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Abstract: We propose to make use of quantum entanglement for extracting
holographic information about a remote 3-D object in a confined space
which light enters, but from which it cannot escape. Light scattered from the
object is detected in this confined space entirely without the benefit of
spatial resolution. Quantum holography offers this possibility by virtue of
the fourth-order quantum coherence inherent in entangled beams.
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1. Introduction

We consider the use of quantum entanglement [1], which gives rise to ‘spooky actions at a
distance’ in Einstein's words [2], for extracting holographic information [3,4] about a remote
3-D object concealed in an integrating sphere. Quantum holography makes use of entangled-
photon pairs [5,6], one of which one scatters from the remote object while the other is locally
manipulated using conventional optics that offers full spatial resolution. Remarkably, the
underlying entanglement permits the measurement to yield coherent holographic information
about the remote object. Quantum holography offers this possibility by virtue of the fourth-
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order quantum coherence inherent in entangled beams; indeed, it can be implemented despite
the fact that conventional second-order coherence, required for ordinary holography, is absent.
Classical holography cannot achieve this. Belinskii and Klyshko [8] constructed a two-photon
analog of classical holography, although they provided no analysis. The configuration
presented here makes use of entanglement to transcend the capabilities of classical
holography.

Specifically, consider a 3-D object placed within a chamber that has an opening through
which light enters but does not escape, as illustrated in Fig. 1. Coated with a photosensitive
surface, the wall of the chamber serves as an integrating sphere that converts any photon
reaching it into a photoevent. The chamber therefore serves as a photon bucket that
indiscriminately detects the arrival of photons at any point on its surface, whether scattered or
not, but is totally incapable of discerning the location at which the photon arrives.

Classically it is impossible to construct a hologram of the 3-D object in this
configuration, whatever the nature of the light source or the construction of the imaging
system. This is because optical systems that make use of classical light sources, even those
that involve scanning and time-resolved imaging, are incapable of resolving the ambiguity of
positions from which the photons are scattered; they therefore cannot be used to form a
coherent image suitable for holographic reconstruction.

Figure 1: Quantum holography. S is a source of entangled-photon pairs. C is a (remote) single-
photon-sensitive integrating sphere that comprises the wall of the chamber concealing the

hidden object (bust of Plato). D is a (local) 2-D single-photon-sensitive scanning or array

detector. 1h and 2h represent the optical systems that deliver the entangled photons from S

to C and D, respectively. The quantity ( )22 xp is the marginal coincidence rate, which is the

hologram of the concealed object. Thin and thick lines represent optical and electrical signals,
respectively.
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2. Method

The implementation of quantum holography makes use of entangled-photon beams generated,
for example, by the process of spontaneous optical parametric down-conversion [6-12] from a
second-order nonlinear crystal illuminated by a pump laser. As shown in Fig. 1, one beam

from the source S enters the chamber opening and is scattered from the object, yielding a

single sequence of photoevents from the integrating sphere C. The other beam is transmitted
through a conventional optical system and detected using a single-photon-sensitive scanning

(or array) detector D. The information registered by the two detectors, in the form of
coincidence counts, is sufficient to extract coherent information about the 3-D object that is
suitable for holographic reconstruction.

Let S be a planar two-photon source emitting photons in a pure entangled quantum state
[8]

( ) ( )∫∫ ′⊗′−′=Ψ
S

xxxxxxx 11δφdd , (1)

where S∈x , ( ) ( )∫ ⋅= kx xkk 1iexp
2

1
1 2 d

π

is a position representation of the single-

photon state in terms of the familiar Fock state k1 of the mode with wave vector k , δ is

the Dirac delta function, and the state probability amplitude ( )xφ is normalized such that

( ) 1
2 =∫

S

xxφd . Here ( )2
xφ represents the probability density that a photon pair is emitted

from point x in the source plane. As a consequence of the state in Eq. (1), each photon is

individually in a mixed state (described by the density operator ( )∫=
S

xxxxρ 11ˆ 2
φd ) that

exhibits no second-order coherence [9], as is required in traditional holography. This
entangled state may be generated, for example, by spontaneous parametric down-conversion

from a thin crystal, in which case ( )xφ represents the spatial distribution of the pump field
[8].

Of the two photons generated by the source S, the one directed through the opening of the
chamber may (or may not) be scattered from the object and impinges on the chamber wall at

position C∈1x , where C represents the set of points on the chamber wall. The optical
system between the source and the chamber, idealized as a simple lens in Fig. 1, as well as
everything inside the chamber including the object, is assumed to be linear and is

characterized by an impulse response function ( )xx ,11h . The other photon is transmitted

through a linear optical system characterized by an impulse response function ( )xx ,22h ,

where D∈2x , the single-photon-sensitive scanning (or array) detector.

The photon coincidence rate at points 1x and 2x is described by a probability density

( )21,xxp given by7

( ) ( ) ( ) ( )
2

221121 ,,, ∫∝
S

xxxxxxxx hhφdp . (2)
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The form of Eq. (2) suggests that the function ( )21,xxp may be regarded as the coherent

image of a point C∈1x formed through an optical system represented by the following

cascade (see Fig. 1): propagation through 1h in the reverse direction toward the source (from

1x to x ), modulation by ( )xφ at the source, and subsequent transmission from the source

through the system 2h to the point 2x . Equation (2) may therefore be written symbolically as

follows: ( ) 2

1221, hφhp ⋅∗∝xx , where ∗ represents transmission through a linear system

(convolution in the shift-invariant case) and ⋅ represents multiplication or modulation. The
expression is to be read in reverse order, from right to left, as is the custom in operator
algebra.

Since we have no knowledge of the detection points C∈1x on the chamber wall (C is a

bucket detector) we must integrate over C, whereupon the coincidence rate in Eq. (2) becomes

( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ′′′′∝=
SC

xxxxxxxxxxxxxx ,,,, 12
*
222

*
21122 ghhφφddpdp , (3)

with ( ) ( ) ( )∫ ′=′
C

xxxxxxx ,,, 1
*
11111 hhdg . The function ( )22 xp is therefore the marginal

probability density of detecting one photon at 2x and another at any point C∈1x . In spite

of this integration, it is clear from Eq. (3) that ( )22 xp contains information about the system

1h , and therefore about the object, via the function 1g . The function ( )22 xp is the
incoherent superposition of many coherent images of the form given in Eq. (2), originating

from all points of C. This is therefore a modal expansion of a partially coherent system [12]. It

is important to note the distinction between ( )22 xp (which traces over C ) and the singles

rate measured by the detector array D , which results from tracing over the other photon (i.e.,
the photon incident on the chamber) in the two-photon state in Eq. (1). This distinction is
highlighted in Ref. [9].

3. Example: Scattering objects

To illustrate the principle, let us consider two samples, in turn: a single point scatterer and a
collection of such scatterers. These results are readily generalized to an arbitrary object.

Consider a single static scatterer located at the point ( )1x inside C as depicted in Fig. 2. The

system 1h comprises two contributions. The first is a direct path to the chamber wall,

represented by the system ( )0h (see Fig. 2). The second is a scattering path to the chamber

wall, represented by the illumination system ( )1
Ih that directs light to the point scatterer, the

fraction of the field that is scattered (the complex scattering strength) ( )( )1xε , and the system
( )1h that carries light from the scatterer to the chamber wall. These two paths are mutually

coherent, so that the probability amplitudes of the two paths are added, thereby leading to

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )xxxxxxxxx ,,,, 11
I

11
1

1
1

0
11 hεhhh += . (4)

Substituting Eq. (4) into Eq. (3) yields the marginal coincidence rate

(C) 2001 OSA 5 November 2001 / Vol. 9,  No. 10 / OPTICS EXPRESS  501
#35616 - $15.00 US Received October 01, 2001; Revised October 31, 2001



( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ){ }c.c.,, 1
2

1
2

1
2

1
22

0
222 +++∝ xxxxxxxx qrεppp , (5)

with

( )( ) ( )( ) ( ) ( )( ) ( )( )21
2

1121
2

1
2 ,, xxxxxx qβεp = , (6)

( ) ( )( ) ( ) ( )( )∫=
21

1
1

1
11 ,, xxxxx hdβ , (7)

( )( ) ( ) ( ) ( ) ( )( )∫= xxxxxxxx ,,, 11
I22

1
2 hhφdq , (8)

( )( ) ( ) ( )( ) ( )∫= xxxxxxxx ,,, 2
*
2

1*1
2 hfφdr , (9)

( )( ) ( ) ( ) ( ) ( )( )∫= 1
1

1
1

*0
1

1 ,,, xxxxxxx hhdf , (10)

where c.c. indicates complex conjugate.

h (1)(x
1 ,x (1))

Direct path

S

C

h I
(1) (x(1),x)

h
2 (x

2 ,x)

x(1)

x2

x1
x

h (0) (x1,x)

D

h (1)(x
1 ,x (1))

Direct path

S

C

h I
(1) (x(1),x)

h
2 (x

2 ,x)

x(1)

x2

x1
x

h (0) (x1,x)

D

Figure 2. Quantum holography of a single point scatterer located at point
( )1x inside C. All

quantities are defined in the text.

Equation (5) is the sum of three terms, which may be elucidated by referring to Fig. 2 that
depicts the Feynman-like paths of the various probability amplitudes: (1) The first term
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( )( )2
0

2 xp is the marginal coincidence rate in absence of the scatterer. It is identical to that in

Eq. (3) with 1h replaced by ( )0h . This term represents the direct path in Fig. 2. (2) The

second term ( )( )2
1

2 xp is the marginal coincidence rate arising from the scatterer alone, and is
represented by the scattering path in Fig. 2. (3) The third term represents interference between
these two paths, and is therefore the term of interest for quantum holography. It is the fourth-
order analog of second-order interference in Gabor's original conception of holography [3,4].

One may represent the functions ( )( )1
2 ,xxr and ( )( )1

2 ,xxq , which are defined in Eqs. (8)

and (9), respectively, by the symbolic relations: ( ) ( )1*0**
2 hhφhr ∗⋅∗= and

( )1
2 Ihφhq ⋅∗= . In other words, ( )( )1

2 ,xxr is the image formed by a point at the location of

the scatterer ( )1x through a cascade of the systems ( )1h (traveling forward) and ( )0h
(traveling backward), followed by modulation by φ , and finally traveling forward through the

system 2h to the point 2x . This is the term that includes the holographic information. The

quantity ( )( )1
2 ,xxq , by which r is multiplied in Eq. (5), is the image of a point at ( )1x

traveling backward through ( )1
Ih , followed by modulation by φ and then forward propagation

through 2h . If the optical system is designed such that ( )1
Ih is uniform over the area of

interest, then q is independent of ( )1x and becomes unimportant. Note that integration over
the area of the chamber is essential for achieving quantum holography. Thus a point detector,
for example [8], cannot be used for this purpose by virtue of Eqs. (8) - (10). Furthermore, ray
tracing techniques, such as those used in used in Ref. [13] in connection with geometric optics
of entangled-photon beams, cannot be used for characterizing this interference effect.

Consider now the case when N static scatterers are located at positions
( ) Njj

  ..1, =x , inside C, whereupon the impulse response function 1h becomes

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )∑
=

+=
N

j

jjjjj hεhhh
1

I11
0

11 ,,,, xxxxxxxxx , (11)

which is a generalization of Eq. (4). The marginal coincidence rate in this case, obtained by
substituting Eq. (11) into Eq. (3), becomes

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )








+++∝ ∑
=

Σ c.c.,,
1

22222
0

222

N

j

jjj qrεppp xxxxxxxx , (12)

which is a generalization of Eq. (5). Here

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )








+= ∑∑
+===

Σ
N

jij

ijijij
N

j

j qqβεεpp
1,1

2
*

2
*

1
2222 ,,,Re2 xxxxxxxxxx ,

(13)

( )( ) ( )( ) ( ) ( )( ) ( )( )2

2

2

22 ,, jjjjj qβεp xxxxxx = , (14)

( ) ( )( ) ( ) ( )( ) ( ) ( )( )∫= iijjij hhdβ xxxxxxx ,,, 1
*

11 , (15)
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with all other quantities as previously defined. Once again the marginal coincidence rate,
given in Eq. (12), is the sum of three terms analogous to those in Eq. (5). The second term

( )( )22 xΣp , that due to the scatterers alone, includes the sum of the contributions of each
scatterer independently, and terms resulting from interference amongst the scatterers. The
third term in Eq. (12) includes the holographic information. The results can then be
generalized to any object by replacing the discrete summation in Eq. (11) by an integral. The
results also apply to objects that do not scatter.

The image obtained from the marginal coincidence rate ( )22 xp is holographic by virtue
of Eq. (12). This equation has the structure of a conventional hologram obtained by
illuminating the scatterers with coherent light through a composite system involving the optics

of both beams, with the state probability amplitude ( )xφ serving as an effective coherent
aperture. This result is consistent with the duality between entanglement and coherence [8].

The function ( )22 xp , recorded in a computer via the observation of coincidences over an
adequate period of time, is the hologram of the object in the chamber. The process of
reconstruction can be subsequently implemented by recording the hologram on a photographic
film or electronically on a micromirror array [14]. It may then be viewed by illumination with
a coherent light beam in the usual manner.

To illustrate this process, we consider recording on film the hologram of a single scatterer
in the chamber. The transmittance of the film t is proportional to the marginal coincidence

rate, ( ) ( )222 xx pt ∝ , where ( )22 xp is given by Eq. (5). To reconstruct the object, the
transparency is illuminated by a coherent plane wave. The wave transmitted through the

hologram will then contain four components [15]. Assuming that the source S in Fig. 1 is

large and uniform, the two waves resulting from the terms ( ) ( )2
0

2 xp and ( ) ( )2
1

2 xp in Eq. (5)

are approximately plane waves since these terms are nearly independent of 2x . The third and
fourth terms in Eq. (5) give rise to the other two waves, representing the desired reconstructed
object and its conjugate [15]. The reconstructed point scatterer is then viewed through the

cascade of systems ( )1h , ( )0h , and 2h .

4. Conclusion

The main conclusion of our analysis is that ( )22 xp (the marginal probability density of

detecting one photon at 2x and another at any point C∈1x ) is a hologram of the 3-D
object concealed in the chamber. It may then be recorded on a 2-D photographic plate and
viewed with ordinary light in the usual fashion of holographic reconstruction.

The remarkable possibility of quantum holography is attained by virtue of a light beam
that itself does not illuminate the object, but is entangled with the beam that does, and is
detected with full spatial resolution. Although each of the beams is, by itself, incoherent, and
therefore not capable of conventional interference, and although the integrating sphere
provides no spatial resolution whatsoever, the quantum entanglement permits interference and
hence offers the possibility of holography. This surprising and purely quantum result cannot
be achieved by using optical beams generated by a classical source, even if they possess the
strongest possible classical correlation [9].

(C) 2001 OSA 5 November 2001 / Vol. 9,  No. 10 / OPTICS EXPRESS  504
#35616 - $15.00 US Received October 01, 2001; Revised October 31, 2001



5. Acknowledgements

This work was supported by the US National Science Foundation; by the Center for
Subsurface Sensing and Imaging Systems (CenSSIS), an NSF engineering research center;
and by the David & Lucile Packard Foundation.

(C) 2001 OSA 5 November 2001 / Vol. 9,  No. 10 / OPTICS EXPRESS  505
#35616 - $15.00 US Received October 01, 2001; Revised October 31, 2001


