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1.  Introduction

The Su–Schreiffer–Heeger (SSH) model [1] was originally 
proposed as a model of electron behavior in polymers, but has 
become widely used as a simple model in which topological 
phase transitions may occur. The system is defined in terms 
of two parameters, w and v, representing hopping amplitudes 
between two distinct types of lattice sites. Each unit cell is 
formed by a pair of lattice sites, one of each type (figure 1). 
As the quasimomentum k varies across the full Brillouin zone, 
the Hamiltonian Ĥ  traces out a closed curve in a two-dimen-
sional (2D) space. When the parameters obey v > w this 
curve avoids enclosing the origin, where Ĥ  becomes singular, 

and so the Hamiltonian exhibits a vanishing winding number 
about the singularity [2–4]. For v < w, the curve encloses the 
singular point, and has winding number 1 about the origin. 
At the borderline case v = w, a transition between two topo-
logical phases occurs, with the winding number making a 
discontinuous jump. Since the SSH lattice has two distinct 
sublattices, corresponding to two ‘internal states’ within each 
unit cell, the energies form two bands separated by a finite 
gap. However, when v = w, the gap disappears, and at this 
point transitions between different winding numbers occur.

In treatments of the SSH model, the emphasis is usually 
on the Hamiltonian and the energy bands. Wavefunctions are 
normally given less attention, and when they are discussed the 
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focus is usually on Bloch states in momentum space or on the 
localized edge states that appear between regions of different 
winding number. However, recently the behavior of particles 
undergoing quantum walks in SSH-like systems has become 
an important topic of research; in particular photonic quantum 
walks in linear optical systems have been shown to simulate top-
ological states of the same type that appear in SSH-like systems 
[4, 5, 6–10]. In these photonic systems, the particle is inserted 
at a fixed location, then at a later time (after some number of 
discrete time steps) its final position distribution is measured. 
Thus, position-space wavefunctions in the bulk are of signifi-
cant interest and hold the key to a more complete understanding 
to transitions between topologically distinct regions.

Figure 2 shows a simulation of a photonic quantum walk. 
In (a), the entire system has the same Hamiltonian, and the 
photon spreads ballistically in both directions from the point 
of insertion, displaying the well-known probability distribu-
tion of quantum walk systems. However, in (b) the parameters 
of the system abruptly change at lattice site 85, causing the 
Hamiltonian on the right side of that point to have a different 
winding number than the Hamiltonian to the left. It can be 
clearly seen that penetration of the photon into the region on 
the right is strongly suppressed, with some of the amplitude 
collecting at the boundary and most of the rest reflecting back 
into the original region. Such a suppression of transitions into 
regions of different winding number may be seen in exper
imental data as well (see figure 3 of [8] for example), although 
in experiments the effect is often somewhat obscured due to 
the small number of steps measured and the presence of the 
localized state at the boundary that extends a few steps into the 
second region. Possibly because of these obscuring factors, 
this effect has not been much remarked upon. This reflection 
occurs even when there is no mismatch between energy levels 
on the two sides of the boundary.

Reflection occurs whenever there is an abrupt change in 
the wavefunctions across a boundary. This obviously occurs 
for sudden potential energy changes, but other sudden 
changes have similar effects, such as sudden changes in 
acoustic impedance or refractive index. Even sudden changes 
between regimes where relativistic dynamics and nonrelativ-
istic dynamics dominate have been shown to lead to reflec-
tive behavior similar that at a potential step [13]. In this paper 
we show that abrupt changes in the topological state of the 
system are also typically accompanied by reflection and we 
give quantitative expressions for the resulting reflection and 
transmission coefficients for a specific model system.

In particular, we look in detail at position-space wavefunc-
tions of SSH systems and at what happens to them when the 
topology of the Hamiltonian changes. We assume that the 
Hamiltonian depends on some parameter that is under the con-
trol of experimenters (for example, the vertex phase param
eters in the quantum walk systems of [10, 11] or the rotation 
angles of [4, 5, 6–8]). We further assume that the parameter 
varies in such a way that at some position x it causes the 
winding number of the Hamiltonian to change. Although all 
of the considerations in the following sections apply equally 
to other physical realizations, we will assume for the sake of 
specificity that the particles involved are photons.

In order to cross the boundary between the two regions 
the particle must make a transition between states that are 
asymptotically (far from the boundary) eigenstates of the 
original Hamiltonian to eigenstates of the topologically-
altered Hamiltonian. We show in the following that if the 
two Hamiltonians are of different winding number, then 
such transitions are partially suppressed by an amount 
depending on the values of the v and w parameters of the two 
Hamiltonians, with strong reflection at the interface. The net 
result is that in a system of regions governed by Hamiltonians 
of different winding number, if the hopping amplitudes are 

Figure 1.  The SSH Hamiltonian describes motion of a particle 
hopping on a chain of sites with two substates per site. v and w are 
respectively the intracell and intercell hopping amplitudes per unit 
time.

Figure 2.  Calculated probability distribution of detecting a photon 
at position x at time t as the photon undergoes a one-dimensional 
(1D) quantum walk. The system in which the photon is walking 
is the linear optical arrangement of [11]. (a) The Hamiltonian is 
the same (of winding number zero) throughout. The photon is 
inserted into the system at position x = 70 and then exhibits the 
ballistic evolution characteristic of quantum walks. (b) The same, 
except that now the parameters of the system change at position 
x = 85 (marked by the arrows) so that the winding number of the 
Hamiltonian is 0 to the left of that point and 1 to the right. It can be 
seen that propagation into the region of ‘wrong’ winding number is 
strongly suppressed.
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well-chosen, then states will strongly tend to remain in the 
region where they started and resist propagation into other 
regions. Although we have been speaking of spatial regions 
here, the same will apply to different regions of some more 
abstract parameter space: for example if a system is arranged 
such that photons see a polarization-dependent Hamiltonian 
that has different winding number for vertical and horizontal 
cases, then polarization flips will be suppressed by the same 
mechanism. This has obvious applications, for example in 
reducing the likelihood of polarization-flip errors in optical 
information processing systems. It is shown elsewhere [12] 
that Hamiltonians with such polarization-dependent winding 
numbers can be readily engineered using linear optics.

The existence of localized, topologically protected states 
at the boundaries between regions with different winding 
number is well-known. The results here imply that under 
appropriate conditions there is also a measure of approximate 
‘protection’ attached to the bulk wavefunctions, in the sense 
that propagation into spatial regions or parameter regions with 
different topological properties is suppressed. The degree 
of transition suppression between these regions depends on 
the parameter values themselves, as well as the presence or 
absence of discrete topology changes. In this paper we only 
examine the simplest case, in which the two hopping param
eters are interchanged at the boundary: the value of v on 
the left equals the value of w on the right, and vice-versa. A 
quantitative study of how the suppression varies as the values 
of v and w move away from the pure exchange case will be 
carried out elsewhere.

The quantum walk wavefunctions are linear combinations 
of energy eigenstates, so they do not strictly speaking have 
well-defined winding numbers of their own. But note that if 
one can strongly suppress transitions of the bulk wavefunc-
tion between regions of parameter space of different topology, 
one can associate the wavefunction localized in a given region 
with the winding number of the corresponding Hamiltonian. 
Then linear combinations of states associated to different 
winding number Hamiltonians may be formed, effectively 
forming qubits in a winding number basis:

a|0〉+ b|1〉,� (1)

where |0〉 and |1〉 represent states associated with Hamiltonians 
of winding numbers 0 and 1. Such linear combinations can be 
easily arranged, for example, by inserting linear combinations 
of polarization states, with different polarizations being gov-
erned by Hamiltonians of different winding number. These 
qubits can be thought of as being encoded into either the 
Hamiltonian or into states present in the region governed by 
that Hamiltonian. Gates can then be made that act by altering 
the Hamiltonian, with readout accomplished by making mea-
surements on the states.

In the coming sections, we will see that the presence 
of a change in the topology of the Hamiltonian (a discrete 
change in its winding number) affects the transmission and 
reflection coefficients at the boundary point. In the absence 
of the topology change, the transmission coefficient is uni-
formly equal to 100%. However, when the topology change 
is in place the transmission coefficient becomes a continuous 

function of the hopping parameters, and for some parameter 
ranges the transmission can be made very small.

This discussion points out that there can be interplay 
between discrete, topologically-based variables (winding 
number) and continuous variables (transmission coefficient) 
that interact with them. Such interplay exists in many other 
contexts. For example, the current across a Josephson junc-
tion is affected both by the existence of the topologically 
quantized, discrete magnetic flux and by the continuous 
temperature variable. In the case under discussion, changes in 
the discrete topological winding number and the continuous 
hopping parameters will both affect the behavior of other con-
tinuous variables associated with the same system, such as the 
reflection coefficient.

In this paper, we use the SSH system as an example system 
to study reflection and transmission at topological boundaries. 
In many applications of the SSH model, the electron or other 
hopping particle is treated as a point particle, perfectly local-
ized at a given lattice site at each moment. In reality, we know 
that quantum mechanical wavefunctions typically have a finite 
spread to them and this spread needs to be taken into account to 
study quantities like scattering amplitudes and tunneling rates. 
In the current paper we are looking at the transition rate from 
one side of a discrete boundary to the other side, and this will 
clearly be dependent on the wave-like spatially-extended prop-
erties of the particle. So we focus on the position-space wave-
function and expand it in a convenient basis. In the context of a 
particle interacting with a discrete lattice system, a convenient 
basis is the Wannier basis, in which the wavefunction is built 
out of basis states that have finite spread but remain localized 
near the location of each lattice site. A particle initially local-
ized near one site will exhibit a quantum walk [4, 14–16], 
evolving into a superposition of states localized at many sites; 
what we compute is the rate of transmission of this quantum 
walk state from one side of a topological boundary to the other.

The plan of the paper is as follows. In section 2 we briefly 
review the SSH model and set up the notation for what fol-
lows. In section 3 we construct the position- and momentum-
space wavefuntions expressed in the Wannier basis. In 
section 4 we carry out a quantitative examination of reflection 
and transmission of the wavefunction at the boundary, making 
use of the transmission coefficient calculated explicitly in the 
appendix B. Finally, we summarize the results and discuss 
further aspects of them in section 5. Appendix A contains a 
brief description of two physical systems that can be used to 
simulate SSH behavior using photonic random walks.

Additional results related to the construction of edge and 
bulk wavefunctions in topological systems, complementary to 
those described here, have recently appeared in [17] and [18].

2.  Brief review of SSH model

The SSH Hamiltonian [1] in one dimension describes the 
hopping of particles along the length of a bipartite lattice. A 
closely related model arose independently in quantum field 
theory [19].

The SSH system is shown schematically in figure 1. There 
is a lattice of unit cells, labeled by integer n, each of which 
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contains two subsites, denoted as A and B; these subsites 
represent two possible ‘internal’ states at cell n. There is an 
amplitude per unit time v to switch between the two states 
within the same cell, and an amplitude per time w to hop to 
an adjacent lattice site. Hopping to an adjacent site is always 
accompanied by a change of the internal state. By redefining 
the basis states if necessary, the hopping amplitudes v and w 
can always be chosen, without loss of generality, to be real.

Let R represent lattice positions and r  be the position of 
the particle moving through the lattice. It is convenient to take 
the center of each unit cell to be at integer-valued positions, 
R = n, for n = 1, 2, . . . , N , midway between the A and B sub-
sites, as in figure 3. So the spacing between cells is one unit 
and the spacing between the A and B subsites within a cell is 
1/2 unit. Then the A subsites are at locations n − 1

4 and the B 
sites are at n + 1

4. In order to avoid edge effects, we may take 
periodic boundary conditions, so that site n = N + 1 is identi-
fied with site n = 1, or we may simply take N  to be very large.

The position-space Hamiltonian is of the form:

Ĥ = v
N∑

n=1

(|B, n〉〈A, n|+ |A, n〉〈B, n|)

+ w
N−1∑
n=1

(|A, n + 1〉〈B, n|+ |B, n〉〈A, n + 1|) .

�

(2)

Here, |A, n〉, for example, denotes the state with a particle at 
site n in substate A.

At each fixed cell n or each fixed momentum k, this 
Hamiltonian is therefore a 2D matrix, and can be expanded 
in terms of the identity matrix and the Pauli matrices; for 
example, in momentum space one may write

Ĥ(k) = d0(k)I + d(k) · σ.� (3)

This describes dynamics in a two-dimensional ‘internal’ sub-
space labeled by the two substates present at each lattice site. 
Generically, the two energy levels are separated by a k-depen-
dent gap.

The Hamiltonian is completely characterized by the 
four-dimensional vector {d0(k), d(k)}. In the SSH model 
d0 = dz = 0, leaving d(k) confined to a plane. There is a 
singular point in this plane, at d(k) = 0, where the phase 
of the Hamiltonian becomes indeterminate and the energy 

gap between bands vanishes. As k is varied across a full 
Brillouin zone, d(k) traces out a closed curve. These curves 
can be divided into two distinct classes: those that encircle 
the singular point and those that do not. In other words, those 
whose winding number about the origin is ν = 1, and those of 
winding number ν = 0. The winding number is highly stable 
in the sense that local perturbations causing continuous vari-
ations of the parameters cannot stimulate transitions between 
the discrete topological classes. Only a strong disturbance that 
alters the global structure of the system can cause the winding 
number to change.

In momentum space, the Hamiltonian is block diagonal, 
with blocks at each k value of the form

Ĥ(k) =
(

0 v + w e−ik

v + w e+ik 0

)
=

(
0 z
z∗ 0

)
,� (4)

where z = v + w e−ik. The two dimensions of this matrix cor-
respond to the two subsites A and B inside the unit cell.

An alternative form of this Hamiltonian will be useful. The 
off-diagonal terms can be written in polar form in the complex 
plane:

z = v + w e−ik = e−ik/2
(

veik/2 + we−ik/2
)

� (5)

= e−ik/2
(
(v + w) cos

(
k
2

)
+ i(v − w) sin

(
k
2

))
� (6)

= e−ik/2
(
(v + w)2 cos2

(
k
2

)
+ (v − w)2 sin2

(
k
2

))1/2

eiθk

� (7)

= Ekeiθk−ik/2,� (8)

where

Ek =

(
(v + w)2 cos2

(
k
2

)
+ (v − w)2 sin2

(
k
2

))1/2

� (9)

=
(
v2 + w2 + 2vw cos k

)1/2
� (10)

is the absolute value of z, while

θk = tan−1
(

Im(z)
Re(z)

)
� (11)

= tan−1
(
(v − w)
(v + w)

tan
k
2

)
� (12)

is the phase. So the Hamiltonian can be written as

H(k) = Ek

(
0 eiθk−ik/2

e−iθk+ik/2 0

)
,� (13)

showing clearly the winding of H  in the complex plane as the 
angle θk changes. The factor θk − k

2 in the exponent is, up to a 
constant, a geometric Berry phase.

The eigenvalues are

E±(k) = ±Ek = ±
√

v2 + w2 + 2vw cos k.� (14)

Figure 3.  Two unit cells of the lattice. The coordinates are chosen 
so that the center of each cell is at an integer-valued location. 
The two subsites A and B are equally distant from the cell’s 
center, so they are separated by half a unit, at locations n ± 1

4, for 
n = 1, 2, . . . , N .
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It is then easy to verify that the eigenvectors are (up to an 
arbitrary overall phase):

|±〉 = 1√
2

(
1

±e−i(θk− k
2 )

)
≡ 1√

2

(
u±
l±

)
.� (15)

The upper component corresponds to the A substate, the lower 
to the B substate.

It should be kept in mind that the quasi-momentum k and 
the quasi-energy E  are only defined modulo 2π.

3.  Position-space wavefunctions

Ignoring for the moment the A and B subcells, consider a 
simple lattice with N  sites at positions R = 1, 2, . . . , N . One 
may construct the 1D Bloch wavefunctions for particle propa-
gating through the lattice,

ψk(r) = eikruk(r),� (16)

where r  is the particle position, and the allowed momenta are

kn =
2πn
N

− π,� (17)

with n = 1, . . . , N . We take the first Brillouin zone to run over 
the interval −π < k � +π. For a single k value, the corre
sponding position space wavefunction can be written in terms 
of the Wannier functions φR(r) = φ(r − R) [20–22]:

uk(r) =
1√
N

∑
R

e−ik(r−R)φ(r − R)� (18)

ψk(r) = eikruk(r) =
1√
N

∑
R

eikRφ(r − R).� (19)

Wannier functions are widely used in solid state physics 
and other areas, and are defined as the Fourier transforms of 
the Bloch wavefunctions with respect to the discrete lattice 
positions,

φR(r) = φ(r − R) =
1√
N

∑
k

e−ikRψk(r).� (20)

There is one such function for each point in the crystal lattice 
and they are strongly localized near those lattice sites.

The functions centered at different lattice sites are 
orthogonal,

∫
φ∗(r − R)φ(r − R′)dr = δ(R − R′),� (21)

so the Wannier functions form a complete basis for spatial 
wavefunctions on the lattice. For the SSH model, these get 
multiplied by a 2D column matrix in the internal A/B space 
spanned by the two subsites at each n.

Now introduce the A and B sublattices, so that the lattice 
sites are shifted to R = n ± 1

4 , where n = 1, 2, . . . , N . This 
splits each term in the sum of equation (16) into two terms, 
one shifted the left by 1

4 (the A terms) and the others shifting 
to the right by the same amount (the B terms), as in figure 3. 

Because there are two substates at each unit cell, the energy 
splits into two bands, as in section 2. Taking into account that 
the l± and u± defined in equation (15) gain phases ±k/4 from 
the shifts away from the cell center, the state then becomes

ψk±(r) =
1√
2N

N∑
n=1

[(
u±eik/4

)
eik(n− 1

4 )φ

(
r −

(
n − 1

4

))

+
(

l±e−ik/4
)

eik(n+ 1
4 )φ

(
r −

(
n +

1
4

))]

� (22)

=
1√
2N

N∑
n=1

eikn
[
φ

(
r − n +

1
4

)
± e−iθk+ik/2φ

(
r − n − 1

4

)]
,

� (23)
where the ± labels correspond to the two eigenstates in the 
upper (+) and lower (−) bands. The first Wannier function 
inside the square bracket is centered at the A subsites, while 
the second function is localized near the B subsites.

Finally, the main interest here is not in wavefunctions 
of fixed k, but rather in states that are initially localized in 
position. Any position-space wavefunction at t = 0 can be 
expanded in terms of energy eigenstates,

ψ(r) =
N∑

k=1

(Ak+ψk+ (r) + Ak−ψk− (r)) .� (24)

The Ak± coefficients can be found by taking the overlaps 
between ψ(r) and the known initial wavefunction. There 
are two possibilities for the initial state: the photon may be 
inserted at an A subsite or a B subsite. In the first case, we take 
the initial state to be

ψA(r) = φ

(
r − n0 +

1
4

)
,� (25)

with n0 being the label of the initial lattice site. In the latter 
case, we take the wavefunction to be

ψB(r) = φ

(
r − n0 −

1
4

)
.� (26)

Making use of the orthonormality of the Wannier func-
tions, it is straightforward then to find that the wavefunctions 
at t = 0 for the two cases are

ψA(r) =
1√
2N

∑
k

e−ikn0 (ψk+ (r) + ψk− (r))� (27)

ψB(r) =
1√
2N

∑
k

e−ikn0 e+i(θk− k
2 ) (ψk+(r)− ψk−(r)) .� (28)

Clearly, the k values are uniformly distributed in probability, 
as would be expected for a wavefunction localized in space.

Again using the orthonormality of the Wannier functions, 
it follows readily that these initially-localized functions also 
form an orthonormal set:

∫
ψ∗

A(r)ψ
′
A(r) dr = δ(n′0 − n0)� (29)
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∫
ψ∗

B(r)ψ
′
B(r) dr = δ(n′0 − n0)� (30)

∫
ψ∗

B(r)ψ
′
A(r) dr = 0,� (31)

where n0 and n0 are the initial cells of the two wavefunctions.
All of the expressions above were at t = 0. Evolving for-

ward in time, the energy eigenstates become

ψk+(r, t) = e−iEktψk+(r)� (32)

=
1√
2N

N∑
n=1

ei(kn−Ekt)
[
φ

(
r − n +

1
4

)

+e−iθk+ik/2φ

(
r − n − 1

4

)]�

(33)

ψk−(r, t) = e+iEktψk−(r)� (34)

=
1√
2N

N∑
n=1

ei(kn+Ekt)
[
φ

(
r − n +

1
4

)

−e−iθk+ik/2φ

(
r − n − 1

4

)]
.

�

(35)

This means that the A- and B-type wavefunctions become

ψA(r, t) =
1
N

∑
kn

eik(n−n0)

(
φ

(
r − n +

1
4

)
cos(Ekt)

+ ie−iθk+i k
2 φ

(
r − n − 1

4

)
sin(Ekt)

)

� (36)

ψB(r, t) =
1
N

∑
kn

eik(n−n0)

(
ieiθk−i k

2 φ

(
r − n +

1
4

)
sin(Ekt)

+ φ

(
r − n − 1

4

)
cos(Ekt)

)

�

(37)

where t is an integer multiple of some discrete time interval T . 
Time evolution only alters the phase of each k component by 
a factor eiE(k)t , and therefore the probability of finding each k 
value is constant in time. However interference between dif-
ferent terms in the sum leads to nontrivial time evolution for 
the spatial distribution.

Note that the factor of ei(kn−Ekt) in equation  (33), which 
implies that the states ψk+ on the positive-energy band are 
right-moving for positive k and left-moving for negative k. 
The negative-energy states ψk− move in the opposite direc-
tion: left for k > 0 and right for k < 0.

4. Transitions at topological boundaries

Recall that the topological sector of the system is determined 
by whether v > w or v < w. Consider two sets of values of 
(v, w) and (v′, w′), leading to two values of the phases, θk 
and θ′k, and corresponding wavefunctions ψk±(r) and ψ′

k±(r). 

These wavefunctions are eigenstates of Hamiltonians Ĥ(k) 
and Ĥ′(k). We take the full Hamiltonian of the system to be 
H(k) for n = −N + 1, . . . , 0 and H′(k) for n = 1, . . . , N , 
where N  is assumed large enough to ignore effects from the 
ends.

Now suppose that Ĥ(k) and Ĥ′(k) differ in winding 
number. Among other things, this implies that the signs of θk 
and θ′k are opposite at the same value of k. We will restrict 
ourselves to the simplest case and assume that the initial and 
final hopping amplitudess are simply interchanged: v′ = w 
ands w′ = v. In this case, we find that

θ′k = −θk = +θ−k.� (38)

Referring to equation  (23) and suppressing the time-
dependent factors for simplicity, the energy eigenstates of H′ 
can be written in terms of the phase θk of H  as

ψ′
k±(r) =

1√
2N

N∑
n=1

eikn
[
φ

(
r − n +

1
4

)
± e+iθk−ik/2φ

(
r − n − 1

4

)]

�
(39)

=
1√
2N

N∑
n=1

ei(kn+θk+k/2)
[

e−iθk−ik/2φ

(
r − n +

1
4

)

±φ

(
r − n − 1

4

)]
.

�

(40)

Now shift the origin by 1
2 unit, r → r − 1

2, and shift the sum-
mation index n → n − 1 in the second sum. After a few steps 
of algebra, one finds that the new wavefunctions are related to 
the old ones by

ψ′
k±(r) = ±ei(θk− 3k

2 )ψk±(r).� (41)

The phases linear in k come from the shifts in origin for r  and 
n. The A and B wavefunctions are now

ψ′
A(r) =

1√
2N

∑
k

e−ikn0 ei(θk− 3k
2 ) (ψk+ − ψk−)� (42)

ψ′
B(r) =

1√
2N

∑
k

e−ik(n0+2) (ψk+ + ψk−) .� (43)

Aside from the extra phase factors, it can be seen that the 
change of winding number as the Hamiltonian changes from 
H  to H′ has effectively converted the A-type wavefunctions 
into B-type wavefunctions, and vice-versa.

The interchange of v and w essentially redefines the unit 
cells, shifting each cell by one-half unit. This interchanges the 
roles of the A and B subsites, as shown in figure 4. Moreover, 
as would be expected from a topological transition, the change 
from A being to the left of B within the unit cell to having A 
on the right is a discrete change, and this change must be car-
ried out globally on the entire system.

In the case we consider (v′ = w and w′ = v) it should be 
noted that the energy eigenvalues are the same on both sides 
of the boundary: Ek = E′

k, so any reflection at the boundary is 
not due to mismatch of energy levels. In fact, the total energy 
of the A and B modes vanishes on both sides. For example,
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EA = 〈ψA|Ĥ|ψA〉� (44)

=
1

2N

∑
k,k′

e−i(k−k′)n0 [+Ek (〈ψk′+|ψk+〉+ 〈ψk′−|ψk+〉)

−Ek (〈ψk′+|ψk−〉+ 〈ψk′−|ψk−〉)]
� (45)

= 0.� (46)

The vanishing of the energies makes intuitive sense: each A or 
B state is an equal superposition of eigenstates from the upper 
and lower bands. Since the energies of the two bands are nega-
tives of each other, the total energy must be zero.

A more quantitative examination can be made of the trans
ition across the boundary. We take the boundary to occur at the 
n = 0 cell, with the roles of v and w reversing once the B sub-
site of that cell is crossed. Only right-moving modes can cross 
from the left side to the right, so consider a positive-energy 
right-moving mode (k > 0) encountering the boundary; some 
of the amplitude can reflect to the left, some may be trans-
mitted to the right. In addition, a localized edge state can be 
built up around the boundary. So one may consider a state of 
the form

|Ψ〉 = |ψk+〉+ rk|ψ−k,+〉+ tk|ψ′
k+〉+ |ψe,k〉,� (47)

where the terms on the right represent the incident, reflected, 
transmitted, and edge states. (A similar state can be con-
structed using a right-moving negative energy state with 
k < 0; the results will be similar.) This state must satisfy the 
eigenvalue equation

Ĥ|Ψ〉 = Ek|Ψ〉.� (48)

Equation (48) can be solved exactly: the solutions for a0, b0, 
a1, b1, as well as for the reflection and transmission amplitudes 
rk  and tk , are given in appendix B. For given values of v and 
w, the transmission probability at a fixed k value, |tk|, peaks 
at k = π

2 , dropping to zero at k = 0,π (figure 5). When the 
two hopping amplitudes are equal, v = w, the transmission 
is 100%, as would be expected, since the two sides of the 
boundary are identical at this value. However, as the differ-
ence |v − w| increases, the peak transmission drops (figure 6).

We see then that by choosing w close to 0 and v close to 
1, or vice versa, we can make the transmission of the wave-
function into the second region arbitrarily small, even though 
the energy levels are identical on both sides. A figure of merit 
might be taken to be

Tmax ≡ maxk
(
|tk|2

)
,� (49)

the fixed-k transition probability, maximized over all k values. 
Then, for example, if it is desired to keep Tmax � 10−3, this 

can be accomplished by arranging to have 
∣∣∣ v−w

v+w

∣∣∣ > .96.

5.  Conclusion

In this paper, we have constructed explicit expressions for the 
position-space wavefunctions of the SSH model in the case 
of an initially localized particle, and examined what happens 
to them when the propagating wavefunction encounters a 
change in system parameters that discontinuously alters the 
system’s winding number. Any mode hitting the interface 
between regions exhibits some reflection backward. Therefore 
transmissions across the boundary are suppressed, and if v 
and w are well-chosen they can be made arbitrarily small. It 
is well-known that localized edge states existing at bound-
aries between regions with different values of a topological 
invariant enjoy a form of protection against perturbations. 

Figure 4.  Interchanging v and w amounts to shifting the units cells 
by a distance of 12 units, which effectively reverses the roles of A 
and B subsites. The top and bottom figures represent the two cases.

Figure 5.  The transmission probability |tk|2 between the regions of 
different winding number always peaks at k = π

2 , dropping to 0 at 
k = 0,π. The plot here is for N = 500, v = 0.1, and w = 0.9.

Figure 6.  Logarithmic plot of transmission probability |tk|2 for 
several values of v and w. The transmission probability is constant 
at |tk|2 = 1.0 for v = w, but drops as |v − w| increases. Increasing 
|v − w| increases the value of |θk| at each nonzero k, leading to 
a larger phase shift at the boundary. The values plotted here are 
(v, w) = (.5.5) (solid blue), (.2, .8) (dashed black), (.01, .99) (dotted 
red), and (.001, .999) (dash-dot green). As |v − w| → 1, the peak 
transmission |tk|2 → 0.
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The results here imply that under some conditions a weaker 
form of (approximate) protection can be made to extend to 
states in the bulk regions: if a severe external perturbation to 
the Hamiltonian causes a change in winding number in some 
region, the wavefunction resists entering that region, and 
tends to stay in the unperturbed region of original winding 
number. Since this happens due to the change in a topological 
quantum number, it could be referred to as ‘topologically-
assisted suppression of transitions’ of the bulk wavefunction. 
This effect has obvious applications, since it can be used to 
protect quantum information encoded in bulk wavefunctions 
against environment-induced errors. Such applications will be 
examined in detail elsewhere.
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Appendix A

In this appendix, we display two physical implementations of 
photonic quantum walks that can be used to simulate the SSH 
system.

In figure A1(a), a polarized photon undergoes a sequence 
of polarization rotations (implemented by half-wave plates, 
represented here by the red rectangles) and polarization-
dependent translations (birefringent beam displacers, the 
yellow rectangles). After each step, a beam splitter (at each 
point where the lines split in the diagram) sends each incoming 
photon into a superposition of two outgoing spatial states. 
After N  steps, the photon can be in any of N  outgoing spa-
tial modes. With each time step, the waveplates are arranged 
so that the photon has amplitudes to move both one step up 
and one step down (depending on polarization), so that, while 
the photons exhibit steady motion from left to right, they also 
exhibit a quantum walk in the vertical direction. By having 
the rotation angles alternate between two values in the vertical 
direction, the hopping amplitudes in the vertical direction also 
alternate, leading to SSH-type behavior [5, 8].

A second photonic implementation is shown in figure A2(b). 
Here, the basic building block (lower right) is the direction-
ally-unbiased optical three-port [23, 24]. A photon entering 
any of the input ports can exit any of the three output ports, 
with amplitudes that can be controlled by altering the phase 
shifts introduced at the mirrors sitting at each vertex. By com-
bining two of these three-ports with an additional phase shift 
φ (lower left), a two-port unit is formed with a pair of two-way 
input/output lines. We assume that these units are very small, 
essentially pointlike, compared to the distance between them. 
A photon entering one line of the two-port unit can be either 
transmitted through to the other side of the unit, or can be 
reflected back out to the incoming side; in other words, the 
unit forms a 1D scattering vertex for the photon. Over time, 
there will therefore be a quantum walk of the photon back and 

forth along the horizontal chain of vertex units. By varying 
φ, the amplitudes for reflection and transmission at each unit 
can be controlled. So by alternating between two values of φ 
on adjacent units in a chain (top of the figure), we can again 
arrive at alternating hopping amplitudes, producing a system 
that simulates an SSH model, with the lines between the vertex 
units representing the A and B subsites of the SSH model.

Appendix B

In this appendix, we construct exact solutions for the wave-
functions across the topological boundary.

Consider a right-moving state coming from the left and 
hitting the boundary between the two regions of different 
winding number. We will consider only states on the upper 
energy band; the negative energy band is similar. The full state 
of the system can be written in the form

|Ψ〉 = |ψk+〉+ rk|ψ−k,+〉+ tk|ψ′
k+〉+ |ψe,k〉,� (B.1)

for k > 0 (right-moving incident wave), where the terms on 
the left represent, respectively, the incident, reflected, and 
transmitted state, as well as a localized edge state |ψe,k〉. We 
take the boundary to pass through the B subcell of the n = 0 
site. Referring to figure  B1, the transition between the two 
asymptotic solutions takes place over the span of the n = 0 
and n = 1 sites, so the edge state may be expressed as

|ψe,k〉 =
1√
2N

(a0|A, 0〉+ b0|B, 0〉+ a1|A, 1〉+ b1|B, 1〉) .

� (B.2)
Using equations (36) and (37), the state may be written as

|Ψ〉 = 1√
2N

{ −1∑
−N+1

[
eikn

(
|A, n〉+ e−i(θk−k/2)|B, n〉

)

+ rke−ikn
(
|A, n〉+ ei(θk−k/2)|B, n〉

)]

+ tk
N∑

n=2

eikn
(
|A, n〉+ ei(θk+k/2)|B, n〉

)

+ a0|A, 0〉+ b0|B, 0〉+ a1|A, 1〉+ b1|B, 1〉} .

�

(B.3)

Here, use has been made of the fact that the sign of θk changes 
as the boundary is crossed.

The Hamiltonian is of the form of equation (2) to the left 
of the boundary, while on the right it is of the same form with 
v and w interchanged. Keeping mind that the interchange of v 
and w also flips the sign of θk, this gives

Ĥ|Ψ〉 = 1√
2N

{ −1∑
−N+1

[(
eikn + rke−ikn) (v|B, n〉+ w|B, n − 1〉)

+
(

eikne−i(θk−k/2) + rke−iknei(θk−k/2)
)
(v|A, n〉+ w|A, n + 1〉)

]

+ tk
N∑

n=2

eikn [(v|B, n − 1〉+ w|B, n〉)

+ei(θk+k/2) (v|A, n + 1〉+ w|A, n〉)
]

+ a0 (v|B, 0〉+ w|B,−1〉) + b0 (v|A, 0〉+ v|A, 1〉)
+a1 (v|B, 0〉+ w|B, 1〉) + b1 (w|A, 1〉+ v|A, 2〉)} .

�
(B.4)
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The state must satisfy Ĥ|Ψ〉 = Ek|Ψ〉. Equating terms of 
the same kind (|A, 1〉, |B, 0〉, etc) on each side leads to a set of 
equations that can be combined into a matrix equation of the 
form

M · V = W,� (B.5)

where

M =




0 v −Ek w 0 0
v −Ek v 0 0 0
0 0 w −Ek 0 vy4

−Ek v 0 0 wy
x 0

w 0 0 0 y(yv − Ek
x ) 0

0 0 0 v
y2 0 y(wy2

x − Eky)




,

�
(B.6)

and

V =




a0

b0

a1

b1

rk

tk




, W =




0
0
0

−wx/y
(Ekx−v/y)

y

0




.� (B.7)

Here, we have defined x = e−iθk and y = eik/2. Making the 
further definition

D−1 = y2((E6 − v4w2 + E2(v2 + w2)(2v2 + w2)

− E4(3v2 + 2w2))x + (E2 − v2)vx2)y

− E(E2 − 2v2 − w2)((E2 − w2)w

+ vw(E4 + v2w2 − E2(2v2 + w2))xy2),

�

(B.8)

then the solutions of these equations are given by

a0 = −D
(
vw

(
(E4

k + v4 − E2
k(2v2 + w2))x

+ Ekw(−E2
k + v2 + w2)y

)
(x2y2 − 1)

)�
(B.9)

b0 = D
(
v2w

(
−E3

k x + Ek(v2 + w2)x

+E2
k wy − w3y

)
(x2y2 − 1)

)�
(B.10)

(a) (b)

Figure A1.  Two quantum walk architectures that can be used to create SSH-type behavior in a photonic system. (a) Alternating polization-
dependent phase shifts produce a quantum walk in the vertical direction. (b) Pairs of directionally-unbiased multiports with alternating 
hopping amplitudes produce a quantum walk along the horizontal line.

Figure B1.  The boundary between distinct topological regions 
is taken to pass through the B subcell of site n = 0. When the 
boundary is crossed, the roles of v and w are interchanged.

Figure A2.  (a) When a photon is inserted at the boundary (the B 
subsite of cell 85 in the figure), the photon remains localized over time 
in the immediate vicinity of the boundary. (b) When inserted even one 
cell away from the boundary in either direction (cell 84 in the image 
shown), some amplitude remains at the boundary, but already most of 
it moves away in standard quantum walk fashion over time.
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a1 = D(v3w(−E2
k x + v2x + Ekwy)(x2y2 − 1))� (B.11)

b1 = D(v3w2(−Ekx + wy)(x2y2 − 1))� (B.12)

rk =Dy−1 (x
(
Ekv(v2 − E2

k)(−E2
k + 2v2 + w2)x

−
(
E6

k x2 + v3w2(w − vx2)

+ E2
k(2v2 + w2)(−vw + (v2 + w2)x2)

+ E4
k(vw − (3v2 + 2w2)x2)

)
y

+ Ekw(E2
k − w2)(E2

k − 2v2 − w2)xy2))

�

(B.13)

tk = Dy−4 (v4w2x
(
1 − x2y2)) .� (B.14)

Substituting these formulas into equations (B.1) and (B.2) 
gives an exact solution to the eigenvalue problem. The 
reflection and transmission coefficients of equations (B.13) 
and (B.14) were used to construct the plots of figures  5  
and 6.

If the input is fed into the system at the boundary cell 
(figure A2(a)), the state remains over time in a superpo-
sition state with support on the two cells adjacent to the 
boundary point. This is consistent, for example, with the 
results of [25]. However, if the insertion point for the photon 
is even a single cell away from the boundary region, the 
state undergoes the usual ballistic quantum walk behavior, 
figure A2(b).
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