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Entangled-photon generation from parametric down-conversion in media
with inhomogeneous nonlinearity
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We develop and experimentally verify a theory of type II spontaneous parametric down-conversion~SPDC!
in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore inter-
ference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polariza-
tion quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is
found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the
crystals and spatiotemporal effects that arise from the inclusion of transverse wave vectors. These effects
provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results
to be of interest for the development of quantum technologies and the generation of SPDC in periodically
varying nonlinear materials.
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I. INTRODUCTION

Spontaneous parametric down-conversion~SPDC! @1# has
now come into widespread use as a simple and robust so
of entangled photon pairs. Uses for these pairs range f
the examination of quantum-mechanical foundations@2–4#,
to applications in optical measurements@5#, spectroscopy
@6#, imaging @7#, and quantum information@8,9#. As such,
there has been considerable interest in greater optimiza
and control of the exotic two-photon states available fr
SPDC, particularly when pumped by ultrafast pulses@10–
12#. Additionally, much work has recently been focused
the use of cascaded nonlinear crystals@13–18# to manipulate
and improve the generation of the two-photon state.

The photon pairs from type II SPDC are generated i
quantum state that can be entangled in frequency, wave
tor, and polarization. In recent works@12#, we have demon-
strated the utility of a model that considers entanglemen
these parameters concurrently. It was shown that quant
interference patterns were altered predictably by control
the range of transverse wave vectors selected by the op
system. In this paper, we extend this formalism and inve
gate interference from SPDC generated in media with in
mogeneous longitudinal distributions of nonlinearity. T
state function of the photon pair generated in SPDC is co
pletely characterized by three functions: the spectral pro
of the pump, the longitudinal distribution of nonlinear su
ceptibility, and the dispersion in the generation medium.
principle, one could arbitrarily weight the spatiotempo
distribution of signal and idler modes by a judicious cho
of these three functions. This, in return, introduces new
enues of control. To demonstrate this, we consider a r
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mentary case of an inhomogeneous medium, two bulk c
tals separated by a linear medium such as an air gap. In
configuration, a host of interesting effects emerge, such
the modulation of interference visibility with crystal separ
tion. This effect and others are theoretically predicted a
experimentally verified in this paper.

The promise of a source whose degree of entangleme
controllable in frequencies and wave vectors by turning
single knob is clearly alluring for purposes of quantum
information processing. The results reported in this paper
also likely to be of use in guiding future developments
quantum-state synthesis involving multicrystal configu
tions @13–19#, in ultrafast-pumped parametric down
conversion@10,11#, and periodically poled materials@20,21#.

II. THEORY

Our theory considers a quantum state that can be con
rently entangled in polarization, frequency, and transve
wave vector, so as to be valid for an arbitrary optical syste
As we shall see, the longitudinal distribution of nonlinear
provides a powerful means for controlling the structure
the two-photon quantum state generated in SPDC. As an
portant special case, we consider the simple example
SPDC generation in a cascade of two bulk crystals separ
by a linear medium. We then describe the quantum inter
ence between the two photons of the SPDC pair as t
propagate through an arbitrary linear optical system. T
formalism allows the quantum interference to be analyzed
the absence of spectral filters and reduces to the conven
ally established single-mode theory in the small-apert
limit, unless very thick crystals are used.

A. State generation in inhomogeneous media

For the sake of simplicity, we consider media where
fects from third- and higher-order susceptibilities are we
and can be neglected. By virtue of the relatively weak int
action in the nonlinear crystal, we consider the two-pho

e
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state generated within the confines of first-order tim
dependent perturbation theory. The two-photon state at
output of the nonlinear medium is found in the interacti
picture to be@12#

uC (2)&}E dqo dqedvo dveF~qo ,qe;vo ,ve!

3âo
†~qo ,vo!âe

†~qe,ve!u0&, ~1!

where the state function

F~qo ,qe;vo ,ve!5Ẽp~qo1qe;vo1ve!

3E dzx (2)~z!eiD(qo ,qe ;vo ,ve)z. ~2!

Herex (2)(z) is the distribution of second-order nonlineari
along the longitudinal axis,Ẽp(qp ;vp) is the complex-
amplitude profile of the pump field,qj ( j 5p,o,e) is the trans-
verse component of the wave vectork j in the medium, andD
is the wave vector mismatch function,

D~qo ,qe;vo ,ve!5kp~vo1ve,qo1qe!

2ko~vo ,qo!2ke~ve,qe!, ~3!

which depends on the dispersiveness of the medium. In
equation, the longitudinal projectionsk j ( j 5p,o,e) are re-
lated to the indices (qj ,v j ) via

k j~v j ,qj !5Akj
2~v j ,qj !2uqj u2, ~4!

wherevp5vo1ve andqp5qo1qe. Here the wave numbe
kj[uk j u5n@v j ,u(qj )#v j /c, wherec is the speed of light in
vacuum,u is the angle betweenkp and the optical axis of the
nonlinear crystal, andn(v j ,u) is the index of refraction in
the nonlinear medium. Note that the symboln(v,u) repre-
sents the extraordinary refractive indexne(v,u) when calcu-
lating k for extraordinary waves, and the ordinary refracti
index no(v) for ordinary waves.

Note from Eq.~2! that the state function is complete
characterized by the spectral profile of the pump, the lon
tudinal distribution of nonlinear susceptibility, and the d
persion in the generation medium. All three of these para
eters may be controlled experimentally, and all three pres
avenues for controlling the structure of the two-photon qu
tum state.

For a medium with an inhomogeneous distribution
nonlinear susceptibility along the longitudinal axis, it is co
venient to define

x (2)~z!5E dzx̃ (2)~z!e2 i zz, ~5!

where x̃ (2)(z) is the inverse Fourier transform ofx (2)(z).
Substitution into Eq.~2! then gives

F~qo ,qe;vo ,ve!

5Ẽp~qo1qe;vo1ve!x̃
(2)@D~qo ,qe;vo ,ve!# ~6!
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for a uniformly dispersive medium. For example, a sing
bulk crystal of thicknessL and constant nonlinearityx0 has a
nonlinear susceptibility profile x (2)(z)5x0rect[ 2L,0](z)
where rect[ 2L,0](z)51 if 2L<z<0 and zero otherwise. In
this case, the inverse Fourier transform of the nonlinea
profile becomes

x̃ (2)~D!5x0L sincS LD

2 De2 i (LD/2), ~7!

where sinc(x)[sin(x)/x. For a monochromatic plane wav
pump with a central frequencyvp

0 , Ẽp(qp ;vp) in Eq. ~6! is
proportional tod(qo1qe)d(vo1ve2vp

0) and the state func-

tion F for SPDC reduces tox̃ (2)@D(q,2q;v,vp
02v)#. Fig-

ure 1~a! shows the absolute square of the state function
Eq. ~7!, the familiar sinc2(LD/2) distribution of SPDC from
a single bulk crystal.

1. Periodic nonlinearity

We now consider a medium of thicknessL with a periodic
distribution of nonlinear susceptibilityx (2)(z)5x (2)(z1L)
within the medium. Such materials are widely used in cl
sical nonlinear optics@20# and have recently been employe
for generation of SPDC@21#. We may write

x (2)~z!5x0g~z! rect[ 2L,0]~z!, ~8!

whereg(z) can be expressed in the Fourier series

g~z!5 (
m52`

`

GmeiK mz ~9!

with Km[2pm/L. The Fourier Transform of Eq.~8! is then
given by

FIG. 1. Control over the nonlinearity profile of the generati
medium allows control over the SPDC state functionF(D). In the
case of a monochromatic plane wave pump,F(D) is simply the
inverse Fourier transform of the nonlinearity profilex (2)(z). The
upper figure shows a sketch ofuF(D)u2 for type II SPDC from a
single bulk crystal of thicknessL. The lower figure shows a sketc
of uF(D)u2 for SPDC from a crystal with sinusoidally varying non
linearity. In principle, any weighting profile of the signal and idl
photons can be obtained by a judicious choice of crystal struct
1-2
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x̃ (2)~D!5x0L (
m52`

`

Gm sincFL

2
~D1Km!Ge2 i (L/2)(D1Km).

~10!

For example, let us consider the case of a sinusoidal di
bution of nonlinear susceptibility with periodL, for which

x (2)~z!5x0 cosS 2p

L
zD rect[ 2L,0]~z!, ~11!

which yields

x̃ (2)~D!5x0LH sincFL

2 S D1
2p

L D Ge2 i (L/2)(D12p/L)

1sincFL

2 S D2
2p

L D Ge2 i (L/2)(D22p/L)J . ~12!

In this case, we obtain phase-matching conditions simila
the first-order quasi-phase matching~QPM! observed in pe-
riodically poled nonlinear crystals. The extra compone
62p/L above is analogous to the grating vector in fir
order QPM. Figure 1~b! shows the absolute square of th
state function of the down-converted light obtained from
single crystal with the nonlinearity profile given in Eq.~11!.

2. Cascaded bulk crystals separated by linear media

A simple example of a medium with an inhomogeneo
distribution of nonlinearity is a cascade of multiple bu
crystals separated by linear dielectrics. Consider, for
ample, a cascade ofN bulk crystals separated byN21 linear
media. Let each nonlinear crystalj have thicknessL j , con-
stant nonlinearityx0 j

, and separation distancedj from the
previous crystal. The overall nonlinear susceptibility of th
system is then given by

x (2)~z!5(
j 51

N

e jx0 j
rect[ 2L j ,0]Fz1 (

k5 j 11

N

~dk1Lk!G ,

~13!

where the terms of the summation inside the rect function
taken to be zero ifk.N. Heree561 represents the sign o
the quadratic susceptibility, which depends on the orienta
of the optical axis of thej th crystal. Note that in this equa
tion, thez50 point is placed at the output plane of the la
crystal. In such a configuration, the functionx̃ (2)(D) in Eq.
~6! becomes

x̃ (2)~D!5(
j 51

N

e jx0 j
L j sincS L jD j

2 D
3e2 i (L jD j /2)expF2 i (

k5 j 11

N

~LkDk1dkDk8!G ,

~14!

where the wave vector mismatch functionD j is independent
of z and D8. As seen from Eq.~3!, D8 depends on the dis
persiveness of the linear medium@14#.
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We now consider the particular case of a cascade of
bulk crystals of the same material@see Fig. 2~a!# separated
by a linear but dispersive medium. The explicit form of th
nonlinearity is given by

x (2)~z!5x0 rect[ 2L1,0]~z1d1L2!1e x0 rect[ 2L2,0]~z!,
~15!

wheree511 if the optical axes of the two crystals are pa
allel ande521 if the optical axes are antiparallel. For suc
a configuration

x̃ (2)~D!5x0H L1 sincS L1D

2 De2 i (L1D/2)ei (L2D1dD8)

1eL2 sincS L2D

2 D e2 i (L2D/2)J . ~16!

The absolute square of the state function of SPDC in
configuration is given in Fig. 2~a!, where the envelope is
governed solely by the dispersion in the nonlinear cryst
The period of the modulation inside this envelope is det
mined primarily by the dispersion in the linear medium b
tween the crystals, while the amplitude of this modulation
determined by the ratio of the crystal thicknesses. Fig
2~b! shows the absolute square of the state function in
special case of two bulk crystals of the same material w
the same thickness. In this condition the amplitude of
modulation inside the envelope is maximized.

B. Two-photon amplitude and fourth-order correlation

We now consider the propagation of the down-conver
light through an arbitrary linear optical system to a pair
detectors, as illustrated in Fig. 3. The joint probability am
plitude of detecting the photon pair at the space-time coo
nates (xA ,tA) and (xB ,tB) is given by

FIG. 2. Impact of generation-medium symmetry on the weig
ing profile of SPDC pumped by a monochromatic plane wave. T
upper figure showsuF(D)u2 for SPDC from two bulk crystals of
unequal thickness separated by dispersive linear medium. The lo
figure showsuF(D)u2 for SPDC generated by a cascade of two bu
crystals of equal thickness.
1-3



ts
of
a

th

b

a

-

al

he

r-
on

ave
ams
nci-
-

into

nc-
tion

a.
-

al
al.
e,
the

ent
nce

em.

g

GIOVANNI DI GIUSEPPEet al. PHYSICAL REVIEW A 66, 013801 ~2002!
A~xA ,tA ;xB ,tB!5^0uÊA
(1)~xA ,tA!ÊB

(1)~xB ,tB!uC (2)&,
~17!

whereEA
(1) andEB

(1) are the positive-frequency componen
of the electric fields at points A and B. The explicit forms
the quantum fields present at the detection locations
given by

ÊA
(1)~xA ,tA!5 (

j 5e,o
E dq dve2 ivtAHA j~xA ,q;v!â j~q,v!,

ÊB
(1)~xB ,tB!5 (

j 5e,o
E dq dve2 ivtBHBj~xB ,q;v!â j~q,v!,

~18!

where the transfer functionHi j ( i 5A,B and j 5e,o) de-
scribes the propagation of a mode (q,v) through the optical
system from the output plane of the nonlinear medium to
detection plane. Substitution of Eqs.~1! and ~18! into Eq.
~17! yields a general form for the two-photon detection pro
ability amplitude,

A~xA ,tA ;xB ,tB!5AAo,Be~xA ,tA ;xB ,tB!

1ABo,Ae~xA ,tA ;xB ,tB!, ~19!

where the probability amplitudeAAo,Be for finding the signal
photon in arm A and the idler photon in arm B is defined

AAo,Be~xA ,tA ;xB ,tB!5E dqodqedvodve

3F~qo ,qe;vo ,ve!e
2 i (votA1vetB)

3HAo~xA ,qo ;vo!HBe~xA ,qe;ve!

~20!

and ABo,Ae(xA ,tA ;xB ,tB) is obtained by exchanging the in
dices A↔B.

The joint probability density for detection of the sign
and idler photons at space-time points (xA ,tA) and (xB ,tB) is
given by the fourth-order correlation function, given by t
absolute square of Eq.~19!,

G(2)~xA ,tA ;xB ,tB!

5uAAo,Be~xA ,tA ;xB ,tB!u21uABo,Ae~xA ,tA ;xB ,tB!u2

12 Re@AAo,Be* ~xA ,tA ;xB ,tB!

3ABo,Ae~xA ,tA ;xB ,tB!#. ~21!

FIG. 3. Propagation of the signal and idler photons throu
arbitrary linear optical systemsHA j andHBj .
01380
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With current technology, quantum interferometry is pe
formed using slow detectors that cannot resolve signals
the characteristic time scale of down-conversion~the inverse
of down-conversion bandwidth!, which is typically less than
1 ps. In addition, the detectors used in our experiments h
a large active area compared to the width of the SPDC be
at the detection planes. Under these conditions, the coi
dence count rateR is readily expressed in terms of the two
photon detection probability amplitudeA by integrating the
fourth-order correlation functionG(2)(xA ,tA ;xB ,tB) over all
space and time,

R5E dtAdtBdxAdxBuA~xA ,tA ;xB ,tB!u2. ~22!

This expression for the count rate can be separated
two terms as

R5R01Rint , ~23!

where the baseline term is

R05E dv8dv dqodqedqo8dqe8F~qo ,qe;v,v8!

3F* ~qo8 ,qe8 ;v,v8!@SAB~qo ,qe,qo8 ,qe8 ;v,v8!

1SBA~qo ,qe,qo8 ,qe8 ;v,v8!# ~24!

and the interference term is

Rint52ReE dv8dv dqodqedqo8dqe8F~qo ,qe;v8,v!

3F* ~qo8 ,qe8 ;v,v8!SAB~qe,qo ,qo8 ,qe8 ;v,v8!.

~25!

In Eqs.~24! and~25! the state functionF weights the signal
and idler modes in the process of generation, while the fu
tion SAB weights these modes in the process of propaga
through the optical system. Explicitly,

SAB~qo ,qe,qo8 ,qe8 ;v,v8!

5^HAo* ~xA ,qo8 ;v!HAo~xA ,qo ;v!&xA

3^HBe* ~xB ,qe8 ;v8!HBe~xB ,qe;v8!&xB
, ~26!

where^•&xi
indicates integration over the total detector are

Note from Eqs.~19! and ~20! that the two-photon detec
tion probability amplitude is completely specified byHi j ( i
5A,B and j 5o,e),F(qo ,qe;vo ,ve), and the physical loca-
tion of detectors A and B. As we have seen in Eq.~6!, we
may control the structure of the state functionF by a judi-
cious choice of the pump spectral profile, the longitudin
distribution of nonlinearity, and the dispersion in the cryst
We may further control the two-photon detection amplitud
and hence the quantum-interference pattern, through
choice of the optical system. Note that states with differ
state functions can lead to the same quantum-interfere
pattern through an appropriate design of the optical syst

h

1-4
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In the experimentally relevant case of a monochroma
plane wave pump field, Eqs.~24! and ~25! become

R05E dv E dqdq8x̃ (2)* @D~q8,2q8;v,vp
02v!#

3x̃ (2)@D~q,2q;v,vp
02v!#@ S̄AB~q,q8;v!

1S̄BA~q,q8;v!# ~27!

and

Rint52ReE dqdq8x̃ (2)* @D~q8,2q8;vp
02v,v!#

3x̃ (2)@D~q,2q;v,vp
02v!#S̄AB~q,2q8;v!,

~28!

where we use the shorthand

S̄AB~q,q8;v!5SAB~q,2q,q8,2q8;v,vp
02v!. ~29!

Thus we see that for a monochromatic plane wave pump,
quantum-interference pattern is critically dependent on
form of x̃ (2)(D), which we are free to choose as a desi
parameter@20#. In principle, the only limitation on the clas
of amplitudesA which we are able to prepare with th
method is the restriction that the optical system is linear.

C. Quantum interference with a cascaded pair of bulk crystals

We now apply the above formalism to the case of t
cascaded bulk crystals separated by a dispersive but li
dielectric medium such as an air gap. For simplicity,
again consider the medium to be pumped by a monoc
matic plane wave. Owing to the structure of the nonlinea
for this particular case@Eq. ~15!#, the overall two-photon
detection probability amplitude is the sum of the two amp
tudes associated with each single crystal@14,18#. Each of the
amplitudes in Eq.~19! can then be written as

AAo,Be~xA ,tA ;xB ,tB!5AAo,Be
(1) ~xA ,tA ;xB ,tB!

1eAAo,Be
(2) ~xA ,tA ;xB ,tB!, ~30!

where e561 as in Eq.~15!, and a similar expression fo
ABo,Ae is obtained by exchanging the indices A↔ B. AAo,Be

(r )
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for r 5(1,2) is the probability amplitude of finding th
o-polarized photon generated in ther th crystal in arm A and
the e-polarized photon from ther th crystal in arm B. From
Eq. ~20!,

AAo,Be
(r ) ~xA ,xB ;t !5E dn dq e2 intx̃ r

(2)~q,n!

3HAo~xA ;q,n!HBe~xB ;2q,2n!,

~31!

where the angular frequencyn5v2vp
0/2 is the deviation

from the central frequencyvp
0/2, t5tA2tB is the time dif-

ference between detection events, andx̃ r
(2)(q,n) is the in-

verse Fourier transform of the nonlinearity profile of ther th
crystal.ABo,Ae

(r ) is likewise obtained by a suitable exchange
the indices. Note that we have omitted an overall phase
tor exp@2ivp

0(tA1tB)/2# that appears outside the integral
Eq. ~31!, since in experimental practice we are interes
only in the absolute squareuA(xA ,tA ;xB ,tB)u2, so this factor
does not introduce any relative phase between the term
Eq. ~19!.

As we are considering bulk crystals, the nonlinearity p
file of each crystalr is uniform, and thus

x̃ r
(2)~q,n!5x0Qr~q,n!E dzrect[ 2Lr ,0]~z!eiDr (q,n)z,

~32!

where

Qr~q,n!5e2 i [dD8(q,n)1L2D2(q,n)]dr ,1 ~33!

is the transfer function for propagation of the signal~o-
polarized! and idler~e-polarized! fields generated in the firs
crystal through the linear dispersive medium of thicknesd
and thence through the second crystal of thicknessL2. Alter-
natively, Qr(q,n) may be thought of as the phase accum
lated in the shift of the rect function for the first crystal by
distance2(L21d). As given in Eq.~3!, D r is the wave
vector mismatch function due to dispersion in ther th crystal
andD8 is the wave vector mismatch function due to disp
sion in the linear medium. The symbold r ,1 represents the
Kronecker delta whered1,151 andd2,150.
r-
e
n,
ls
FIG. 4. Schematic representation of a pola
ization interferometer for which we comput
quantum-interference patterns. In this illustratio
collinear SPDC is generated in two bulk crysta
of arbitrary thickness separated by an air gap.
1-5
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1. Coincidence detection

Taking the absolute square of Eq.~30! gives interference
between the probability amplitudes of finding a pair gen
ated in the first crystal and finding a pair generated in
second crystal. Indeed, substitution of Eqs.~19! and~30! into
Eq. ~22! gives the coincidence count rate as a sum of th
contributions

R5R(1)1R(2)1R(12), ~34!

where the first two terms are the coincidence-count rates
single-crystal SPDC, and the last term arises as interfere
between the two single-crystal amplitudes. Recalling
~23!, each term in Eq.~34! can in turn be broken down into
baseline and interference terms

R(h)5R0
(h)1Rint

(h) , ~35!

whereh51,2,12.
We now use this theory to predict quantum-interferen

patterns in the interferometer shown in Fig. 4. In this syste
the transfer functionHi j is separable into diffraction
dependent and diffraction-independent factors as

Hi j ~xi ;q,n!5Hi~xi ;q,n! Ti j eik j (q,n) l t, ~36!

where the polarization-independent components are grou
into Hi and the remainder are grouped intoTi j eik j (q,n) l t. In
this case,Ti j 5(ei•ej ) is the projection of the unit photon
polarization vectorej ( j 5o,e) onto the axis of the polariza
tion analyzer in front of detectori 5(A,B), and the exponen
tial factor is the transfer function of the delay line.

The delay line, which is often treated as a simple ph
shift, is a dispersive optical element that may alter the spa
and/or the spectral profile of the two-photon probability a
plitude. Experimentally, the delay line consists of a birefr
gh
tu

he
c
es
ta
y
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gent quartz plate of variable thickness, modeled by
propagation function exp@ikj(q,n) l t#, where the longitudinal
projectionsk j of the signal and idler wave vectors are d
fined in Eq. ~4! and l t is the thickness of the birefringen
plate, which induces a relative optical-path delayt. This
propagation function, while here used to describe the de
line, is technically a valid transfer function for any nona
sorbing dispersive optical element.

For configurations in which Eq.~36! is applicable, with
the help of Eqs.~27! and ~28! the overall coincidence-coun
rateR(t) is derived in Appendix A. This rate can be cast
the convenient form

R~t!5R0@11vpolV~t!#. ~37!

HereR0 is the baseline coincidence-count rate and the ov
all projection of both photon polarizations onto the basis
the polarization analyzers is given by the factor

vpol52
mAo,BemBo,Ae

mAo,Be
2 1mBo,Ae

2
, ~38!

wherem i j ,lm5Ti j Tlm ( i ,l 5A,B and j ,m5e,o) is the projec-
tion of the polarization of thei th photon onto thej th basis
polarization and the polarization of thel th photon onto the
mth basis polarization. Observe that thet-dependence of the
quantum interference pattern is then contained solely in
visibility function V(t).

In the experiments presented in this paper, the two cr
tals are of the same material and have equal thicknesseL.
The apertures are symmetric for both transverse directio
and the analyzers are set 45° from the optical axis, sovpol
521. No spectral filters are used. Under these conditio
the explicit form of the visibility function in Eq.~37! be-
comes
V~t!5
1

11r2E dzPL~z!PLS 2t

D
22L2zDG (1)S z

L
;

t

LD D1
1

11r2E dzPL~z!PLS 2t

D
2zDG (2)S z

L
;

t

LD D
12e

r

11r2E dzPL~z!PLS 2t

D
2L2zDReFG (12)S z

L
1

1

2
;

t

LD De2 idD8G , ~39!
t-
ual
whereG (h) is defined in Appendix B,r5(d11d)/d1 , PL(z)
is the unit rect function from@0,L#, andD5uo

212ue
21 is the

dispersion coefficient of the nonlinear medium. It is throu
theG-functions that spatiotemporal effects enter the quan
interference pattern. Details on the derivation of Eq.~39! can
be found in Appendix B.

The collective interference term in Eq.~39! shows inter-
esting behavior in certain limits of crystal separation. If t
optical axes of the two crystals are parallel, the coinciden
count rate reduces to that from a single crystal of thickn
2L asd→0. Further, it reduces to that from a single crys
of thicknessL as d→`. We also note the absence of an
m

e-
s

l

shoulder modulation witht, an important indication of the
purity of the polarization Bell state that is formed in pos
selection. In the case where the two crystals have eq
thickness, the strongest interference occurs at delayt5LD.
The visibility at this point is given by

V~LD !52e
r

11r2E0

1

dzRe@G (12)~z;1!#, ~40!

wherez5z/L is a convenient dimensionless variable.
1-6
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2. Small-aperture approximation

In the limit of very small apertures, no transverse wa
vectors are allowed to propagate through the interferome
and in the case of sufficiently thin bulk crystals and sm
separation distances, the quantum interference is effecti
described by the conventionally used single-mode the
@18,22#.

Figure 5 is a sketch illustrating how quantum interferen
arises in the interferometer of Fig. 4 assuming two identi
crystals of thicknessL15L25L, dispersion coefficientD,
parallel optical axes, and both polarization analyzers se
45°. In the limit of sufficiently small apertures, we may a
ply the conventional single-mode theory@22# and write the
third term in Eq.~21! as the product of two probability am
plitudesA(tA2tB) andA* (2tA1tB), which slide back and
forth across thetA2tB axis as the relative optical-path dela
t is varied. In the diagonal portion of the illustration, the
amplitudes are depicted by two gray-and-white rectang
When the delay is set such that the two rectangles over
interference can be seen.

Within each rectangle, the white box represents the pr
ability amplitude for detecting a photon pair produced in t
first crystal, while the gray box represents the detection a
plitude for a pair produced in the second. As the delay is
in the region 0<t<LD/2, the gray boxes overlap~shown as
black! but the white boxes do not. In this regime, interfe
ence typical of a single crystal of thickness 2L is observed.
As the delay is increased into the regionLD/2<t<3LD/2,
the photon pairs produced in the first crystal become in
tinguishable from the photon pairs produced in the sec
crystal at the detection planes. As such, the probability a
plitudes of detecting photon pairs produced in each cry
exhibit collective interference. This is seen pictorially by t
overlap of the gray boxes with the white boxes. Note that
two rectangles overlap completely att5LD, the center of
the region of interference. The interference visibility in th
region depends on the phase shift between these two am
tudes, which is in turn dependent on spatial effects and
dispersion in the linear medium separating the crystals.

FIG. 5. Sketch illustrating a heuristic approach to calculat
quantum interference in the single-mode limit for two bulk cryst
of the same material and thickness separated by a linear diele
The results are coincidence rates as shown in the bottom right i
The coincidence-rate data in the upper left inset are from repre
tative experiments. Details are provided in the text.
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the distanced between crystals is changed, the visibility
this region modulates sinusoidally between61. As the delay
is increased still further into the region 3LD/2<t<2LD,
the white boxes overlap~shown as light gray! but the gray
ones do not, and we again return to the regime of sing
crystal interference. In this way we can trace out the int
ference dip predicted by Eq.~39!. This is illustrated in the
inset at the lower right while representative experimen
data are shown in the upper left inset. Figure 6 is similar
Fig. 5, but for the case of unequal crystal thicknessesL1
ÞL2.

In this small-aperture approximation, the dispersio
relatedG-functions in Eq.~39! for the cases of parallel~p!
and antiparallel~a! optical axes att/LD51 are found in
Appendix B to be

Gp
(12)~z;1!5expH 2 i

kpuMLu2

8 F ~z21!2

d1
2

~z11!2

d11d G J ~41!

and

Ga
(12)~z;1!5expH 2 i

kpuMLu2

8 F ~z21!2

d1
2

~z21!2

d11d G J , ~42!

where kp52p/lp and uM u5(]/]ue)ln@ne(vp
0/2,up)# is the

spatial walk-off vector@23#.
When a plane wave pump is normally incident on th

crystals and the apertures are sufficiently small, the stri
collinear signal and idler beams are selected by the opt
system, and no spatial effects due to transverse wave ve
can be observed. In this limit the dominant contribution
the phase between probability amplitudes arises from dis
sion in the linear medium between the crystals@see Eqs.~41!
and~42!#. For degenerate SPDC this phase term in air is@24#

fdisp~d![dD85kp@n~lp!2n~2lp!# d;p0.059d @mm#,
~43!

ric.
et.
n- FIG. 6. A figure analogous to Fig. 5 for the case of two bu
crystals of unequal thickness.
1-7
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where we have takenlp5351.1 nm in keeping with our
experiments.

However, when long crystals are used, or the separa
distance between the two crystals becomes large, some
tial effects due to transverse wave vectors become obs
able. The visibility at the center of the region of interferen
t5LD @Eq. ~40!# for the case of parallel optical axes
given by

Vp~LD !52
d1~d11d!

d1
21~d11d!2E0

1

dz cosH kpuMLu2

2~d11d! F ~11z2!
d

4d1

2zS 11
d

2d1
D G1fdisp~d!J , ~44!

while for the case of antiparallel optical axes, it is given

Va~LD !522
d1~d11d!

d1
21~d11d!2E0

1

dz cosF kpuMLu2

2~d11d!

d

d1
~z21!2

1fdisp~d!G . ~45!

Furthermore, for small separation (d→0) between the
two crystals with parallel optical axes, Eq.~40! becomes

Vp~LD !5sincS kp

2d1
uMLu2D ~46!

as opposed to the unity value predicted by the single-m
theory. Note that this visibility is identical to that of a sing
crystal of thickness 2L as was shown in previous works@12#.
Applying parameter values typical of our experiments,
find that if d151 m, lp5351.1 nm, anduM u50.07, then
Vp;sinc(0.044L mm2). For these conditions, therefore, a
observable deviation ofVp from unity can be realized only
for sufficiently large crystal thicknesses.

In the case of antiparallel optical axes, the visibility at t
center of the region of interference is

Va~LD !521, ~47!

which means that the coincidence-count rate is twice as h
at the center as it is on the shoulders, assuming the analy
01380
n
pa-
rv-

e

e

h
ers

are set so thatvpol521 @see Eq.~37!#. In this case, the
minus sign in Eq.~47! arises from a sign difference betwee
the quadratic susceptibilities of the two crystals, and henc
sign difference between the spatial walkoff vectorsM1 and
M2. In effect, the spatial walkoff in one crystal compensa
for the spatial walkoff in the other, and the spatial effects d
to transverse wave vectors are cancelled out. Exploitatio
this effect is common in the design of optical paramet
oscillators.

3. Multiparameter formalism: Spatial effects

The quantum state generated from SPDC, which is c
currently entangled in frequency and transverse wave vec
leads to transverse spatial effects that can be observe
quantum interference. As the aperture diameters are
creased or the apertures are brought closer to the ou
plane of the nonlinear medium, a greater range of wave v
tors is allowed to propagate through to the detectors. Th
transverse wave vectors introduce distinguishability betw
the signal and idler photons, thus reducing the visibility
the observed quantum interference. This is analogous to
temporal distinguishability introduced by the use of
femtosecond-pulsed pump.

Equation~39! is valid for any linear optical system. How
ever, to enable swift evaluation of the integrals in this eq
tion we approximate the circular apertures used in the exp
ments by ‘‘soft’’ Gaussian apertures of (1/e) widths r A and
r B . A sharp circular aperture, of the type used in expe
ments, has a diffraction pattern described by a first-or
Bessel function, whereas a Gaussian aperture, of the
used in the numerical simulations, has a Gaussian diffrac
pattern. Despite this fundamental difference, it is a fair a
proximation if the widthr of the Gaussian is selected t
roughly fit the widthb of the Bessel function. In our calcu
lations, this is done by choosingr 5b/2A2. This approxima-
tion offers an indispensable advantage, as it allows us
evaluate theG functions analytically~see Appendix C! and
thereby reduce the demand for numerical integration in m
ing theoretical predictions. Under this approximation, an
pression for the visibility function at (t5LD) for parallel
orientations of the optical axes is given by@see Appendix C
and Eq.~26!#
Vp~LD !52
d1~d11d!

d1
21~d11d!2

1

A11g2 E0

1

dze2B$12z[d/(d12d1)] %2
cos@Cz21Dz1E2fg~d!1fdisp~d!#, ~48!
where

g5
kpr

2

4d1

d

d11d
, fg~d!52arctan~g!, ~49!

and r 25(r A
2 1r B

2)/2. Here
B52F kpuM uLr

4~d11d!G
2 1

11g2 S 11
d

2d1
D 2

, ~50!

C5
kpuMLu2

8~d11d!

d

d1

1

11g2
, ~51!
1-8
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D52
kpuMLu2

2~d11d! S 11
d

2d1
D 1

11g2
, ~52!

E5
kpuMLu2

8~d11d! S d

d1
24g2

d11d

d D 1

11g2
. ~53!

Figure 7 presents a plot of the modulus ofVp(LD) given in
Eq. ~48! as a function of the crystal separationd for aperture
diametersb52.5 mm, 4.0 mm, and 5.0 mm. Solid, shade
and open circles denote the maxima of visibility and cor
spond to 2.5 mm, 4.0 mm, and 5.0 mm aperture diamet
respectively. For this plot, L50.5 mm, lp52p/kp
5351.1 nm, anduM u50.07 in keeping with our experi
ments.

For antiparallel axes, the visibility function att5LD is

Va~LD !522
d1~d11d!

d1
21~d11d!2

1

A11g2

3E
0

1

dze2B(12z)2
cos@E~12z!22fg~d!

1fdisp~d!#. ~54!

For the case of two crystals in contact (d50) we haveB
52(kpuM uLr /4d1)2, C50, D52kpuMLu2/2d1, and E50.
From Eq. ~48!, we now observe that the visibility att
5LD for parallel optical axes is

Vp~LD !5expF22S kpuM uLr

4d1
D 2GsincS kp

2d1
UMLU2D ,

~55!

while for antiparallel axes

FIG. 7. Visibility uV(LD)u as a function of crystal separationd
for the case of parallel optical axes. The curves are plots of Eq.~48!
for aperture diametersb52.5 mm, 4.0 mm, and 5.0 mm. Solid
shaded, and open circles denote the maxima of visibility. The
tanced1 ~see Fig. 4! is 750 mm. Note that the period of visibility
modulation as a function of crystal separationd contracts for in-
creasing aperture diameter.
01380
,
-
s,

Va~LD !52A2p
d1

kpuM uLr
erfS kpuM uLr

2A2d1
D . ~56!

Note that these visibilities depend on the aperture diame
as well as the crystal thickness~as was seen in the precedin
section!, and are once more markedly different fromVa
5Vp51 as predicted by the single-mode theory. Equatio
~55! and~56! are plotted in Fig. 8 as a function of Gaussia
aperture widthr for three different crystal thicknessesL
50.5 mm, 1.5 mm, and 5.0 mm. As predicted, the plot
the visibility obtained with a parallel orientation of the cry
tal axes~solid! reduces faster than the visibility for an ant
parallel orientation~dashed!.

III. EXPERIMENT

A. Experimental arrangement

The experimental arrangement is illustrated in Fig. 9.
200 mW cw Ar1-ion laser operated at 351.1 nm served
the pump. This highly monochromatic laser beam w
passed sequentially through a cascaded pair
b-barium-borate~BBO! crystals each with thickness 0.5 mm
The thickness of the air gap between the crystals was va
from d52 mm to 100 mm. The crystals were aligned
produce pairs of orthogonally polarized photons in degen
ate collinear type II spontaneous parametric dow
conversion (vs

05v i
05vp

0/2, wherevs
0 , v i

0 , and vp
0 repre-

sent the central frequencies of the signal, idler, and pu
fields, respectively!. The laser power was sufficiently low t
ensure, with high probability, that at most one photon p
was generated at a given time. The high visibility obtain
from separate single-crystal quantum-interference exp
ments confirmed the validity of this assumption. A dichro
mirror, which transmits the 702-nm signal and idler bea

s-

FIG. 8. Visibility at t5LD for two identical crystals in contac
(d50) as a function of the (1/e) width r of identical Gaussian
apertures in each arm of the interferometer shown in Fig. 4. S
~dotted! curves correspond to parallel~antiparallel! optical axes.
Results for different crystal thicknessesL are shown concurrently
The curves were generated with the parametersd151 m, lp

52p/kp5351.1 nm, anduM u50.07.
1-9
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FIG. 9. Experimental apparatus used to stu
polarization interference in collinear SPDC from
two cascaded crystals separated by an air gap
thicknessd. Details are found in the text.
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while reflecting the 351-nm pump, was placed after the t
crystals to remove residual pump laser beam.

The relative optical-path delayt was introduced using a
z-cut birefringent crystalline-quartz plate of variable thic
ness. The range of transverse wave vectors for the do
converted light was selected by circular apertures of dia
eters 2.5 mm to 5.0 mm. These apertures were positione
750 mm from the output plane of the second crystal. T
single aperture used in the experimental setup is form
equivalent to the use of two apertures of identical diame
in the interferometer of Fig. 4, as used for the theoreti
discussions of previous sections. The beams of do
converted light were then directed to a nonpolarizing be
splitter, and thence to the two arms of a polarization inten
interferometer. Each arm of the interferometer comprise
Glan-Thompson polarization analyzer set at 45° with resp
to the horizontal axis in the laboratory frame, establish
the basis for the polarization measurements. This basis
selected so as to permit observation of the quantu
interference pattern as a function of the optical-path delat.
Finally, a convex lens~not shown in Fig. 9! was used to
reduce the beam size to be less than the area of the dete
an actively quenched Peltier-cooled photon-counting a
lanche photodiode. No spectral filters were used in any of
experiments. Coincidence detection was performed using
nsec integration window and corrections for accidental co
cidences were not necessary.

B. Experimental results

First, we report quantum interference from crystals o
ented with parallel and antiparallel optical axes in the sm
aperture approximation. We demonstrate that the visibility
t5LD varies sinusoidally with crystal separationd. Second,
we investigate spatial effects on the visibility att5LD aris-
ing from the acceptance of a broader range of transv
wave vectors as the aperture is opened.

1. Parallel and antiparallel optical axes

In this section we investigate the quantum interferen
patterns from SPDC in two identical crystals with paral
and antiparallel optical axes. The details of the experime
setup can be found in the preceding section. The signal
idler fields were selected by a 2.5-mm circular aperture
sitioned 750 mm after the second crystal.
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In the lower portion of Fig. 10, we plot the visibility func
tion at the center of the interference region,V(LD) as de-
fined in Eq.~40!, as a function of the separationd between
the two 0.5-mm-thick BBO crystals. Each data point on t
graph was obtained by calculating the ratio (R02Rint)/R0
where R0 and Rint are the coincidence-count rates on t
shoulders (t,0 andt.2LD) and at the center of the regio
of interference (t5LD), respectively. The shaded circle
plot the visibility at t5LD as a function of crystal separa
tion d when the optical axes of the two crystals are paral
The open circles correspond to the case of antiparallel op
axes. As anticipated by Eqs.~48! and~54!, the modulation in
visibility with crystal separation is sinusoidal. Thep-phase
shift between these two cases arises from the change in
of x (2) as the relative orientation of the optical axes is
verted. The theoretical curves~solid! are plots of Eqs.~48!

FIG. 10. Visibility function at the center of the interference r
gion, V(LD), as a function of crystal separationd. Symbols repre-
sent data from parallel~shaded circles! and antiparallel~open
circles! optical axes. Note that in our experimentsV(LD)51 cor-
responds to an interference dip, whileV(LD)521 corresponds to
an interference peak. Insets at top are representative interfer
patterns at extremes ofV(LD), taken with d517.5 mm andd
532.5 mm. Solid curves are plots of Eqs.~48! and~54! for parallel
and antiparallel orientations, respectively.
1-10
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ENTANGLED-PHOTON GENERATION FROM PARAMETRIC . . . PHYSICAL REVIEW A 66, 013801 ~2002!
and~54! assuming a Gaussian aperture of widthr ~defined as
the diameterb of the circular apertures divided by 2A2, the
width at 1/e), set to satisfy 2A2 r 52.5 mm. The agreemen
of the theoretical curves with the experimental data dem
strates the validity of the Gaussian-aperture approximat
The remaining experimental parameters for this plot ared1
5750 mm,lp52p/kp5351.1 nm, anduM u50.07.

In the top left inset of Fig. 10, we show a representat
example of quantum-interference patterns in which the
ibility function Vp(LD) for crystals with parallel optical axe
is either minimum or maximum. In the pattern exhibiting
peak~minimum!, the crystals were 17.5 mm apart, while
the pattern exhibiting a dip~maximum! the crystals were
37.5 mm apart. Each data point presented on the visib
graph ~lower inset! is extracted from such interference pa
terns. In the figure at the top right, where the two crystals
oriented with antiparallel optical axes, the opposite is tr
the pattern exhibiting a dip~maximum! corresponds to a
17.5-mm crystal separation, while the pattern exhibiting
peak~minimum! corresponds to a 37.5-mm separation. N
from Eq.~38! that when both polarization analyzers are se
45°, the polarization projection factorvpol521. Thus, from
Eq. ~37!, positive values ofV(LD) correspond to a quantum
interference dip while negative values correspond to a qu
tum interference peak. Orienting the crystals with antipa
lel optical axes produces a sign difference between
second-order nonlinearities of the two crystals, so this c
dition is again reversed.

2. Spatiotemporal effects

In previous work with single-crystal SPDC@12#, we
found that the acceptance of transverse wave vectors
substantial effects on quantum-interference patterns. To
vestigate spatiotemporal effects in dual-crystal SPDC,
carried out identical experiments to those detailed in the p
ceding section, except that the 2.5 mm circular aperture

FIG. 11. Visibility functionV(LD) as a function of crystal sepa
rationd for three different aperture diameters in the case of para
optical axes. Solid curves are plots of Eq.~48!. Solid, shaded, and
open circles are experimental data for aperture diameterb
52.5 mm, 4.0 mm, and 5.0 mm, respectively. The distanced1 ~see
Fig. 4! is 750 mm.
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replaced with 4.0 mm and 5.0 mm circular apertures. T
apertures remained positioned 750 mm from the output pl
of the second crystal.

As with the single-crystal experiments, we found that
creasing the diameter of the aperture lowers the visibility
the quantum interference patterns. This effect can be
plained by considering the two independent mechanisms
introduce phases between the two-photon probability am
tudes for each crystal:~1! dispersion in the air separating th
two crystals, which results in the phasefdisp @Eq. ~43!#, and
~2! the angular spread of down-converted light, which resu
in the phasefg @Eq. ~49!#. Whereasfdisp is dependent on the
crystal separationd, but independent ofr and d1 , fg de-
pends on all three parameters. However, whend/d1@1,
fg;2arctan(kpr

2/4d1). In this limit, fg is dependent onr
andd1, but independent of the crystal separationd. As such,
fg dominates when the aperture is sufficiently large, wh
fdisp dominates when the aperture is sufficiently small.

Figure 11 displays plots of the visibility function att
5LD as a function of the crystal separationd for 2.5 mm
~top!, 4.0 mm~middle!, and 5.0 mm~bottom! aperture diam-
eters. The two crystals are oriented with parallel axes. N
that for a fixed value ofd, there is a reduction of visibility for
increased aperture diameter. A reduction of visibility al
occurs as the distance between the crystals is increa
Moreover, the period of oscillation contracts slightly as t
aperture diameter is increased.

IV. CONCLUSION

We have developed a theory of type II SPDC in med
with inhomogeneous distributions of nonlinearity. The dow
converted light can be concurrently entangled in frequen
wave vector, and polarization. We have shown that the s
function of the down-converted light can be controlled
design of the nonlinearity profile in the crystal, as well as t
spatial and spectral profile of the pump field. As one ru
mentary design, we have considered the case of two non
ear crystals separated by a linear dispersive medium.
anticipate that even greater control can be identified and
ploited when other distributions of nonlinearity are em
ployed.

The multiparameter formalism of SPDC in quantum inte
ferometry@12# has been extended to incorporate the longi
dinal nonlinearity profile of the medium. The quantum
interference pattern was shown to critically depend on
specific design of the nonlinearity profile. We studied t
case of a cascaded pair of bulk crystals and experimen
verified the theoretical predictions. We have demonstra
that the quantum interference is sensitive to the medium
tween the crystals, as well as the design of the optical sys
for the down-converted light. In particular, collective inte
ference effects were seen between the two probability am
tudes corresponding to detection of a photon pair gener
in either crystal. The visibility of this collective interferenc
between the two amplitudes depends on a relative ph
which is a function of the dispersion in the linear mediu
and the acceptance angle of the optical system. In the sm
aperture approximation, we can continuously sweep

l
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GIOVANNI DI GIUSEPPEet al. PHYSICAL REVIEW A 66, 013801 ~2002!
quantum-interference pattern from a high-visibility triangu
dip to a high-visibility peak, simply by changing the distan
between the two crystals. In principle, the same effect
also be observed when the dispersion properties of the li
medium are changed for a fixed distance between the c
tals. Furthermore, as we increased the aperture diameter
thus admitted a greater range of transverse wave vectors
the optical system, we observed a contraction in the osc
tion period of the visibility.

Our findings are expected to be of interest to the deve
ment of SPDC sources using multiple-crystal configuratio
and/or periodically poled materials, and to the advancem
of quantum technologies through quantum-state enginee
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APPENDIX A: THE COINCIDENCE-COUNT RATE R„t…

The purpose of this appendix is to derive the coinciden
count rateR(t) defined in Eq.~37! for the case of two cas
caded bulk crystals as a source of type II SPDC. Inser
into Eqs.~27! and~28! the particular condition on the optica
system defined in Eq.~36!, we proceed to derive the explic
form of each term in Eq.~35!.

The single-crystal coincidence-count rates are given b

R0
(r )5E dndqdq8FAB~q,q8,n!e2 i [ht(q,n)2ht(q8,n)]

3@mAo,Be
2 x̃ r

(2)* ~q8,n!x̃ r
(2)~q,n!1mBo,Ae

2

3x̃ r
(2)* ~2q8,2n!x̃ r

(2)~2q,2n!# ~A1!

and

Rint
(r )5E dn dqdq8FAB~q,2q8,n!e2 i [ht(q,n)2ht(q8,2n)]

3mAo,Be mBo,Ae@ x̃ r
(2)* ~q8,2n!x̃ r

(2)~q,n!

1x̃ r
(2)* ~2q8,n!x̃ r

(2)~2q,2n!#, ~A2!

where r 51,2 is the crystal index,m i j ,lm5Ti j Tlm ( i ,l 5A,B
and j ,m5e,o) is the projection of the polarization of thei th
photon onto thej th basis polarization and the polarization
the l th photon onto themth basis polarization, and the pha
function

ht~q,n!52@ko~n,q!1ke~2n,2q!# l t ~A3!

depends on the dispersion introduced by the delay line.
integral over the detection planes
01380
r

n
ar
s-
nd
to

a-

-
s
nt
g.

-
-

-

g

e

FAB~q,6q8,n!5^HA* ~xA ,6q8;n!HA~xA ,q;n!&xA

3^HB* ~xB ,7q8;2n!HB~xB ,2q;2n!&xB

~A4!

is an analog of the functionS̄AB @Eq. ~29!# for the
polarization-independent elements of the system only.

Meanwhile, the coincidence-count rates that arise coll
tively between the contributions from the two crystals a
given by

R0
(12)5eE dndqdq8FAB~q,q8,n!e2 i [ht(q,n)2ht(q8,n)]

3 (
r 51,2

@mAo,Be
2 x̃ r

(2)* ~q8,n!x̃32r
(2) ~q,n!1mBo,Ae

2

3x̃ r
(2)* ~2q8,2n!x̃32r

(2) ~2q,2n!# ~A5!

and

Rint
(12)5eE dndqdq8FAB~q,2q8,n!e2 i [ht(q,n)2ht(q8,2n)]

3mAo,Be mBo,Ae (
r 51,2

@ x̃ r
(2)* ~q8,2n!x̃32r

(2) ~q,n!

1x̃ r
(2)* ~2q8,n!x̃32r

(2) ~2q,2n!#. ~A6!

Defining the baseline coincidence-count rate asR05R0
(1)

1R0
(2)1R0

(12) , the interference contributions can be org
nized in the formvpolV(t)5@Rint

(1)1Rint
(2)1Rint

(12)#/R0 as they
appear in Eq.~37!.

APPENDIX B: THE VISIBILITY FUNCTION V„t…

The purpose of this appendix is to derive the visibili
function V(t) defined in Eq.~39!. We consider the specia
case of degenerate collinear type II SPDC from two casca
crystals of identical materials but different thicknesses. T
source of SPDC is used in the interferometer shown in Fig
with symmetric apertures, no spectral filters, and the tran
function of the system follows the condition given in E
~36!.

Given this explicit configuration, we evaluate Eqs.~A1!,
~A2!, ~A5!, and~A6! and rearrange the results to obtain E
~39!.

To calculateFAB in Eq. ~A4!, we need to consider the
explicit form of the transfer functionH for a given optical
system. In the Fresnel approximation~which is well satisfied
under the conditions of our experiments! the transfer func-
tions Hi ( i 5A,B) in Eq. ~A4! are given by@12#
1-12
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Hi~xi ,q;v!} f̃ ~v!ei (v/c)(d11d21 f )e2 i (v/2c f)uxi u
2(d2 / f 21)e2 i (cd1/2v)uqu2E dypi~y!e2 i [(v/c f)xi2q] •y, ~B1!
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where f̃ (v) is a ~typically Gaussian! spectral filter profile,
v5vp

0/21n is the frequency of the degenerate SPDC,d1 is
the distance from the output plane of the second crysta
the aperture,d2 is the distance between the aperture and e
detector,f is the focal length of both lenses, andpi(y) is the
pupil function for aperturei 5(A,B). In the absence of inter
ference filters@ f̃ (v)51#, the quasimonochromatic field ap
proximation (n!vp

0) allows theFAB functions in Eq.~A4!
to become frequency independent, as shown in Eqs.~C3! and
~C4!.

The wave vector mismatch functions in Eqs.~32! and~33!
are given under these approximations by

D~q,n!52nD1
2uqu2

kp
1M•q, ~B2!

whereD is the wave vector mismatch function due to disp
sion in the crystals, andD andM are material properties o
the crystals @22,23#. Here D5uo

212ue
21 is the disper-

sion coefficient, whereuo,e are the group velocities fo
ordinary and extraordinary waves at the central freque
vp

0/2 and q50 ~i.e. ue5up). In Eq. ~B2!, M
5(]/]ue)ln@ne(vp

0/2,up)#eoa is the spatial walk-off vector,
where eoa is a unit vector pointing in the direction of th
optical axis.

Meanwhile, the dominant contribution to the dispersi
function for the linear medium in Eq.~33! is

D85kp82Ko82Ke8 , ~B3!

where kp85nd(vp
0)vp

0/c, Ke85nd(ve)ve/c, and Ko8
5nd(vo)vo /c are the first-order expansions ofke8 and ko8 ,
and nd(v) is the index of refraction in the linear medium
Evidently the dispersion in the linear medium between
two crystals simply contributes a difference in optical pa
length to the overall dispersion function.

For a delay line of thicknessl t , the phase functions
ht(q,n) in Eq. ~A3! are given under the Fresnel and qua
monochromatic field approximations by

ht~q,n!5F2nDt1
2uqu2

kp
1M t•q2Ko2KeG l t , ~B4!

whereDt andM t are the dispersion coefficient and the sp
tial walk-off vector for the birefringent material of the dela
line, respectively. If we consider the contributio
exp@2iht(q,n)# for the delay line along with Eq.~32!, we
obtain

x̃ r
(2)~q,n!e2 iht(q,n)5e2 idD8dr ,1E

2Lr

0

dzQr~n;z!Mr~q;z!

~B5!
01380
to
h

-

y

e

-

-

for r 5(1,2) wherex̃1
(2)(q,n) and x̃2

(2)(q,n) are the nonlin-
earity profiles of the first and second crystals, respectiv
We have here introduced the quantities

Mr~q;z!5ei (M rz2Lr )•qe2i [(z2br )/kp] uqu2, ~B6!

Qr~n;z!5e2 in(Dz1tr ), ~B7!

where the parameters

t r5t2L2Dd r ,1 , ~B8!

b r5 l t1L2d r ,1 , ~B9!

Lr5M tl t1M2L2d r ,1 ~B10!

for r 5(1,2) and wheret52 l tDt . Under these conditions
the single crystal components of the coincidence-count
are then given by

R0
(r )5

mAo,Be
2 1mBo,Ae

2

D E dzPLr

2 ~z!I„2~M rz1Lr !,0,sr ,sr…

~B11!

and

Rint
(r )52

mAo,BemBo,Ae

D E dzPLr
~z!PLrS 2t r

D
2zD

3I„2~M rz1Lr !,Zr ,sr ,sr…, ~B12!

where for brevity we introducePLr
(z)[rect[0,Lr ]

(z). Here

the distancesr5d12z1b r ,

Zr522S M r

t r

D
1Lr D , ~B13!

and

I„z0~z!,Z~z,z8!,sk ,sn…

5E dqdq8Mk~q;z!Mn* ~q8;z8!FAB~q,6q8,n!.

~B14!

We have assumed, in keeping with our experiments,
ertures that are symmetric such thatupA,B(y)u5upA,B(2y)u.
Further details ofFAB(q,6q8,n) can be found in Appendix
C. In experimental practice, the distanced1 between the out-
put plane of the second crystal and the aperture is m
longer than the crystal thicknessesL1 andL2 and the optical
path lengthl t of the delay line. As such, we may assume th

sr5d12z1b r;d11~22r !d. ~B15!
1-13
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Also note that there are no approximations constraining
value ofd.

The baseline coincidence-count rate from collective int
ference between the amplitudes from the two crystals
given by

R0
(12)5e

mAo,Be
2 1mBo,Ae

2

D H E dzPL1
~z!PL2S z2

t12t2

D D
3I„2~M1z1L1!,Z12

0 ~z!,s1 ,s2…e
2 idD8

1E dzPL2
~z!PL1S z2

t22t1

D D
3I„2~M2z1L2!,Z21

0 ~z!,s2 ,s1…e
idD8J , ~B16!

where

Z12
0 ~z!52Fz~M12M2!1M2

t12t2

D
1L12L2G ~B17!

and the remaining parameters are given by

t15t2L2D, s15d11d, L15M tl t1M2L2, ~B18!

t25t, s25d1 , L25M tl t . ~B19!

It is important to note thatR0
(12)50 for all values oft, since

in this caset12t252LD2 and the two rectangular func
tions PLr

(z) in Eq. ~B16! never actually overlap. Thus th
coincidence-count rates are strictly constant outside the
gion of interference. This lack of shoulder modulation is
important indicator of the purity of the observe
polarization-entangled two-photon state. The collective in
ference term itself is given by

Rint
(12)52e

mAo,BemBo,Ae

D H E dzPL1
~z!PL2S t11t2

D
2zD

3I„2~M1z1L1!,Z12
int~z!,s1 ,s2…e

2 idD8

1E dzPL2
~z!PL1S t21t1

D
2zD

3I„2~M2z1L2!,Z21
int~z!,s2 ,s1…e

idD8J , ~B20!

with

Z12
int~z!52Fz~M12M2!1M2

t11t2

D
1L11L2G ,

~B21!

where Z21
0,int can be found by interchanging all indice

(1↔2) in Z12
0,int .

With sufficient algebra, it is possible to arrange all of t
contributions to the coincidence rate in Eqs.~B11!, ~B12!,
~B16!, and ~B20! to obtain the structure of Eq.~37!, where
the baseline coincidence-count rate is given by
01380
e

r-
is

e-

r-

R05S kp

2 D 2F L1

Ds1
2

1
L2

Ds2
2G P̃A~0!P̃B~0!, ~B22!

whereP̃i(q) is given by Eq.~C4!, and the polarization ana
lyzer projection factor is

vpol52
mAo,BemBo,Ae

mAo,Be
2 1mBo,Ae

2
. ~B23!

This, in turn, leads to Eq.~39!, the desired visibility function
in the special case whereL15L25L,

V~t!5
1

11r2E dzPL~z!PLS 2t

D
22L2zDG (1)S z

L
;

t

LD D
1

1

11r2E dzPL~z!PLS 2t

D
2zDG (2)S z

L
;

t

LD D
12e

r

11r2E dzPL~z!PLS 2t

D
2L2zD

3ReFG (12)S z

L
1

1

2
;

t

LD De2 iD8dG . ~B24!

Here the functionsGr 51,2 are given by

G (r )S z

L
;

t

LD D5N„2~M rz1Lr !,Zr ,sr ,st… ~B25!

for the single-crystal contributions, while the component d
to collective interference is given by

G (12)S z

L
1

1

2
;

t

LD D5N„2~M1z1L1!,Z12
0 ~z!,s1 ,s2….

~B26!

The functionN is defined in Appendix C by Eq.~C9!, while
the normalization factor is given byr5(d11d)/d1.

For a delay line comprised of a thinz-cut birefringent
element such as quartz,M t50 and

L15M2L2 , L250. ~B27!

Under this assumption there are two important limits: lar
separation between the crystals (d→`) and contact between
the crystals (d→0). When the two crystals are moved ve
far apart, we expect interference from SPDC to be gover
only by the second crystal, and the quantum-interference
tern to be identical to that of SPDC from a single crystal
thicknessL2. This can be seen from Eq.~B24! by noting that
in this case the normalization factorr→` and only the last
of the three integrals in Eq.~B24! survives. In this limit

Vd→`~t!5
1

LE dzPL~z!PLS 2t

D
2zDG (2)S z

L
;

t

LD D
~B28!

and the shoulder normalization factor~B22! is identical to
that of a single crystal of thicknessL. When two crystals of
1-14
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the same material with parallel optical axes are in cont
the quantum interference pattern is identical to that obtai
from a single crystal of thickness 2L. However, note that this
does not hold for antiparallel orientations of the optical ax
of the two crystals.

1. Parallel optical axes

If the crystals are oriented such that their optical axes
parallel, M15M25M and theG functions in Eq.~39! are
specified by

Gp
(1)~z;x!5N„2ML~z1x!,22MLx,d11d,d11d…,

~B29!

Gp
(12)~z;x!5N„2ML~z1x!,22MLx,d11d,d1…,

~B30!

Gp
(2)~z;x!5N„2ML~z1x!,22MLx,d1 ,d1…, ~B31!

wherez5z/L, x5t/LD, andN is defined in Eq.~C9!.

2. Antiparallel optical axes

The antiparallel orientation of the optical axes of the tw
crystals givesM152M25M and theG functions are speci-
fied by

Ga
(1)~z;x!5N„2ML~z1x22!,22ML~x21!,

d11d,d11d…, ~B32!

Ga
(12)~z;x!5N„2ML~z1x22!,22ML~z21!,

d11d,d1…, ~B33!

Ga
(2)~z;x!5N„ML~z1x!,2MLx,d1 ,d1….

~B34!

APPENDIX C: THE FUNCTION N
In this appendix, we derive an explicit form of the fun

tion N, which appears in Eq.~B25!. We define

N~z0 ,Z,sk ,sn!5
sksn

~kp/2!2

I~z0 ,Z,sk ,sn!

P̃A~0!P̃B~0!
, ~C1!

where P̃i(q), k,n5(1,2), s1 and s2 are defined in Eqs
~B18!, and

I„z0~z!,Z~z,z8!,sk ,sn…

5E dqdq8Mk~q;z!Mn* ~q8;z8!FAB~q,6q8,n!,

~C2!

whereMr is defined in Eq.~B6!. The functionFAB , defined
by Eq. ~A4!, under the Fresnel approximation and in t
absence of interference filters takes the form
01380
t,
d

s

re

FAB~q,6q8,n!5 P̃A~q7q8!P̃B~2q6q8!

3e2 i [2d1(n)/kp]( uqu22uq8u2). ~C3!

Here

P̃i~q!5E dypi~y!pi* ~y!e2 iy•q, ~C4!

d1~n!5d1F12S 2n

vp
0D 2G21

, ~C5!

for i 5(A,B). Given these explicit forms, Eq.~C2! becomes

I~z0 ,Z,sk ,sn!5
~kp/2!2

sksn
expF2 i

kp

8sn
uZu2G

3E dqP̃A~2q!P̃B~q!

3WS q1
kp

4sn
ZDe2 iq•z0, ~C6!

where

W~q!52
2idr

(kn)

pkp
expF2idr

(kn)

kp
uqu2G , ~C7!

with

1

dr
(kn)

5
1

sn
2

1

sk
. ~C8!

Finally, using Eq.~C6! we obtain

N~z0 ,Z,sk ,sn!5expF2 i
kp

8sn
uZu2G E dqP̃A~2q!

3P̃B~q!WS q1
kp

4sn
ZDe2 iq•z0, ~C9!

with P̃i(q)5 P̃i(q)/ P̃i(0) for i 5A,B. In the limit sk→sn ,
Eq. ~C9! becomes

N~z0 ,Z,sn ,sn!5expF2 i
kp

8sn
uZu2GP̃AS kp

4sn
ZD

3P̃BS 2
kp

4sn
ZDei (kp/4sn)Z•z0. ~C10!

1. Small-aperture approximation

Suppose that the apertures are so small that the p
functionspA,B(y) may be treated asd functions aty50. In
this case,P̃A(q) is a constant and Eq.~C9! becomes

NSM~z0 ,Z,sk ,sn!5expF2 i
kp

8 S uZ2z0u2

sn
2

uz0u2

sk
D G .

~C11!
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In the limit sk→sn we then have

NSM~z0 ,Z,sn ,sn!5expF2 i
kp

8sn
~ uZ2z0u22uz0u2!G .

~C12!

2. Gaussian-aperture approximation

To simplify the analysis, we consider the case
Gaussian apertures withpi(y)5exp(2uyu2/2r i

2) and P̃i(q)
5exp(2uqu2r i /4), so that

NG~z0 ,Z,sk ,sn!

5
12 ig

11g2
expF i

kp

8~sk2sn!
uZu2G

3expF2 i
kp

8dr
(kn)

12 ig

11g2 Uz02
sk

sk2sn
ZU2G ,

~C13!

where

g5
kp

4dr
(kn)

r A
2 1r B

2

2
. ~C14!

It is useful to write the complex constant

12 ig

11g2
5

1

A11g2
e2 i arctang ~C15!
v.

i,

rs

J.
.

01380
f

so that we may write the phase

fg52arctanS kp

4d1

r A
2 1r B

2

2

d/d1

11d/d1
D . ~C16!

In summary, theN function in the Gaussian-aperture a
proximation is given by

NG~z0 ,Z,sk ,sn!

5
1

A11g2
expF2

kp

8dr
(kn)

g

11g2 Uz02
sk

sk2sn
ZU2G

3expF2 i
kp

8dr
(kn)

1

11g2 Uz02
sk

sk2sn
ZU2G

3expF i
kp

8~sk2sn!
uZu21 ifgG . ~C17!

In the limit sk→sn , we have

NG~z0 ,Z,sn ,sn!5expF2UkpZ

4sn
U2 r A

2 1r B
2

4 G
3expF2 i

kp

8sn
~ uZ2z0u22uz0u2!G .

~C18!
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