where a collection of discrete sets is given (the sets may
have some elements in common and the number of elements
is finite) and at most N of these sets are selected so that their
union has maximal size (cardinality). The objective function in the
maximum coverage problem is submodular, a special class of set
functions with attractive properties one can exploit. In particular,
a well known result in the submodularity theory (Nemhauser,
Wolsey, & Fisher, 1978) is the existence of a lower bound for the
global optimum provided by any feasible solution obtained by the
greedy algorithm, i.e., an algorithm which iteratively picks the set
that covers the maximum number of uncovered elements at each
iterative step. Defining, for any integer number N of sets, L(N) =
f /f ⋆ where f ⋆ is the global optimum and f is a feasible solution
obtained by the greedy algorithm, it is shown in Nemhauser et
al. (1978) that L(N) ≥ 1 − 1

e ≃ 0.63212. In other words, since
f ⋆
≤ (1 − 1

e )
−1f , one can quantify the optimality gap associated

with a given solution f .
In our past work (Sun et al., 2014), we studied the optimal

coverage problemwith agents allowed to be positioned at any fea-
sible point in the mission space (which generally includes several
obstacles) and used a distributed gradient-based algorithm to de-
termine optimal agent locations. Depending on initial conditions, a
trajectory generated by such gradient-based algorithms may lead
to a local optimum. In this paper, we begin with an initial agent
location generation by solving an additional optimization problem
with the same coverage metric but limiting agents to a finite set of
feasible positions. An advantage of this formulation is that it assists
us in eliminating obviously bad initial conditions for any gradient-
based method. An additional advantage comes from the fact that
we can show our coverage objective function to be monotone sub-
modular, therefore, a suboptimal solution obtained by the greedy
algorithm can achieve a performance ratio L(N) ≥ 1 − 1

e , where
N is the number of agents in the system. The idea of exploiting the
submodularity of the objective function in optimization problems
has been used in the literature, e.g., in sensor placement (Krause,
Leskovec, Guestrin, VanBriesen, & Faloutsos, 2008; Krause, Singh,
& Guestrin, 2008) and themaximum coverage problemmentioned
above, whereas a total backward curvature of string submodular
functions is proposed in Zhang, Chong, Pezeshki, andMoran (2016)
and a total curvature ck for the k-batch greedy algorithm is pro-
posed in Liu, Zhang, Chong, and Pezeshki (2016) in order to derive
bounds for related problems.

Our goal in this paper is to derive a tighter lower bound, i.e., to
increase the ratio L(N) defined above by further exploiting the
structure of our objective function. In particular, we make use of
the total curvature (Conforti & Cornuéjols, 1984) and the elemental
curvature (Wang, Moran, Wang, & Pan, 2016) of the objective
function and show that these can be explicitly derived and lead
to new and tighter lower bounds. Moreover, we show that the
tightness of the lower bounds obtained through the total curvature
and the elemental curvature respectively is complementary with
respect to the sensing capabilities of the agents. In other words,
when the sensing capabilities are weak, one of the two bounds is
tight andwhen the sensing capabilities are strong, the other bound
is tight. Thus, regardless of the sensing properties of our agents, we
can always determine a lower bound tighter than L(N) = 1− 1

e and,
in some cases very close to 1, implying that the greedy algorithm
solution can be guaranteed to be near-globally optimal.

Another contribution of the paper is to add a final step to the
optimal coverage process, after obtaining the greedy algorithm
solution and evaluating the associated lower bound with respect
to the global optimum. Specifically, we relax the set of allowable
agent positions in the mission space from the imposed discrete set
and use the solution of the greedy algorithm as an initial condition

Fig. 1. Mission space with two polygonal obstacles.

for the distributed gradient-based algorithm in Sun et al. (2014).
We refer to this as the Greedy-Gradient Algorithm (GGA) which is
applicable to the original coverage problem.

The remainder of this paper is organized as follows. The op-
timal coverage problem is formulated in Section 2. The GGA for
the optimal coverage problem is presented in Section 3, where
we provide the greedy algorithm and discuss provable optimality
bounds of the greedy algorithm solution according to the submod-
ularity theory in Section 3.1, and show how the greedy algorithm
and the gradient method can be combined together to solve the
optimal coverage problem in Section 3.2. In Section 4, we provide
simulation examples to show how the algorithm works and can
provide significantly better performance compared to earlier re-
sults reported in Sun et al. (2014).

2. Optimal coverage problem formulation

We begin by reviewing the basic coverage problem presented
in Caicedo-Nunez and Zefran (2008); Cortes et al. (2004); Zhong
and Cassandras (2011). A mission space Ω ⊂ R2 is modeled as
a non-self-intersecting polygon, i.e., a polygon such that any two
non-consecutive edges do not intersect. Associated with Ω , we
define a function R(x) : Ω → R to characterize the probability
of event occurrences at the location x ∈ Ω . It is referred to as
event density and satisfies 0 ≤ R(x) ≤ 1 for all x ∈ Ω and∫

Ω
R(x)dx <∞. Themission spacemay contain obstacles modeled

as m non-self-intersecting polygons denoted by Mj, j = 1, . . . ,m,
which block themovement aswell as the sensing range of an agent.
The interior of Mj is denoted by M̊j and the overall feasible space is
F = Ω \ (M̊1 ∪ . . . ∪ M̊m), i.e., the space Ω excluding all interior
points of the obstacles. We also assume that R(x) = 0 for x ̸∈ F .
There are N agents in the mission space and their positions are
defined by a vector s = (s1, . . . , sN ) with si ∈ F , i = 1, . . . ,N . We
assume that si ̸= sj for any two distinct agents i and j. Fig. 1 shows
a mission space with two obstacles and an agent located at si.

In the coverage problem, agents are viewed as sensor nodes.We
assume that each node has a bounded sensing range captured by
the sensing radius δi. Thus, the sensing region of node i is Ωi =

{x : di(x) ≤ δi}, where di(x) = ∥x − si∥. The presence of
obstacles inhibits the sensing ability of a node, which motivates
the definition of a visibility set V (si) ⊂ F . A point x ∈ F is visible
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Fig. 2. Example of objective function H(s).

from si ∈ F if the line segment defined by x and si is contained in F ,
i.e., ηx+ (1− η)si ∈ F for all η ∈ [0, 1], and x is within the sensing
range of si, i.e. x ∈ Ωi. Then, V (si) = Ωi ∩ {x : ηx + (1 − η)si ∈
F for all η ∈ [0, 1]} is a set of points in F which are visible from
si. We also define V̄ (si) = F \ V (si) to be the invisibility set from si,
e.g., the gray area in Fig. 1. A sensingmodel for node i is given by the
probability that sensor i detects an event occurrence at x ∈ V (si),
denoted by pi(x, si). We assume that pi(x, si) can be expressed as a
function of di(x) = ∥x − si∥ and is monotonically decreasing and
differentiable. An example of such a function is

pi(x, si) = exp(−λi∥x− si∥), (1)

where λi is a sensing decay factor. For points that are invisible to
node i, the detection probability is zero. Thus, the overall sensing
detection probability, denoted by p̂i(x, si), is defined as

p̂i(x, si) =
{
pi(x, si) if x ∈ V (si),
0 if x ∈ V̄ (si),

(2)

which is not a continuous function of si. Note that V (si) ⊂ Ωi =

{x : di(x) ≤ δi} is limited by the sensing range δi of agent i and that
the overall sensing detection probability of agents is determined
by the sensing range δi as well as sensing decay rate λi. Then, the
joint detection probability that an event at x ∈ Ω is detected by the
N nodes is given by

P(x, s) = 1−
N∏
i=1

[1− p̂i(x, si)], (3)

where we assume that detection probabilities of different sensors
are independent. The optimal coverage problem can be expressed
as follows:

max
s

H(s) =
∫

Ω

R(x)P(x, s)dx

s.t. si ∈ F , i = 1, . . . ,N.

(4)

We emphasize again that H(s) is not convex (concave) even in
the simplest possible problem setting as shown in Fig. 2, where
agent 1 is fixed at the origin of a two-dimensional space, and agent
2 moves along the x-axis. Furthermore, the feasible set F is not
convex when there are obstacles in the mission space. Therefore,
the optimal coverage problem (4) is not a convex optimization

Fig. 3. Example of obviously poor coverage performance.

problem and may have multiple local optimal points. As a direct
consequence of the non-convexity, a gradient method may con-
verge to local optima and possibly result in poor coverage perfor-
mance. This is evident in Fig. 3 when R(x) is uniform, where all 10
agents converge to a local optimum above the obstacle shown (and
remain stuck there), yielding obviously poor coverage performance
due to a poor choice of an initial location estimate (or simply a
fixed and uncontrollable initial agent location). The mission space
is colored from dark to light as the joint detection probability (our
objective function) decreases: the joint detection probability is
≥ 0.97 for purple areas, ≥ 0.50 for green areas, and near zero for
white areas.

The above observations motivate us to revisit the optimal cov-
erage problem and seek solutions that are provably closer to the
global optimum even though determining this global optimum is
generally infeasible.

3. Greedy-Gradient algorithm

We propose a two-step approach, termed as Greedy-Gradient
Algorithm (GGA), to solve the optimal coverage problem. As the
name suggests, the first step is to generate desirable initial agent
locations by using a greedy algorithm (Section 3.1), and the second
step is to obtain solutions even closer to the global optimum by a
gradient method (Section 3.2).

3.1. Greedy algorithm

In order to apply the greedy algorithm, the continuous mission
space F has to be approximated by a discrete set FD

= {f1, . . . , fn}
with a finite number of feasible positions such that fi ∈ F . A general
discretization method to approximate the continuous space is
given as follows.Horizontal and vertical lineswith a line distance∆

are uniformly placed in themission space to form a grid. The inter-
secting points which happen to lie within obstacles are discarded.
For every other intersecting point x in the grid, we evaluate R(x)
based on the point value. Then, we generate a random number r
uniformly distributed over [0, 1]. If R(x) > r , then x is added to FD;
otherwise, x is discarded. In this way, the discretization leverages
R(x) such that points with high event density are more likely to be
included in FD.
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After the discretization process, we have the following opti-
mization problem:

max
s

H(s) =
∫

Ω

R(x)P(x, s)dx

s.t. s ∈ I
(5)

where I = {S ⊆ FD
: |S| ≤ N} is a collection of subsets of FD, |S|

denotes the cardinality of set S.

Remark 1. Even though the objective function H(s) in (5) has the
same form as the one in (4), it is a set function instead of a function
of a 2N-dimensional vector. Loosely speaking, the gap between the
optimal values of problems (4) and (5) decreases monotonically as
∆ decreases.

The problem (5) is a combinatorial optimization problem by
choosing N agent positions from n feasible positions, where the
time complexity is n!/(N!(n − N)!). A naive method to find the
global optimum of (5) is the brute-force search, which may not
generate quality solutions in a reasonable amount of time when
n and N are large. Finding the optimal solution to (5) is in general
NP-hard. The greedy algorithm (described in Section 1 and shown
in Algorithm 1) is essentially the best-possible approximation al-
gorithm in polynomial time. The time complexity of the greedy
algorithm is O(nN). Note that when n≫ N , the time complexity is
O(n), which is independent of the number of agents. The following
greedy algorithm is used to obtain a feasible solution for (5). The
basic idea of the greedy algorithm is to add an agent which can
maximize the value of the objective function at each iteration.

Algorithm 1 Greedy Algorithm
Input: Set function H(s)

Cardinality constraint N
Output: Set s
Initialization: s← ∅, i← 0
1: while i ≤ N do
2: s∗i = argmaxsi∈I\s H(s ∪ {si})
3: s← s ∪ {s∗i }
4: i← i+ 1
5: end while
6: return s

The initial agent locations may be further improved by an ‘‘en-
hanced greedy’’ algorithm at the expense of additional computa-
tional cost. Based on the output of Algorithm 1, agent i’s location
can be re-selected according to

s∗i = arg max
s̄i∈I\s∪{si}

H (s \ {si} ∪ s̄i)

given the selected initial locations of all other agents. This process
can be iterated for all agents, and repeated several times. Note that
even though we cannot guarantee improvements by the enhanced
greedy algorithm, it will obviously perform no worse by simply
adding a few more iterations to the original greedy algorithm.

Fortunately, our objective function H(s) in (5) can be shown
(Theorem 1) to be monotone submodular. Therefore, we can apply
basic results from submodularity theory, which hold for this class
of functions, to show that the greedy algorithm produces a guar-
anteed performance. In the following, we will introduce the basic
elements of submodularity theory and show that submodularity
enables the greedy algorithm with provable optimality bounds.

Remark 2. It is worth mentioning that sometimes the coverage
problem is stated as (5) rather than (4), i.e., the mission space
has already been discretized. This is true, for instance, when we
have no capability to perfectly position agents in a continuous
space, but are only allowed to place them in a set of a priori given
discrete ‘‘cells’’. For this case, it has been shown in Sun, Cassandras,
and Meng (2017) that the greedy algorithm actually provides tight
bounds with respect to the optimization problem (5).

3.1.1. Monotone submodular coverage metric
A submodular function is a set function whose value has the

diminishing returns property. The formal definition of submodu-
larity is given as follows (Nemhauser et al., 1978).

Definition1. Given a ground setY = {y1, . . . , yn} and its power set
2Y , a function f : 2Y

→ R is called submodular if for any S, T ⊆ Y ,

f (S ∪ T )+ f (S ∩ T ) ≤ f (S)+ f (T ). (6)

If, additionally, f (S) ≤ f (T ) whenever S ⊆ T , we say that f is
monotone submodular.

An equivalent definition, which better reflects the diminishing
returns property, is given below.

Definition 2. For any sets S, T ⊆ Y with S ⊆ T and any y ∈ Y \ T ,
we have

f (S ∪ {y})− f (S) ≥ f (T ∪ {y})− f (T ). (7)

Intuitively, the incremental increase of the function is larger
when an element is added to a small set than to a larger set. In
what follows, we will use the second definition.

Definition 3. Let I be a non-empty collection of subsets of a finite
set Y . An ordered pair M = (Y , I), where I ⊆ 2Y , is called
independent if, for all B ∈ I, any set A ⊆ B is also in I. Furthermore,
if for all A ∈ I, B ∈ I, |A| < |B|, there exists a j ∈ B \ A such that
A ∪ {j} ∈ I, then M is called a matroid. Moreover, M = (Y , I) is
called uniform matroid if I = {S ⊆ Y : |S| ≤ N}.

The following theorem establishes the fact that the objective
function H(s) in (5) is monotone submodular, regardless of the
obstacles that may be present in the mission space. This will allow
us to apply results that quantify a solution obtained through the
greedy algorithm relative to the global optimum in (5).

Theorem 1. H(s) defined in (5) is a monotone submodular set
function.

Proof. Let S and T , such that S ⊆ T ⊆ FD, be two agent position
vectors. Since S ⊆ T and 0 ≤ 1 − p̂i(x, si) ≤ 1 for any si ∈ FD, we
have∏
si∈S

[1− p̂i(x, si)] ≥
∏
si∈T

[1− p̂i(x, si)] (8)

for all x ∈ Ω . In addition, H(S ∪ {sk}) can be written as

H(S ∪ {sk})

=

∫
Ω

R(x)

⎧⎨⎩1− [1− p̂k(x, sk)]
∏
si∈S

[1− p̂i(x, si)]

⎫⎬⎭ dx

=

∫
Ω

R(x)

⎧⎨⎩1−
∏
si∈S

[1− p̂i(x, si)]

⎫⎬⎭ dx

+

∫
Ω

R(x)p̂k(x, sk)
∏
si∈S

[1− p̂i(x, si)]dx.

The difference between H(S) and H(S ∪ {sk}) is given by

H(S ∪ {sk})− H(S)

=

∫
Ω

R(x)p̂k(x, sk)
∏
si∈S

[1− p̂i(x, si)]dx.
(9)
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Using the same derivation for T , we can obtain

H(T ∪ {sk})− H(T )

=

∫
Ω

R(x)p̂k(x, sk)
∏
si∈T

[1− p̂i(x, si)]dx.
(10)

From (9) and (10), the difference between H(S ∪ {sk}) − H(S) and
H(T ∪ {sk})− H(T ) is

[H(S ∪ {sk})− H(S)]− [H(T ∪ {sk})− H(T )]

=

∫
Ω

R(x)p̂k(x, sk)
∏
si∈S

[1− p̂i(x, si)]dx

−

∫
Ω

R(x)p̂k(x, sk)
∏
si∈T

[1− p̂i(x, si)]dx.

(11)

Using (8), it follows that the difference [H(S ∪ {sk}) − H(S)] −
[H(T ∪ {sk}) − H(T )] ≥ 0. Therefore, from Definition 2, H(s) is
submodular. Next, we prove that H(s) is monotone, i.e., H(S) ≤
H(T ). Subtracting H(T ) from H(S) yields

H(S)− H(T )

=

∫
Ω

R(x)

⎧⎨⎩1−
∏
si∈S

[1− p̂i(x, si)]

⎫⎬⎭ dx

−

∫
Ω

R(x)

⎧⎨⎩1−
∏
si∈T

[1− p̂i(x, si)]

⎫⎬⎭ dx

=

∫
Ω

R(x)

⎧⎨⎩∏
si∈T

[1− p̂i(x, si)] −
∏
si∈S

[1− p̂i(x, si)]

⎫⎬⎭ dx.

Using (8), we have H(S)−H(T ) ≤ 0. Therefore, H(s) is a monotone
submodular function. ■

3.1.2. Lower bounds
We will use the definition

L(N) =
f
f ∗

from Section 1, where f ⋆ is the global optimum of (5) and f
is a feasible solution obtained by Algorithm 1 . Then, as shown
in Nemhauser et al. (1978), a lower bound of L(N) is 1− 1/e.

The lower bound of L(N) can be improved by exploring the
curvature information (total curvature and elemental curvature) of
the objective function. The following results are based on the fact
that H(s) is a monotone submodular function satisfying H(∅) = 0
proved in Theorem 1 and M = (FD, I) is a uniform matroid
according to Definition 3.

Next, we consider the total curvature

c = max
j∈FD

[
1−

H(FD)− H(FD
\ j)

H({j})

]
(12)

introduced in Conforti and Cornuéjols (1984). Using c , the lower
bound of L(N) above is improved to be T (c,N):

T (c,N) =
1
c

[
1− (

N − c
N

)N
]

, (13)

where c ∈ [0, 1], and

T (c,N) ≥ 1−
1
e

for any N ≥ 1 (Conforti & Cornuéjols, 1984). If c = 1, the result is
the same as the bound obtained in Nemhauser et al. (1978), Fisher,
Nemhauser, and Wolsey (1978).

Fig. 4. T (c,N) and E(α,N) as a function of the number of agents N .

In addition, we consider the elemental curvature

α = max
S⊂FD,i,j∈FD\S,i̸=j

H(S ∪ {i, j})− H(S ∪ {j})
H(S ∪ {i})− H(S)

, (14)

based on which the following bound is obtained:

E(α,N) = 1−
(

α + · · · + αN−1

1+ α + · · · + αN−1

)N

(15)

and it is shown inWang et al. (2016) that L(N) ≥ E(α,N). Note that
E(α,N) can be simplified as follows:

E(α,N) =

⎧⎪⎨⎪⎩
1− (

N − 1
N

)N , when α = 1;

1− (
α − αN

1− αN )N , when 0 ≤ α < 1.
(16)

Once T (c,N) and E(α,N) are calculated, the larger one is the
lower bound L(N), defined as

L(N) = max{T (c,N), E(α,N)}. (17)

Accordingly, we have H(S) ≥ L(N)H(S∗), where S⋆ is the global
optimum set, and S is the set obtained by Algorithm 1 . Note that,
in general, the computation of c is O(n) and the computation of α
is O(n2) where n is the cardinality of FD. For the optimal coverage
problem, we will provide a way to simplify the calculation of α to
O(n) in Eq. (23).

Fig. 4 shows the dependence of T (c,N) and E(α,N) on the
number of agents N for some specific values of c and α (as shown
in the figure). Clearly, if c < 1 and α < 1, then L(N) in (17) is much
tighter than 1− 1

e .

3.1.3. Curvature information calculation
We will derive the concrete form of the total curvature c and

the elemental curvature α for the objective function H(s) in (5).
For notational convenience, p̂i(x, si) is used without its arguments
as long as this dependence is clear from the context.

Recall that FD is the set of feasible agent positions. We can
obtain from (5):

H(FD) =
∫

Ω

R(x)

[
1−

n∏
i=1

(1− p̂i)

]
dx

=

∫
Ω

R(x)

⎡⎣1− (1− p̂j)
n∏

i=1,i̸=j

(1− p̂i)

⎤⎦ dx,
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and

H(FD
\ {sj}) =

∫
Ω

R(x)

⎡⎣1−
n∏

i=1,i̸=j

(1− p̂i)

⎤⎦ dx.

The difference between H(FD) and H(FD
\ {sj}) is

H(FD)− H(FD
\ {sj}) =

∫
Ω

R(x)p̂j
n∏

i=1,i̸=j

[1− p̂i]dx. (18)

When there is only one agent sj, the objective function is

H(sj) =
∫

Ω

R(x)p̂jdx. (19)

Combining (12), (18) and (19), we obtain

c = max
sj∈FD

[
1−

∫
Ω
R(x)p̂j

∏n
i=1,i̸=j[1− p̂i]dx∫

Ω
R(x)p̂jdx

]
. (20)

Remark 3. If the sensing capabilities of agents are weak, that is, p̂i
is small for most parts in themission space, then

∏n
i=1,i̸=j(1− p̂i) is,

in turn, close to 1, which leads to a small value of c. It follows from
(13) that the lower bound T (c,N) is a monotonically decreasing
function of c and approaches 1 near c = 0. This implies that
the solution of the greedy algorithm is very close to the global
optimum when the sensing capabilities are weak.

Next, we calculate the elemental curvature α. From (9), the
difference between H(S) and H(S ∪ {sk}) is

H(S ∪ {sk})− H(S) =
∫

Ω

R(x)p̂k(x)
∏
si∈S

[1− p̂i]dx. (21)

Using the same derivation, we can obtain

H(S ∪ {sj, sk})− H(S ∪ {sj})

=

∫
Ω

R(x)p̂k(1− p̂j)
∏
si∈S

[1− p̂i]dx.
(22)

The elemental curvature in (14) can then be calculated by

α = max
S,sj,sk

H(S ∪ {sj, sk})− H(S ∪ {sj})
H(S ∪ {sk})− H(S)

= max
S,sj,sk

∫
Ω
R(x)p̂k(1− p̂j)

∏
si∈S
[1− p̂i]dx∫

Ω
R(x)p̂k

∏
si∈S
[1− p̂i]dx

= max
S,sj,sk

1−

∫
Ω
R(x)p̂kp̂j

∏
si∈S
[1− p̂i]dx∫

Ω
R(x)p̂k

∏
si∈S
[1− p̂i]dx

= 1− min
sj,x∈Ω

p̂j(x, sj).

(23)

Remark 4. Observe that the elemental curvature turns out to be
determined by a single agent. If there exists a pair (x, sj) such that
x ∈ V̄ (sj) in (2), then p̂j(x, sj) = 0 andα = 1. Thismayhappenwhen
there are obstacles in the mission space or the sensing capabilities
of agents are weak (e.g., the sensing range is small or the sensing
decay rate is large). On the other hand, if the sensing capabilities
are so strong that p̂j(x, sj) ̸= 0 for any x ∈ F , sj ∈ FD, then
α < 1. In addition, E(α,N) is a monotonically decreasing function
of α.

An interesting conclusion from this analysis is that T (c,N) and
E(α,N) are complementarywith respect to the sensing capabilities
of sensors. From Remark 3, T (c,N) is large when the sensing
capabilities are weak, while from Remark 4, E(α,N) is large when
the sensing capabilities are strong. This conclusion is graphically

Fig. 5. Lower bound L(10) as a function of the sensing decay rate of agents.

Fig. 6. Lower bound L(10) as a function of the sensing range of agents.

depicted in Figs. 5 and 6 (where sensing capability varies from
strong to weak). In Fig. 5, E(α,N) and T (c,N) have been evaluated
for N = 10 and δ = 80 as a function of one of the measures of
sensing capability, the sensing decay rate λ in (1), assuming all
agents have the same sensing capabilities. One can see that for
small values of λ, the bound E(α, 10) is close to 1 and dominates
both T (c, 10) and the well-known bound 1 − 1

e . Beyond a critical
value of λ, it is T (c, 10) that dominates and approaches 1 for large
values of λ. Fig. 6 shows a similar behavior when T (c,N) and
E(α,N) are evaluated for N = 10 and λ = 0.03 as a function of the
other measure of sensing capability, the sensing range δ. When the
sensing range exceeds the distance of the diagonal of the mission
space, there is no value in further increasing the sensing range
and E(·) becomes constant. When δ > 20, the sensing capabilities
are strong and T (·) becomes constant. Therefore, both E(·) and T (·)
become constantwhen δ exceeds corresponding thresholds. On the
other hand,when the sensing range is smaller than some threshold,
then α = 1, and E(1, 10) = 0.6513.

Figs. 5 and 6 also illustrate the trade-off between the sensing
capabilities and the coverage performance guarantee. Agents with
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strong capabilities obviously achieve better coverage performance.
On the other hand, one can get a better guaranteed performance
as the agents’ capabilities get weaker. Therefore, if one is lim-
ited to agents with weak sensing capabilities in a particular set-
ting, the use of T (c,N) is appropriate and this trade-off may be
exploited.

Remark 5. The following comments pertain to the accuracy of
the greedy algorithm solution to the original optimal coverage
problem (4). Finding a global optimal solution to the problem (5)
by the brute-force search is unnecessary and it is adequate to be
greedy with provable optimality bounds. The solution to (5) has
no significance beyond the fact that it provides an initial condition
for the original optimal coverage problem (4). On the other hand,
the time complexity of the greedy algorithm increases linearly
with the cardinality of the discrete set FD. For this reason, it is not
advisable to limit FD to a small cardinality. We may get a tight
optimality bound from the greedy algorithm for a small size FD,
but the gap between the optimal values of problems (4) and (5) is
large.

3.2. Gradient algorithm

In this subsection, we use existing gradient-based algo-
rithms with an initial deployment given by the greedy algorithm
(Algorithm 1) shown in Algorithm 2 to seek better performance
for the optimal coverage problem (4) in a continuous environ-
ment. Therefore, the gradient is calculated in the continuous en-
vironment, whereas the greedy algorithm is limited to a discrete
environment. In particular, we use the distributed gradient-based
algorithm developed in Zhong and Cassandras (2011):

sk+1i = ski + ζk
∂H(s)
∂ski

, k = 0, 1, . . . (24)

where the step size sequence {ζk} is appropriately selected to
ensure convergence of the resulting trajectories for all agents
(Bertsekas, 1995). The detailed calculation of ∂H(s)

∂ski
can be found

in Sun et al. (2014). We only include all necessary notation and
the final result of the partial derivative. The neighborhood set Bi
of agent i is defined as:

Bi = {k : ∥si − sk∥ < 2δi, k = 1, . . . ,N, k ̸= i} (25)

This set includes all agents k whose sensing region Ωk has a
nonempty intersection with Ωi, the sensing region of agent i. Let
Φi(x) =

∏
k∈Bi
[1−p̂k(x, sk)]denote the joint probability that a point

x ∈ Ω is not detected by any neighbor agent of agent i.
Let v be a reflex vertex of an obstacle and x ∈ F a point visible

from v. A set of points in a ray starting from v and extending in
the direction of v − x, is defined by I(v, x) = {q ∈ V (v) : q =
λv + (1 − λ)x, λ > 1}. The ray intersects the boundary of F at an
impact point. The segment from v to the impact point is I(v, x).

An anchor of si is a reflex vertex v such that it is visible from
si and I(v, si) is not empty. Denote the anchors of si by vij, j =
1, . . . ,Q (si), where Q (si) is the number of anchors of si. An impact
point of vij, denoted by Vij, is the intersection of I(vij, si) and ∂F .
As an example, in Fig. 1, vi1, vi2, vi3 are anchors of si, and Vi1,
Vi2, Vi3 are the corresponding impact points. Let Dij = ∥si − vij∥

and dij = ∥Vij − vij∥. Define θij = arctan
|si−vij|y
|si−vij|x

which satisfies
θij ∈ [0, π/2] as the angle formed by si − vij and the x-axis,
Γi = {j : Dij < δi, j = 1, . . . ,Q (si)}, zij = min(dij, δi − Dij) and
ρij(r)ρij(r) = (Vij−vij) r

dij
+vij is the Cartesian coordinate of a point

on Iij which is at a distance r from vij.

With these notation, the final result of the partial derivative is
∂Hi(s)
∂six

=

∫
V (si)

w1(x, si)
(x− si)x
di(x)

dx+

∑
j∈Γi

sgn(njx)
sin θij

Dij

∫ zij

0
w2(ρij(r), si)rdr

(26)

∂Hi(s)
∂siy

=

∫
V (si)

w1(x, si)
(x− si)y
di(x)

dx+

∑
j∈Γi

sgn(njy)
cos θij

Dij

∫ zij

0
w2(ρij(r), si)rdr

(27)

where w1(x, si) = −R(x)Φi(x)
dpi(x,si)
ddi(x)

controls the mechanism
through which agent i is attracted to different points x ∈ V (si)
through x−si

di(x)
,w2(x, si) in the second integral controls the attraction

that boundary points exert on node iwith the geometrical features
of the mission space contributing through njx, njy, θij, and Dij (Sun
et al., 2014).

As discussed in Zhong and Cassandras (2011), we assume that
the agent locations do not coincidewith a reflex vertex, a polygonal
inflection, or a bitangent, at which points H(s) is generally not
differentiable. To take these points into account, one can replace
the standard gradient-based algorithm in (24) by subgradient
algorithms or bundle methods which aggregate the subgradient
information in past iterations; see Zhong and Cassandras (2011)
for details.

Algorithm 2 Greedy-Gradient Algorithm
Input: Objective function H(s)
Output: Agent positions s
Initialization: s given by Greedy Algorithm 1
1: while the stopping criterion is not satisfied do
2: Choose a step size ζ > 0
3: for i = 1, . . . ,N do
4: Determine a searching direction ∂H(s)

∂si
5: Update: si ← si + ζ

∂H(s)
∂si

6: end for
7: end while
8: return s

The stopping criterion is of the form ∥ ∂H(s)
∂si
∥ ≤ η, where η is a small

positive scalar.

4. Simulation results

In this section,we illustrate through simulation our analysis and
the use of the GGA (Algorithm 2), and show the performance im-
provements obtained when compared with the greedy algorithm
(Algorithm 1) and the distributed gradient algorithm in (24) for
coverage problems in a variety of mission spaces (no obstacles,
a wall-like obstacle, a maze-like obstacle, a collection of random
obstacles, and a building with multiple rooms). The mission space
is a 60 × 50 rectangular area. All agents have the same sensing
range δi = 80, i = 1, . . . ,N . For each mission space, two different
sensing decay rates λ are used for the comparison as shown in
Figs. 8–9, 10–11, 15–16, 17–18 and 19–20, where (a) shows the
results of our distributed gradient-based algorithmwith initializa-
tion at the left upper corner, (b) shows the results under the greedy
algorithm, and (c) shows the results under the GGA. The mission
space is colored fromdark to light as the joint detection probability
(our objective function) decreases: the joint detection probability
is ≥ 0.97 for purple areas, ≥ 0.50 for green areas, and near zero
for white areas.
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Fig. 7. FD for R(x) = (xx+xy)
(xmax+ymax)

with ∆ = 1.

When applying the greedy algorithm, the continuous mission
space F is discretized to FD by the method described in Section 3.1
with ∆ = 1. For the cases in Figs. 8–9, R(x) is a linear function
of x = [xx, xy] with the form R(x) = xx+xy

max{xx}+max{xy}
. The set FD

is shown Fig. 7. As we discussed in Section 3.1, more points are
selected around the right bottom corner with high event density
R(x) than the left upper corner with low event density in FD. For all
remaining cases, there are obstacles and R(x) = 1 for x ∈ F , which
facilitates comparison with our previous work (Sun et al., 2014).
When R(x) = 1, all intersecting points are selected in FD except
those that lie within obstacles.

Figs. 8–9 show that the GGA algorithm is capable of dealing
with the non-uniform distribution R(x). Agents cluster around the
right bottom corner where points have high event density R(x),
as expected. The GGA algorithm and the gradient-based algorithm
perform similarly, while the greedy algorithm, by its very nature,
performs poorly.

For cases with obstacles in the mission space, we first discuss
in detail and provide insights for the wall-like mission space case
and then include some additional interesting cases.

Fig. 12 depicts the evolution of the coverage function H(s)
when the GGA is applied to the case in Fig. 10. During the first 10
steps, only the greedy algorithm is in operation and the coverage
function evolves as the 10 agents are added one by one, illus-
trating the submodularity property. Subsequently, the gradient-
based algorithm is set into operation and the objective function
value is further increased from 1813.3 to 1846.3. The left upper
corner initialization is intentionally a very poor choice for a wall-
like mission space as seen from Figs. 10a and 11a. This choice and
the weak sensing ability of the agents in these particular examples
result in poor coverage as the agents have no advance knowledge
of the large uncovered space and they are limited to covering only
the left area in the mission space. For a fair comparison, we apply
random initialization twice to the case in Fig. 10a, where the initial
agents’ locations are shown in Figs. 13a and 14a, respectively. The
corresponding coverage performance for the agents’ final locations
shown in Figs. 13b and 14b is H(s) = 1472.8 and H(s) = 1670.9,
respectively. The coverage performancewith random initialization
is not better than the onewith the initial locations generated by the
greedy algorithm as shown in Fig. 10c.

Fig. 8. The decay factor λ = 0.12, and no obstacles in the mission space.

Fig. 9. The decay factor λ = 0.4, and no obstacles in the mission space.

Fig. 10. The decay factor λ = 0.12, and a wall-like obstacle in the mission space.

Fig. 11. The decay factor λ = 0.4, and a wall-like obstacle in the mission space.

In the rest of the examples, such as the maze-like obstacle,
a collection of random obstacles, and a building with multiple
rooms, the greedy algorithm and the GGA outperform the basic
gradient-based algorithm as well. Moreover, the results of the
GGA significantly improve upon those reported in our previous
work (Sun et al., 2014). As an example, in the cases of Fig. 19 with
λ = 0.12, the objective function value is improved from a value of
1419.5 reported in Sun et al. (2014) (using the distributed gradient-
based algorithm with improvements provided through the use of
boosting functions) to 1466.9.

5. Conclusions and future work

We have obtained an initial solution to the optimal cover-
age problem by using the greedy algorithm to approximate the
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Fig. 12. Evolution of H(s) when the GGA is applied: first, only the greedy algorithm is applied, then (after 10 iterations), the gradient-based algorithm is applied.

Fig. 13. Gradient-based algorithm with random initialization to the case in
Fig. 10(a).

Fig. 14. Gradient-based algorithm with random initialization to the case in
Fig. 10(a).

Fig. 15. The decay factor λ = 0.12, in a general mission space.

solution of non-convex optimal coverage problems. The obtained
greedy solution ensures a guaranteed lower bound relative to the
global optimum of the approximated optimal coverage problem
which is significantly tighter than the one well-known in the

Fig. 16. The decay factor λ = 0.4, in a general mission space.

Fig. 17. The decay factor λ = 0.12, in a maze mission space.

Fig. 18. The decay factor λ = 0.4, in a maze mission space.

Fig. 19. The decay factor λ = 0.12, in a room mission space.
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Fig. 20. The decay factor λ = 0.4, in a room mission space.

literature to be 1 − 1/e. This is made possible by proving that our
coverage metric of the approximated optimal coverage problem
is monotone submodular and by calculating its total curvature
and its elemental curvature. Therefore, we are able to reduce
the theoretical performance gap between optimal and suboptimal
solutions enabled by the submodularity theory.Moreover, we have
shown that the two new bounds derived are complementary with
respect to the sensing capabilities of the agents and each one
approaches its maximal value of 1 under different conditions on
the sensing capabilities, enabling us to select the most appropriate
one depending on the characteristics of the agents at our disposal.
In addition, by combining the greedy algorithm with a distributed
gradient-based algorithm we have proposed a greedy-gradient
algorithm (GGA) so as to improve the coverage performance by
searching in a continuous feasible region with initial conditions
provided by the greedy algorithm. We have included simulation
results uniformly showing that the proposed distributed GGA out-
performs other related methods we are aware of.

An interesting future research direction is to study whether a
distributed greedy algorithm can be developed and whether the
lower bounds obtained through the associated curvatures are still
as tight as those we have obtained so far.
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