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The intriguing analogy between quantum physics and optics
has inspired the design of unconventional integrated pho-
tonics devices. In this paper, we numerically demonstrate
a broadband integrated polarization beam splitter (PBS)
by implementing the stimulated Raman adiabatic passage
(STIRAP) technique in a three-waveguide plasmonic system.
Our proposed PBS exhibits >250 nm transverse-magnetic
(TM) bandwidth with <−40 dB extinction and >150 nm
transverse-electric (TE) bandwidth with <−20 dB extinc-
tion, covering the entire S-, C-, and L-bands and part of the
E-band. Moreover, near-lossless light transfer is achieved in
our system despite the incorporation of a plasmonic hybrid
waveguide because of the unique loss mitigating feature of
the STIRAP scheme. Through this approach, various broad-
band integrated devices that were previously impossible can
be realized, which will allow innovation in integrated optics.
© 2022 Optical Society of America
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Quantum physics processes can often be related to classical
analogies in photonic systems [1] owing to similar mathematical
forms of the Schrödinger equation and the paraxial Helmholtz
equation. The stimulated Raman adiabatic passage (STIRAP)
technique [2,3], originally developed for robust population trans-
fer between three or more atomic or molecular energy levels,
has found great applications in the manipulation and transfer
of light in coupled waveguide systems. Since the initial pro-
posal [4,5] and experimental demonstration [6] of STIRAP in
waveguides, a variety of waveguide systems with versatile func-
tionalities based on the STIRAP protocol have been reported,
such as spectral filtering [7], beam splitting [8], and on-chip
entanglement engineering [9]. Nevertheless, most current stud-
ies are limited to the consideration of non-dissipative dielectric
systems. The generalization of this approach to open systems
creates new opportunities for using plasmonics as well as the
exceptional properties of non-Hermitian systems [10–12]. How-
ever, the adiabatic requirement of STIRAP, which impacts the
device length, hinders such endeavors and limits their practi-
cality. The use of artificial gain is considered in recent reports
to cancel the dissipation [13] or accelerate the transfer [14].
However, such conditions are impractical over the required dis-
tances that are typically centimeters long. In this Letter, we
adopt an alternative approach inspired by a generalized atomic

STIRAP framework, where the transfer can be lossless if the loss
(decay) only exists in the intermediate state of the three-level
system [15]. We exploit this unique feature and use a hybrid
plasmonic waveguide (HPWG) [16,17] as the intermediate state
in our waveguide system. This enables the implementation of
a robust integrated polarization beam splitter (PBS) based on
the polarization selectivity of the plasmonic system. The advan-
tage of using STIRAP principles here is twofold: it circumvents
plasmonic losses and provides excellent operation bandwidth.

With the rapid development of photonic integrated cir-
cuits, more and more degrees of freedom, such as wavelength
and polarization, can be manipulated on the same chip. An
integrated broadband PBS, preferably executed using high-
index-contrast structures, such as the state-of-the-art lithium
niobate on insulator (LNOI) platform [18–21], is a highly
needed device. However, the operational bandwidth supported
by conventional designs, i.e., directional couplers, is limited
to tens of nanometers, owing to the wavelength sensitivity of
the interference effect [22]. Extending the operational band-
width requires more sophisticated engineering of anisotropic
structures, such as heteroanisotropic metamaterials [23] and
cascaded interferometers with different birefringent paths [24].
While the performance of such devices is considered to be
promising, the complexity of executing the sub-wavelength
grating [23] and obtaining cascaded interferometers [24] is
challenging, and the uncertainty in fabrication and device char-
acterization increases. However, the STIRAP protocol has been
used in simple dielectric-only waveguide systems and proven
to offer large bandwidths [25–27]. However, these devices
are based on low-index-contrast waveguide platforms that are
incompatible with modern advanced integration technologies.
Moreover, these dielectric-only designs require 3–5-cm-long
devices and, sometimes, at least a five-waveguide system [26],
because their operation relies on the material birefringence
only.

Here, we propose a novel broadband PBS on a LNOI platform,
which is based on a three-waveguide STIRAP scheme employing
a plasmonic waveguide. To the best of our knowledge, this is the
first STIRAP-based PBS reported in high-index-contrast inte-
grated systems, featuring a short device length of 6 mm, which
is 5-fold shorter than other STIRAP-PBS systems reported so
far [25–27]. This approach opens fresh avenues for on-chip
polarization control and introduces new principles of plasmonic
system design and manipulation.
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Fig. 1. (a) Schematic of the proposed device. The inset shows the
cross-section of WG2 (the HPWG). (b) Three-level atomic system
that is analogous to that shown in panel (a). The pulses Ωp and Ωs
denote Rabi frequencies.

Figure 1 presents a schematic of the proposed PBS that illus-
trates its principle of operation. The device consists of three
waveguides (WG1, WG2, WG3) made in X-cut thin-film lithium
niobate (hLN = 375 nm) on top of a silicon dioxide layer. The
outer two waveguides (WG1 and WG3) are fully etched ridge
waveguides with the same width of wLN= 900 nm. The top
cladding is air. Such parameters ensure single-mode operation
within the designed bandwidth (approximately 1400–1700 nm).
The HPWG in the middle (WG2) has a width of wHPWG = 300 nm
and comprises three layers: an LN ridge waveguide, a gold
topping layer (hAu = 100 nm), and a silicon dioxide interlayer
(height g= 80 nm) between gold and LN. The electric field in
this HPWG is mainly confined in the low index silicon dioxide
layer, in analogy to a slot waveguide, while the plasmonic nature
of this structure imposes transverse-magnetic (TM) polarization
on the resultant mode. For a TM mode excited in the left waveg-
uide (WG1), the light transfer in the three-waveguide system is
analogous to the STIRAP process in a three-level atomic system
[Fig. 1(b)], where the population initially in state |1⟩ (or WG1) is
transferred to state |3⟩ (or WG3) via an intermediate state |2⟩ (or
WG2). The intermediate state |2⟩ here is a decaying state (decay
rate Γ), which reflects the lossy characteristic of WG2. In the
waveguides system, the detuning ∆ reflects the propagation con-
stant mismatch between WG2 and WG1/WG3. In contrast to the
three-waveguide coupling for the TM case, a transverse-electric
(TE) mode starting in WG1 undergoes direct two-waveguide
coupling between WG1 and WG3, because WG2 does not sup-
port TE polarization. A PBS effect is achieved because such
cross-coupling of the TE mode is weak given the large separation
between WG1 and WG3.

We describe the state evolution in the waveguide system and
highlight the analogy with a population transfer process based
on STIRAP (substitution z → t illustrates the equivalency with
an atomic system):

i
d
dz

A = HA, (1)

where A = [a1(z), a2(z), a3(z)]T denotes the field distribution in
WG1, WG2, and WG3. The focus of this study is the transfer
of the TM mode, and all notations hereafter refer to TM unless
otherwise specified. The interaction Hamiltonian H in a per-
turbation form can be written according to the coupled mode
theory (CMT) [28]:

H ≡ H(0) +H′

=

⎡⎢⎢⎢⎢⎣
0 C12(z) 0

C∗
12(z) ∆ C23(z)
0 C∗

23(z) 0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

0 0 C13(z)
0 iΓ 0

C∗
13(z) 0 0

⎤⎥⎥⎥⎥⎦ .

(2)

The unperturbed Hamiltonian, H(0), represents a lossless system
with detuning ∆ in the intermediate level (∆ ≡ ∆β = β2 − β1 in
the waveguide system), while the loss is accounted in the per-
turbation H′. Here, Cij denotes the coupling coefficient between
WG-i and -j, and Cij = C∗

ji because H(0) is lossless. The pertur-
bation term H′ is responsible for two effects: the loss from WG2
and the coupling between WG1 and WG3. The latter is exclusive
to the waveguide system, as the direct transition between |1⟩ and
|3⟩ in the atomic system is forbidden. Following the perturbation
approach, we analyze our system starting from the zeroth-order
term, H(0), corresponding to a lossless STIRAP case. The full
system is most conveniently understood when projected to the
eigenstate basis of H(0), often referred to as the adiabatic basis:

|Ψ(0)
+ ⟩ = sin ϕ sin θ |1⟩ + cos ϕ|2⟩ + sin ϕ cos θ |3⟩

|Ψ
(0)
0 ⟩ = cos θ |1⟩ − sin θ |3⟩ (3)

|Ψ(0)
− ⟩ = cos ϕ sin θ |1⟩ − sin ϕ|2⟩ + cos ϕ cos θ |3⟩,

with eigenvalues λ(0)0 = 0 and λ(0)± =
(︂
∆ ±

√︁
∆2 + 4C2

0

)︂
/2, where

C0(z) =
√︁
|C12(z)|2 + |C23(z)|2. The parameters ϕ and θ are given

by tan θ(z) = C12(z)/C23(z) and tan 2ϕ(z) = 2C0(z)/∆, respec-
tively. These definitions lead to λ(0)+ ≡ C0 cot ϕ and λ(0)− ≡

−C0 tan ϕ.
Among the adiabatic states, of particular significance is |Ψ(0)

0 ⟩,
also known as the dark state in STIRAP, because it does not
involve the intermediate state |2⟩. This highlights an important
characteristic of ideal STIRAP: the population transfer takes
place via |2⟩ without populating |2⟩ itself. In atomic STIRAP,
the population transfer is enabled by the two pulses in the so-
called counter-intuitive order, meaning the pulse connecting |2⟩
and |3⟩ precedes the pulse connecting |1⟩ and |2⟩. A similar
configuration must be implemented in the waveguide system,
such that for the initial state: C12 ≪ C23, θi ≈ 0, |Ψ(0)

0 ⟩i ≈ |1⟩;
and the final state: C12 ≫ C23; θf ≈ π/2; |Ψ(0)

0 ⟩f ≈ |3⟩. Thus,
an initial population in |1⟩ has perfect overlap with |Ψ(0)

0 ⟩i and
can thereby evolve into |Ψ(0)

0 ⟩f (or |3⟩), provided that it remains
in |Ψ(0)

0 ⟩ without crosstalk to |Ψ(0)
+ ⟩ and |Ψ(0)

− ⟩. However, as H(0)

evolves, these instantaneous eigenstates become coupled, as can
be seen from the corresponding Hamiltonian in the adiabatic
basis:

Hadia =

⎡⎢⎢⎢⎢⎣
λ(0)+ iθ̇ sin ϕ iϕ̇

−iθ̇ sin ϕ λ(0)0 −iθ̇ cos ϕ
−iϕ̇ iθ̇ cos ϕ λ(0)−

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
−iΓcos2ϕ 0 −iΓ sin 2ϕ/2

0 0 0
iΓ sin 2ϕ/2 0 −iΓsin2ϕ

⎤⎥⎥⎥⎥⎦ .

(4)

In Eq. (4), an over dot denotes the z-derivative. Here we have
again used the perturbation approach and dropped the C13 terms
for simplicity. It is clear that Hadia is not exactly diagonal
despite the instantaneous eigenstate basis. However, if the system
evolves slowly, the derivatives in the off-diagonal terms will van-
ish, and the modes are nearly decoupled. This particularly leads
to isolation of the |Ψ(0)

0 ⟩ state, because its related elements in the
perturbation matrix are zero. Therefore, near-lossless evolution
within |Ψ(0)

0 ⟩ can be obtained, although the exact lossless limit
requires infinite interaction length. Note that the |Ψ(0)

n ⟩ states are
the zeroth-order terms of the exact eigenstates of H. The latter
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Fig. 2. (a) Layout of the three waveguides. (b)–(d) Electric field
of the supermodes (instantaneous eigenstates) at the cross-section
of (b) z= 0, (c) z= 3 mm, and (d) z= 6 mm. For the STIRAP-like
transfer of the TM mode, the system evolves mainly in the |Ψ(0)

0 ⟩

state in the dashed box. For TE supermodes, see Supplement 1.

can be expressed by the perturbation theory to the first-order
approximation:

|Ψn⟩ = |Ψ(0)
n ⟩ +

∑︂
m≠n

⟨︁
Ψ

(0)
m

|︁|︁H′ |Ψ
(0)
n ⟩

(λ(0)n − λ(0)m )
|Ψ(0)

m ⟩, m, n ∈ {+, 0,−}. (5)

These exact eigenstates will be visualized in Figs. 2(b)–2(d).
To implement the STIRAP-like light transfer in a

waveguide system, we consider the waveguide layout
depicted in Fig. 2(a). The shapes of WG1 and WG3 are
defined by xWG1(z) = −a0 |z − z0WG1 |

3 + dmin + (wLN + wHPWG)/2
and xWG3(z) = a0 |z − z0WG3 |

3 + dmin + (wLN + wHPWG)/2, respec-
tively, where xWG1(z) and xWG3(z) measure the z-dependence of
the center positions of WG1 and WG3. Here, dmin = 700 nm is
the minimum edge-to-edge distance, occurring at z0WG1 = 4.5 mm
for WG1 and z0WG3 = 1.5 mm for WG3. The full device length
is 6 mm. The coefficient affecting the degree of bending is
a0 = 16.33 when all variables are converted to the unit of meters.
These shapes are designed to obtain super-Gaussian-shaped
coupling coefficient profiles [see Fig. 3(a)]. Despite the notice-
able bending in Fig. 2(a), the local directional angle between
the waveguide axial direction and the z-axis is very small
(dx/dz= 0.001 at maximum). Therefore, the refractive index
change resulting from the propagation direction in X-cut LN
is negligible.

This also makes it convenient to use the local normal mode
representation to illustrate the TM mode evolution in the
waveguide system, as presented in Figs. 2(b)–2(d). We used a
two-dimensional (2D) finite difference mode solver (Lumerical
MODE) to obtain the supermodes. The simulation wavelength
is 1550 nm. The refractive indices of LN are 2.1379 (extraordi-
nary) and 2.2112 (ordinary) [29], and the indices of gold and
silicon dioxide are 0.5301+ 10.81i and 1.444, respectively. The
supermodes are correlated to the adiabatic states in Eq. (5) [or
Eq. (3) with zeroth-order approximation], because both rep-
resentations depict the same eigenstates of H. The evolution of
these adiabatic modes during the field propagation can be clearly
seen in Figs. 2(b) –2(d). Particularly, the |Ψ0⟩ state, which evolves
from |1⟩ into |3⟩, is observed to be a dark state not involving
WG2. This explains the near-lossless light transfer mechanism,
even if a lossy HWPG is included in the system.

Fig. 3. (a) Coupling coefficient profile. Left to right: first curve,
C23 TM; second curve, C12 TM. (b) Evolution of the parameter
θ and the adiabatic condition. (c), (d) Propagation of a TM mode
injected in WG1 by (c) CMT calculation (left to right: first curve,
WG3, second curve, WG1) and (d) EME simulation. (e), (f) Same
as in panels (c), (d) but for the TE mode.

To examine the performance of the proposed PBS, we
conducted CMT calculations and 3D simulations using the
eigenmode expansion (EME) method (Lumerical EME). For
CMT, we extract the coupling coefficients between two waveg-
uides following the derivations in [28]. The resultant coupling
coefficient profiles along z are plotted in Fig. 3(a). Empiri-
cally, the coupling coefficient decays exponentially with the
waveguide separation. Thus, C12(z) and C23(z) take the form of
truncated third-order super-Gaussian functions resulting from
the “reflected” cubic function profiles of WG1 and WG3.
Such profiles are designed to optimize the overlap of the
coupling strengths for STIRAP transfer. To provide guidance
for the optimization, we plot two parameters in Fig. 2(b):
the angle θ in Eq. (3) and an adiabatic condition parameter
defined as

√︁
|C12(z)|2 + |C23(z)|2/θ̇. This parameter compares

the diagonal elements (approximately
√︁
|C12(z)|2 + |C23(z)|2) in

Eq. (4) to the off-diagonal elements (approximately θ̇) and
estimates the degree of adiabaticity. It is evident in Fig. 3(b)
that θ evolves smoothly from initial value 0 to final value
π/2, which corresponds to |1⟩ →|3⟩, and the adiabatic condi-
tion number >100 holds for the entire propagation, indicating
the transfer here is close to the adiabatic limit. We calcu-
late the fractional power in the waveguides following Eq. (1)
and Eq. (2).

The CMT result of the TM input from WG1 is shown in
Fig. 3(c). A high transfer efficiency of 91.2% from WG1 to
WG3 is achieved, and the residual power in WG1 is negligi-
ble (approximately 10−6). The corresponding EME simulation
is presented in Fig. 3(d). The simulated efficiency of 93.2%,
extracted from the scattering matrix, is in good agreement with
CMT. For the TE mode, the two-waveguide coupling can be
expressed by

i
d
dz

[︃
a1TE

a3TE

]︃
=

[︃
0 C13TE(z)

C∗
13TE(z) 0

]︃ [︃
a1TE

a3TE

]︃
. (6)

The calculated fractional power is plotted in Fig. 3(e). Owing
to the small direct coupling coefficient between WG1 and WG3
[see Fig. 3(a)], the cross-coupling from WG1 to WG3 is <1%
(−20 dB). This is also validated by the EME simulation in
Fig. 3(f), which shows near unity transmission through WG1.

https://doi.org/10.6084/m9.figshare.17068286
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Fig. 4. Simulated transmittance spectra of the PBS with (a),
(b) target parameters; (c), (d) slanted sidewalls (∆θ = 10°); (e), (f)
deviation of the thickness of the SiO2 interlayer (∆g= 10 nm).

The transfers here are reciprocal, thus beam combining of TE
and TM can also be obtained.

The STIRAP process can be understood as a single-mode
evolution effect in its eigenmode basis (scaling with relative
coupling strengths), rather than multimode interference (scaling
with wavelength and device length [17,30]). As a result, our
PBS exhibits a large bandwidth and good tolerance to fabrica-
tion imperfections. Figures 4(a) and 4(b) present the simulated
bandwidth of the PBS with target parameters. The extinction of
the TM mode transfer is <−40 dB over a bandwidth of approxi-
mately 250 nm (1450–1700 nm). The insertion loss is 0.3 dB at
the design wavelength (1550 nm) and stays less than 1 dB for
approximately the same bandwidth interval. The TE extinction
is below−20 dB for wavelengths shorter than 1550 nm. A signif-
icant source of imperfection in LNOI fabrication technologies is
slanted sidewalls. We have assumed 90° sidewalls for simplic-
ity and also examined the case with 80° sidewalls (∆θ = 10°) in
Figs. 4(c) and 4(d). The extinction of TM (<−30 dB) is affected
very slightly, whereas the bandwidth, in this case, can extend
to even shorter wavelengths. Another delicate parameter is the
height of the silicon dioxide interlayer in the HPWG. We show in
Figs. 4(e) and 4(f) that ∆g=10 nm would not affect the extinction
at 1550 nm. In both cases, the effect of fabrication imperfections
on the TE performance is minimal (for complete analysis, see
Supplement 1).

In conclusion, we have investigated the photonic analogy of a
STIRAP system involving a decaying intermediate state and pro-
posed a novel design of integrated PBS. The STIRAP scheme
enables broadband light transfer in a three-waveguide system
via a plasmonic waveguide. The inherent losses from the plas-
monic waveguide are circumvented thus achieving a low-loss
broadband plasmonic PBS. We theoretically and numerically
demonstrate a robust transfer (<−40 dB extinction) of the
TM mode over approximately 250 nm bandwidth, covering the
entire S-, C-, and L-bands and part of the E-band, with TE
extinction <−20 dB for wavelengths <1550 nm. Moreover, an
insertion loss of <1 dB almost throughout the bandwidth is
achieved despite the presence of a plasmonic structure. Our pro-
posed PBS facilitates the development of integrated photonic
circuits.
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