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The Su–Schrieffer–Heeger (SSH) system is a popular model for exploring topological insulators and topological
phases in one dimension. Recent interest in exceptional points has led to re-examination of non-Hermitian gen-
eralizations of many physical models, including the SSH model. In such non-Hermitian systems, singular points
called exceptional points (EPs) appear that are of interest for applications in super-resolution sensing systems and
topological lasers. Here, a non-Hermitian and non-PT -symmetric variation of the SSH model is introduced, in
which the hopping amplitudes are nonreciprocal and vary monotonically along the chain. It is found that, while
the existence of the EPs is due to the nonreciprocal couplings, the number, position, and order of the EPs can all
be altered by the addition of the hopping amplitude gradient, adding a new, to the best of our knowledge, tool for
tailoring the spectrum of a non-Hermitian system. © 2024 Optica Publishing Group. All rights, including for text and data

mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Traditionally, research in quantum mechanics has focused
on Hermitian systems, since they come with real eigenval-
ues that can serve as physical observables. But the discovery
[1–3] that the weaker condition of parity-time (PT ) invariance
is sufficient to ensure real eigenvalues has caused researchers
to re-examine the physics of non-Hermitian Hamiltonians
[4,5]. Eigenvalue degeneracies in Hermitian systems typically
correspond to singularities called diabolic points (DPs). At
the diabolic point, two or more of the eigenvalues become
equal, while the dimension of the space of eigenvectors remains
unchanged. As the system is perturbed away from the DP, the
splitting between the energy levels is proportional to the pertur-
bation strength ε, for small values of ε. A simple example of a
DP occurs in the Bohr model of hydrogen. In the absence of any
external fields, the 2s and 2p orbitals of the atom are degenerate.
However when an electric field is turned on, the new eigenstates
become 2s-2p hybrid states, and the energy levels split. The elec-
tric field magnitude plays the role of the perturbation parameter,
and for small fields the energy splittings increase proportional
to ε. The ε = 0 point is the diabolical point: at this point the
energies are degenerate, but the eigenstates remain distinct.

Non-Hermitian systems, having inherently complex spectra,
allow for the possibility of an additional type of singularity,

called an exceptional point (EP) or non-Hermitian degeneracy
[6–11], that does not appear in Hermitian quantum systems.
As the EP is approached in parameter space, not only do two
or more eigenvalues degenerate, but the eigenvectors coalesce
as well, causing a drop in the dimension of the eigenspace.
Generally, this is accompanied by a transition from real to com-
plex eigenvalues. Initially, these EPs were viewed as a nuisance,
since they form obstacles that limit the range of validity of
perturbative expansions. But, more recently, they have come
to be of great interest due to the rapid variation in eigenvalue
splitting when perturbed away from the EP by a small amount
[12–16]. This strong response to very small perturbations
makes them useful for high-sensitivity sensors [12,17–21].
Exceptional point sensors have now been developed in a wide
variety of physical platforms. Examples include microcavity
particle detectors [22], magnetic field sensors [23], and opti-
cal gyroscopes [24,25], and other photonic sensing systems
[4,16,17,26]. In addition, PT symmetry and its breaking have
been used to develop single-mode microring lasers [27–29] and
to generate optical orbital angular momentum (OAM) states
[30,31].

The number of eigenvectors that coalesce is called the order
of the exceptional point [11]. The simplest case is a second-
order EP, which has an energy level splitting that scales ∼ε1/2
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as a function of the perturbation strength ε; the low exponent
implies that the levels vary faster than any polynomial-order
perturbation for small ε. More generally, an nth-order EP has
scaling that is enhanced scale to give an overall sensitivity of ε1/n .

Although there has been some debate over whether the
improved sensitivity leads to real sensing improvement once
the similarly enhanced noise is taken into account [32–39], evi-
dence (based on increased Fisher information arguments) seems
to be that the improvement remains significant [40] under some
circumstances. In any case, improved understanding of EPs
and the ability to produce them in different physical platforms
continue to be topics of great interest.

Periodic modulations and their effects on topological prop-
erties in both Hermitian [41–45] and non-Hermitian [46]
Floquet systems have been well-studied, but the effect of mono-
tonic parameter changes has been less examined. Here it is
shown that even such monotonic variations can lead to useful
effects related to the topological and singularity structure of
the system. This will be demonstrated using a non-Hermitian
variation on the one-dimensional Su–Schreiffer–Heeger (SSH)
system, in which it will be shown that allowing a nonzero gra-
dient can alter the singularity structure, and in particular, it
can change number and position of EPs and can cause two
lower-order EPs to merge into a higher-order EP.

The linear parameter gradient is a fairly general situation
in the sense that if the hoppings vary according to any analytic
function of position, they can always be approximated for slow
spatial variation by the first few terms of a Taylor expansion.
The linear term will be the leading nontrivial contribution, and
perturbations to this term will control the overall behavior of the
system near singular points. So, the behavior seen here should be
generic for slow parameter variations.

In the next section, we give a brief review of the SSH model
and some of its non-Hermitian generalizations. Then in
Section 3 we introduce the specific model studied in this paper,
in which both nonreciprocal couplings and a variation of the
couplings are introduced along the chain. Our main result is
that the introduction of the coupling gradient can alter the EP
structure, causing EPs to collide or bifurcate, as well as changing
their locations in parameter space. In particular, the collision of
two second-order EPs can result in the creation of a fourth-order
EP. We briefly discuss potential experimental implementations
in optical and electronic circuit platforms in Section 4, before
discussing some conclusions in Section 5.

2. SSH MODEL AND ITS EXTENSIONS

The standard Hermitian Su–Schrieffer–Heeger (SSH) model
[47–49] is widely used as a simple example of a one-dimensional
topological insulator. It was originally proposed as a model of
the polyacetylene molecule [47], but has since been realized
in physical platforms ranging from cold atoms and photonic
systems to electric circuits [50–55]. SSH models have gained
increased importance since lasing has been demonstrated in a
one-dimensional lattice of polariton micropillars that realizes
the SSH Hamiltonian [56]. Lasing has since been shown to also
exist in other non-Hermitian systems [57].

The model discussed here consists of a chain of unit cells,
each consisting of two distinct lattice sites. Labelling the unit
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m-1 m+1m

v wv w v

Fig. 1. SSH model: each unit cell consists of two distinct subsites or
substates, A and B . v is the amplitude for transition leftward from B
to A within the same unit cell, whilew describes leftward transitions of
A in cell m to B of cell m − 1. Hermiticity requires that the transitions
in the opposite directions along the same bonds to be v∗ andw∗. In the
non-Hermitian case this constraint will no longer be hold.

cells by integer m, the two lattice sites within are labelled A and
B . Nearest-neighbor hopping amplitudes between the sites
alternate, with v being the amplitude to hop between B and A
sites within the same cell, andw the amplitude to hop between
A of cell m and the B site of the adjacent cell, m − 1 (Fig. 1).
Hermiticity requires that the hopping amplitudes be reciprocal:
the amplitude to hop to the left between a pair of cells should
be the complex conjugate of the amplitude to hop to the right
between the same pair, so that the SSH Hamiltonian takes the
form

H =
∑
m
(v|A,m〉〈B,m| +w|B,m − 1〉〈A,m|

+ v∗|B,m〉〈A,m| +w∗|A,m〉〈B,m − 1|) .
(1)

In the Hermitian case, it is possible, by redefining the phase of
the wavefunctions if necessary, to take the amplitudes to be real,
v = v∗ andw=w∗. Assuming real amplitudes, the SSH model
Hamiltonian can be put into matrix form,

H =



0 v 0 0 0 0
v 0 w 0 0 0
0 w 0 v 0 0
0 0 v 0 w 0
0 0 0 w 0 v

0 0 0 0
. . .

. . .

 , (2)

where the odd-numbered rows and columns represent the A
sites at consecutive m values, while the even-numbered rows
and columns represent the corresponding B sites. (Note that the
signs, or more generally the phases, of the couplings can easily be
controlled in optical implementations by changing the distance
between lattice sites, by inserting phase shifters, or by altering
the dispersion of the material between the sites. For simplicity,
we keep the couplings real but not necessarily positive.)

The SSH model has a chiral sublattice symmetry,
0H0†

=−H, given by 0 = P̂A − P̂B , where PA,B are
projectors onto the A and B sublattices. Because of the chi-
ral symmetry, all nonzero eigenvectors come in opposite sign
pairs. More importantly, it has implications for the topo-
logical properties of the system. Up to an overall additive
constant, the momentum space Hamiltonian can be written as
H(k)= d(k) · σ , where k is a wavenumber and σ j are the Pauli
matrices. The chiral symmetry forces the complex vector d(k) to
lie in the x -y plane. In order for the material to be an insulator,
with a nonzero energy gap, the remaining two-dimensional vec-
tor must avoid the origin. So as k varies across the Brillouin zone,
d(k) traces out a closed curve, which circles the origin either
once, or not at all. In other words, the system has a winding
number of eitherV = 1 orV = 0 about the origin. The system’s
properties are unusually stable with respect to perturbations,
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because transitions from one topological phase to the other can-
not occur unless the energy gap closes, which can only happen
if the chiral symmetry is broken. It can easily be shown that the
V = 0 phase occurs when |v|< |w|, while V = 1 occurs when
|v|> |w|.

In the model studied here, we will for simplicity assume that
all the parameters in the Hamiltonian are real. The fact that the
Hamiltonian will then be real will ensure the existence of time
reversal invariance. The chiral and time reversal invariances
will together guarantee that the energy spectrum is symmetric
under reflections across both the real and imaginary axes. When
the parameters are allowed to be complex, new effects could
potentially appear, but this is a topic for later investigation.

For periodic boundary conditions or for infinite-length
chains, the choice of which parameter to callw and which to call
v is arbitrary. But for finite chains with open boundary condi-
tions (the case considered here), v is always the amplitude on the
last link at either end of the chain. The topologically nontrivial

H =



0 v + g 0 0 0 0
v − g 0 w+ g − a 0 0 0

0 w− g − a 0 v + g − 2a 0 0
0 0 v − g − 2a 0 w+ g − 3a 0
0 0 0 w− g − 3a 0 v + g − 4a

0 0 0 0
. . .

. . .

 . (4)

case is then the one in which the hoppings across those end links
are weak, encouraging isolation of the lattice sites at the ends of
the chain.

Several non-Hermitian variations on the SSH model have
been studied [58–62]. Reference [60] looks at non-Hermitian
models with longer range hopping (longer than nearest neigh-
bor) and Ref. [61] looks at non-Hermitian, PT -symmetric
models with complex boundary potentials. Reference [62]
examined models that are nonreciprocal (left-moving and
right-moving hoppings are not equal) but not PT -symmetric;
these were shown to share several properties with PT-symmetric
models. In the non-Hermitian case, the amplitudes for hopping
to the left and to the right are not necessarily complex conjugates
of each other:

H =
∑
m
(vL |A,m〉〈B,m| +wL |B,m − 1〉〈A,m|

+ vR |B,m〉〈A,m| +wR |A,m〉〈B,m − 1|) ,
(3)

with wL 6=w
∗

R and vL 6= v
∗

R . Non-Hermiticity commonly
arises in open systems, where gain and loss can occur.

Here, we look at finite-length SSH-like models with nearest-
neighbor hoppings and open boundary conditions at the ends.
Two parameters are added to the model: one to control the
amount of nonreciprocity in hopping amplitudes, and one
to control the rate of variation of hopping amplitudes with
position along the chain. We assume the simplest case, with a
constant hopping gradient, or in other words, an increase or
decrease of hopping amplitude that varies linearly along the
length of the chain. Exceptional points (EPs) will form con-
tinuous families in the parameter space, and for long chains the
structure of the spectrum and the distribution of the EPs can
become highly complex, with the number and order of the EPs

growing as the SSH chain becomes longer. The nonzero gra-
dient breaks the discrete translational symmetry of the system;
as has been seen in other systems [14,63–66], the breaking of
spatial symmetries often leads to the appearance of EPs.

There is a rich landscape of variations of related models. Here
we look at a simple model that seems to be fairly representative,
focusing on short chain lengths for which analytic expressions
can be found for the eigenvectors and spectrum. Because of the
lack of translational invariance, it is more convenient to work in
position space, rather than in momentum space.

3. NONRECIPROCAL LINEAR GRADIENT
MODEL

Take a one-dimensional lattice with hoppings between nearest-
neighbor sites, and assume a position-space Hamiltonian of the
form

For g 6= 0 the model is nonreciprocal, with different probabili-
ties for hopping to the left and to the right. This model is neither
Hermitian nor PT -symmetric for a 6= 0, but reduces back to
the SSH model for a = g = 0. Because of the asymmetry of the
hopping coefficients, the amplitude will tend (for open bound-
ary conditions) to collect at one end of the lattice, in accord with
the non-Hermitian skin effect [58,67]. Such boundary states
exhibit new effects not seen in Hermitian systems [68–71]. The
additional parameter a controls how fast the hopping rates vary
along the chain. We will restrict ourselves here to the case where
all parameters (v,w, a , and g ) are real. For a = 0 and v =w, the
model examined here reduces to the Hatano–Nelson [72,73].
Recently, Ref. [74] demonstrated a method of generating non-
Hermitian Hamiltonians with real spectra from Hermitian
Hamiltonians; this approach can generate both spatially varying
hopping coefficients and nonreciprocity. The current paper can
be viewed as a case of this more general setup with vanishing
on-site potential and a particular choice of hopping coefficient
variations. Other nonreciprocal models have been studied on
occasion in platforms ranging from photonic and acoustic
systems to mechanical systems [75–78].

For now, focus on the simplest nontrivial case, of four lattice
sites, spanning two unit cells:

H =

 0 v + g 0 0
v − g 0 w+ g − a 0

0 w− g − a 0 v + g − 2a
0 0 v − g − 2a 0

 . (5)

Representative examples of the spectrum versus g are shown
in Figs. 2 and 3 for several values of a . It can be seen that the
spectrum is very different for the cases |v| ≤ |w| and |v| ≥ |w|,
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Fig. 2. Examples of the spectrum for |v| ≤ |w|. Here the values v = 0.1,w= 1 were used. Energies are plotted versus nonreciprocity parameter a
for several values of gradient parameter g . The solid blue curve is the real part of the energy, and the dashed yellow curve is the imaginary part.
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Fig. 3. Examples of the spectrum versus g for |v| ≥ |w|. The values v = 1.0,w= 0.1 were used. The solid blue curve is the real part of the energy,
and the dashed yellow curve is the imaginary part.

which would correspond to the topologically trivial and non-
trivial cases for the standard SSH model. The structure varies
considerably as the gradient parameter a is varied, with excep-
tional points appearing, disappearing, colliding, and merging.
In addition, there are bifurcations of the real and imaginary parts
at points well removed from the E = 0 axis. The goal below is to
classify this complicated behavior in a relatively simple manner.

First, consider the nonreciprocal case (g 6= 0) with no gradi-
ent (a = 0). Setting a = 0 in Eq. (5) the eigenvalues are readily
found to be of the form

E =±
√

A± B, (6)

where

A=−3/2g 2
+ v2
+ 1/2w2, (7)

B =
√

A2 −
(
g 2 − v2

)
. (8)

There are two potential sources of EPs, leading to three
opposite-sign pairs of EPs. One possibility occurs when the
expression inside the square root of Eq. (6) passes through zero.
This happens when A2

= B2, or equivalently when

g =±v. (9)

These EPs always occur at zero energy, and will be referred to
as type I points.

The second possibility (type II points) is for the expres-
sion inside the square root of Eq. (8) to pass through zero; this
happens when

g =±v

√
2

5

(
2v2 +

1

2
w2

)
(10)

or

g =±w. (11)

The energies at these points are E =±A, which can be either
zero or nonzero.

Now allow a 6= 0. Conceptually, it is expected that the
addition of hopping gradients should lead to interesting
behavior. This is because, as one moves along the chain, there
will be points where the magnitudes of the effective local
hopping coefficients will cross each other, with transitions
between regions with |v −ma |> |w−ma | and regions with
|v −ma |< |w−ma | as the site index m increases. Thus,
the gradient would be expected to cause transitions between
topological phases in the chain’s bulk.

With the gradient turned on, the energies are still of the form
of Eq. (6), but with A and B now being given by

A=
(
−

3

2
g 2
+ v2
+ 12w2

)
+

(
5

2
a2
− 2av − aw

)
, (12)

B =
√

A2 − (g 2 − v2)
2
+ 4a(a − v)(g 2 − v2). (13)

It is interesting to note that the energies only depend on the
geometric means of the Hamiltonian entries on opposite sides
of the diagonals, i.e., opposite-direction hopping amplitudes on
the same link. To be more specific, define the geometric means

m2
1 = (v + g )(v − g ), (14)

m2
2 = (w+ g − a)(w− g − a), (15)

m2
3 = (v + g − 2a)(v − g − 2a); (16)

then the constants A and B can be written as

A=
1

2

(
m2

1 +m2
2 +m2

3

)
, (17)

B =
√

A2 +
(
m2

3 − 2m2
1

)
m2

1. (18)
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Fig. 4. A and B versus nonreciprocity parameter g for an example with v = 1.0,w= 0.1. The solid blue and red curves and the dashed black curve
are, respectively, Re (B), Im(B), and A. As the gradient parameter a varies, EPs are created or removed when the A and B lines touch each other or
the horizontal axis. A more detailed description of the behavior can be found in the text.

With a 6= 0, the type I EPs split into two pairs of points sepa-
rated by a distance proportional to a :

g =±v, ±(2a − v). (19)

The type II points become more complicated, but can still be
written in analytic form:

g =±
√

Q ± 2
√

P , (20)

P =−69a2
+
(
v2
− 7a2

)2
+
(
w2
+ a2

)2

+ 4a
(
9a2v + a2w− v3

− 2avw+ v2w+ vw2
−w3

)
,

(21)

Q = 12a2
+ 2(v − a)2 + 3(w− a)2. (22)

Note the double square root structure of Eq. (20) compared
to the single square root of Eq. (10); this is what opens the pos-
sibility of fourth-order exceptional points occurring when a is
nonzero.

As can be seen from Fig. 4, as a is varied the curves of A and
B versus g move up and down, while the real part of B can also
develop a double-well shape. As a result, the number of inter-
sections of the A and Re (B) curves changes. At these transition
points, the imaginary part of B can become nonzero, creating an
exceptional point.

To study the behavior of the system near the exceptional
points more quantitatively, it is necessary to introduce pertur-
bations. So consider perturbations in the gradient a→ a + ε,
with real ε << a . Under such a perturbation, it is found that

E =±
{

A0 + (5a − 2v −w)ε

±

√
B0 + 4(2a − v)(g 2 − v2)ε

}1/2
, (23)

A= A0 +
(
5a2
− 2v −w

)
ε, (24)

B =
√

B2
0 + 4(2a − v)(g 2 − v2)ε, (25)

where A and B have been expanded to first-order in epsilon, and
zero subscripts indicate the unperturbed expressions. The type

II case above can now be split into two distinct cases, so that
there are now four cases total (including the trivial case).

Case 0: B0 6= 0, A2
0 6= B2

0
In this case, expanding the square roots in Eqs. (23) and (25),

the result will be linear in ε, so that no EP occurs.
Case I: B0 6= 0, A2

0 = B2
0

If A0 vanishes, the constant (ε-independent) term inside the
square root of Eq. (23) vanishes, leaving a leading term of order
√
ε. There is therefore a second-order EP at the parameter values

given by Eq. (19).
Case IIA: B0 = 0, A2

0 6= B2
0

Now, using the binomial approximation, the energy is

E =±
√

E 2
0 ± 4(2a − v)

(
g 2 − v2

)√
ε +O(ε), (26)

≈±E0

[
1±

4(2a − v)
(
g 2
− v2

)
2E 2

0

√
ε

]
, (27)

giving a second-order EP at the solutions to B0 = 0.
Case IIB: A2

0 = B2
0 = 0

Now,

E =±
√
(5a − 2v −w)ε ± 4(2a − v)

(
g 2 − v2

)√
ε

≈±
√
±1 4
√

4(2a − v)
(
g 2 − v2

)
· 4
√
ε +O

(
ε3/4

)
,
(28)

giving fourth-order EPs at the solutions to B0 = 0. Each fourth-
order EP is formed in the collision of two second-order EPs.

Case IIB is the overlap of cases I and II. So the situation can
be readily summarized as follows: if a point in parameter space
falls into either category I or II there is a second-order EP at that
point, while if it falls into both classes simultaneously (IIB), it
becomes fourth-order.

Case (IIB) occurs when the parameter values are given by
either

a =
1

7

[
4v −w±

√
9v2 − 8vw+ 8w2

]
, (29)

g =±(v − 2a) (30)

or

a =
1

5
(2v +w)±

√
(2v +w)2 − 5(w2 − v2), (31)
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Table 1. Summary of the Exceptional Points for the
Length-4 Chain, in Terms of the Nonreciprocity and
Gradient Parameters, g and a

Case EPs

(0) B0 6= 0, A2
0 6= B2

0 No EP
(I) B0 6= 0, A2

0 = B2
0 2nd-order EPs at g =±v,±(2a − v)

(a arbitrary)
(IIA) B0 = 0, A2

0 6= B2
0 2nd-order EPs at solutions to B0 = 0

(IIB) B0 = 0, A2
0 = B2

0 4th-order EPs at g =±(2a − v),
a = 1

7 [4v −w±
√

9v2 − 8vw+ 8w2]

g = + v g = - v

g = + w g = - w

(v-g = + 2v, v+g = 0)(v-g = + 0, v+g = 2v)

(w-g = + 2w, w+g = 0)(w-g = + 0, w+g = 2w)

v-g w-g

v+2g

v-g

v+g w+g

w-g v-2g

v+2g

v-g

v+g

w+g

w-g

v-2g

v-gv+gw+g

v-2g

Fig. 5. Cases for B2
0 = A2

0 6= 0. In the top row, g =±v, causing one
of the end links to become one-way and leaving all of the amplitude
funneled to the site at the left or right end of the chain. Similarly, in the
bottom row g =±w, causing the middle link to become one-way. In
the latter case, the amplitude still becomes localized at one end or the
other, but oscillating between the last two sites.

g =±v. (32)

These cases are summarized in Table 1. Note that when a = 0,
case IIB occurs at the topological transition point of the standard
SSH model, |v| = |w| = |g |.

A coherent picture of these cases can now be constructed.
Again consider a = 0 first. When B2

0 = A2
0 (case I), we have

g =±v, in which case either the v + g or v − g terms in H
vanish. Then the links at the end of the chain become one-way,
as in the top row of Fig. 5. As a result, the amplitude tends to
accumulate at one site at the left or right of the chain. The
parameter-space points where these “traps” or attractors occur
turn out to be especially interesting when a becomes nonzero.
For a = 0, the real parts of the energies cross the E = 0 axis, but
no EP occurs at the crossing points, since the imaginary parts
between the two points remain zero. But as a starts to move away
from zero, these two points split into four: two points remain
fixed at g =±v, while the other pair, at g =±(v − 2a), moves
away from the first pair. As these two pairs separate, an arc of
nonzero imaginary part connects v to v − 2a and another such
curve connects−v to−(v − 2a), so that all four points become
EPs. Turning on the gradient term therefore creates four new
exceptional points at g =±v,±(v − 2a).

Now consider case II (B0 = 0). One possibility is that
g =±w, in which case the middle link becomes one-way, as
in the bottom row of Fig. 5. In this latter case, the amplitude
eventually becomes localized in the last two links of the chain

at one end or the other. Here, both the real and imaginary parts
of the energy bifurcate, breaking degeneracies. One part (real
or imaginary) is already zero at the bifurcation point, while the
other is nonzero. At these points, two of the eigenvectors vanish.

The other possibility for case II at a = 0 is when the nonre-

ciprocity parameter becomes g =
√

2
5 (2v

2 + 12w2), which

then implies that E =±
√

A0 =

√
1
5 (w

2 − v2). Assuming that

A0 6= 0, these are points at which bifurcations occur at nonzero
energies; the real and imaginary parts separately bifurcate, one
starting from zero and one starting from a nonzero value. These
points are second-order EPs, at which two eigenvectors merge.

If a = 0, the additional constraint A0 = 0 cannot be satisfied
concurrently with B0 = 0 (except in the trivial case v =w= 0),
but allowing nonzero a opens access to points at which case IIB
occurs. At such points, the E 6= 0 bifurcations mentioned in
the previous paragraph will now occur at E = 0, and two pairs
of second-order EPs collide, forming fourth-order exceptional
points. These collisions and mergers can be seen clearly, for
example, between the second and third images of Fig. 2, where
pairs of pitchfork-shaped imaginary parts move onto the real
axis and coincide with each other. As a is increased further, the
merged points separate again; after the separation, they remain
on the real axis, forming two second-order EPs.

The full evolution of the eigenvalues can be seen when plotted
as a function of both g and a (Fig. 6). It can be observed that for
N = 4, the real and imaginary parts both consist primarily
of three sheets, which split for some parameter ranges into
opposite sign subsheets. The bifurcation points form curves of
exceptional points in the parameter space; two examples of such
curves are marked C in Fig. 6(a). The fourth-order EP emerges
when two of these curves intersect, for example, at the point
marked A in the figure.

The pattern persists for longer length chains, where the
number of principle sheets is N − 1, with each sheet splitting
at exceptional point curves. The N = 6 case is shown as an
example in Fig. 7. While, for the N = 4 case there are four
second-order EPs for a = 0, which then split or merge as a is
varied, in the N = 6 case there are eight EPs at a = 0, which
then undergo similar evolution as a changes. As the chain length
increases, the number of spectral sheets and the number of EPs
both increase, with the spectrum rapidly becoming extremely
complicated.

4. POSSIBLE EXPERIMENTAL
IMPLEMENTATIONS

Optical and photonic platforms (see Refs. [79–81], among
others) and electric circuits [82] have been implemented that
provide physical embodiments of the standard SSH system.
Many of these can be altered to implement the model of the
previous section, providing a means of easily producing a highly
controllable set of EPs in systems whose behavior can be altered
in real time.

For example, this model can be realized with linear optics,
augmented by optical circulators. Nonreciprocal hopping
between adjacent lattice sites can be arranged using a pair of cir-
culators, a pair of phase shifters, and some loss. The circulators
make use of magnetic fields, and therefore break time reversal
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Fig. 6. (a) Real and (b) imaginary parts of the energy as function of nonreciprocity g and gradient a , for a chain of length N = 4. The hopping
parameters were taken to be v = 1.0,w= 0.1. In (a), the curves marked C are examples of lines of second-order EPs. The intersections of two of these
at points such as the one marked A lead to fourth-order EPs.
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Fig. 7. (a) Real part of the energy as function of nonreciprocity g and gradient a , for a chain of length N = 6. The hopping parameters were taken
to be v = 1.0,w= 0.1. (b) Example of a cross-section of this plot for a = 0.35. The solid blue curves are the real parts, and the dashed yellow curves
are imaginary parts.

symmetry. The hopping amplitudes can be implemented in
an arrangement of the form shown in Fig. 8, where the circles
on the two sides are optical circulators. The circulators ensure
that amplitude can only flow to the right in the upper branch
and only toward the left in the lower branch. Denoting the
upper and lower branches by labels 1 and 2, respectively, the
amplitude in each line encounters a phase shifter with phase
φ j for j = 1, 2. The losses are represented by real, positive
parameter α j . The amplitude for transmission to the right is
then α1e iφ1 , with transmission to the left being given by α2e iφ2 .
The losses can be implemented by inserting Mach–Zehnder
interferometers with one output port used to eject light from the
system; by altering the phase in the interferometer the amount
of loss through this port can be controlled. The magnitudes of
hopping amplitudes can also be easily controlled, again by use
of Mach–Zehnder interferometers (or by temperature control if
the system is implemented on an integrated chip). So this optical
implementation allows all parameters to be tuned in real time
via experimenter-controlled phase shifts.

Electric circuits provide another viable platform. A circuit
implementation of the standard SSH model [82] is shown in
Fig. 9(a). Each unit cell consists of pairs of inductors and capac-
itors, with the capacitance values alternating from one cell to
the next. A hopping gradient could easily be introduced into
this system by varying the capacitances from one cell to the next.
Loss and nonreciprocity are readily introduced by the addition
of resistors and diodes [Fig. 9(b)]. The use of variable resistors
and capacitors allows the loss and phase shifts to be controlled in
real time.

=

φ1α1

Circulator

α2 φ2

α1eiφ1

α2eiφ2

Fig. 8. Optical implementation of nonreciprocal hopping. The cir-
cles on the two sides are optical circulators. The upper and lower lines
in the left-hand figure contain loss represented by α j and a phase shift
φ j . α j is the fraction of amplitude that remains after the loss. The left-
hand figure will be used as shorthand for the arrangement on the right.

C1 C2 C1 C2

L L L L

C1

(a)

R1

R2

φ1

φ2

(b)

Fig. 9. (a) Electric circuit implementation of the standard
Hermitian SSH model. (b) Electrical analog of the module in
Fig. 8. The phase shifts can be implemented by appropriate
inductor-capacitor combinations.

Both optical and electrical implementations can easily be
constructed (either on a table top or in integrated form) with
low resource cost and allow real time control of all system
parameters. This greatly simplifies experimental study of the
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Fig. 10. Lasing occurs in staggered nanopillar SSH arrays [56]. By
gradually increasing the spacing between pillars from left to right, a
gradient in the hopping amplitudes can be introduced. Heating of the
substrate can lead to a hopping amplitude perturbation. The shaded
lobes represent the amplitudes of p-state polariton excitations.

topological and singularity structures of the system, and allows
band gaps to be opened or closed at will. Different experiments
may be run on the same apparatus, with only a change of a few
resistance and capacitance values, or the change of a few phase
shifts in the optical case. In either case, this is achieved with the
turn of a knob, rather than a physical alteration of the apparatus.

It is possible that a nanopillar array (Fig. 10) such as that used
to implement SSH-based topological lasers in Ref. [56] can also
be arranged to implement the desired gradient, simply by gradu-
ally increasing the spacing between adjacent staggered pillars.
Coupled microring cavities could be used in a similar manner.
Introducing nonreciprocal transitions is more difficult, but may
be possible using recent advances in integrated photonics, such
as the integrated isolator developed in Ref. [83].

5. CONCLUSIONS

In the previous sections, a non-Hermitian model has been
presented and analyzed that generalizes the SSH model by
introducing both nonreciprocal couplings and spatial variation
of the coupling constants. The nonreciprocity creates excep-
tional points, while the introduction of the hopping gradients
affects the number and nature of the EPs. By implementing this
system in a physical platform that allows the hopping gradients
to be controlled, this introduces a means of tailoring the EPs
to have desired properties or be located at desired points in
parameter space. In particular, if the gradients can be varied in a
user-controllable manner, it allows experimental study of new
situations such as the braiding of exceptional points around each
other in parameter space.

The model studied here is the simplest in a class of models
that has a rich and unexplored expanse of variations. By allowing
the hopping coefficients to vary in a nonlinear manner, or by
allowing the nonreciprocity parameter g to also be spatially
varying, additional control over the spectrum can be intro-
duced, with the potential of uncovering further interesting and
useful effects.
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