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Entangled-photon ellipsometry
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Performing reliable measurements in optical metrology, such as those needed in ellipsometry, requires a cali-
brated source and detector, or a well-characterized reference sample. We present a novel interferometric tech-
nique to perform reliable ellipsometric measurements. This technique relies on the use of a nonclassical op-
tical source, namely, polarization-entangled twin photons generated by spontaneous parametric
downconversion from a nonlinear crystal, in conjunction with a coincidence-detection scheme. Ellipsometric
measurements acquired with this scheme are absolute, i.e., they require neither source nor detector calibra-
tion, nor do they require a reference. © 2002 Optical Society of America
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1. INTRODUCTION

A question that arises frequently in metrology is the fol-
lowing: How does one measure reliably the reflection or
transmission coefficient of an unknown sample? The
outcome of such a measurement depends on the reliability
of both the source and the detector used to carry out the
measurements. If they are each absolutely calibrated,
such measurements would be trivial. Since such ideal
conditions are never met in practice, and since high-
precision measurements are often required, a myriad of
experimental techniques, such as null and interferometric
approaches, have been developed to circumvent the im-
perfections of the devices involved in these measure-
ments.

One optical metrology setting in which high-precision
measurements are a necessity is ellipsometry,1–6 in which
the polarization of light is used to study thin films on sub-
strates, a technique established more than a hundred
years ago.1,4,5 Ellipsometers have proven to be an impor-
tant metrological tool in many arenas ranging from the
semiconductor industry to biomedical applications. To
carry out ideal ellipsometry, one needs a perfectly cali-
brated source and detector. Various approaches, such as
null and interferometric techniques, have been commonly
used in ellipsometers2,6 to approach this ideal. Section 2
of this paper describes the basic requirements for ideal el-
lipsometry and reviews some of the more common tech-
niques that have been used in conjunction with available
detectors and sources.

In this paper we propose a novel technique for obtain-
ing reliable ellipsometric measurements based on the use
of twin photons produced by the process of spontaneous
optical parametric downconversion7–11 (SPDC). This
source has been used effectively in studies of the founda-
tions of quantum mechanics12,13 and in applications in
quantum metrology14–17; quantum information process-
ing, such as quantum cryptography18–20; quantum
teleportation21,22; and quantum imaging.23–25 We extend
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the use of this nonclassical light source to the field of el-
lipsometry.

In Section 3 we propose two different experimental
implementations of twin-photon ellipsometry. The first
makes use of a twin-photon interferometer that has been
previously used for testing the foundations of quantum
mechanics. The second technique makes direct use of
polarization-entangled photon pairs emitted through
SPDC. This approach effectively comprises an interfero-
metric ellipsometer, although none of the optical elements
usually associated with constructing an interferometer
are utilized. Instead, polarization entanglement itself is
harnessed to perform interferometry and to achieve ideal
ellipsometry. The inherent limitations of the first tech-
nique are eliminated in the second.

2. IDEAL ELLIPSOMETRY
In an ideal ellipsometer, the light emitted from a reliable
optical source is directed into an unknown optical system
(which may simply be an unknown sample that reflects
the impinging light) and thence into a reliable detector.
The practitioner keeps track of the emitted and detected
radiation, and from this bookkeeping (s)he can infer infor-
mation about the optical system. This device may be
used as an ellipsometer if the source can emit light in any
specified state of polarization. The sample is character-
ized by two parameters: c and D. The quantity c is re-
lated to the magnitude of the ratio of the sample’s eigen-
polarization complex reflection coefficients, r̃1 and r̃2 ,
through tan c 5 ur̃1 /r̃2u; D is the phase shift between
them.2

Because of the high accuracy required in measuring
these parameters, an ideal ellipsometric measurement
would require absolute calibration of both the source and
the detector. Since this is not attainable in practical set-
tings, ellipsometry makes use of a myriad of experimental
techniques developed to circumvent the imperfections of
the involved devices. The most common techniques are
null and interferometric ellipsometry.
2002 Optical Society of America
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In the traditional null ellipsometer,2 depicted in Fig. 1,
the sample is illuminated with a beam of light that can be
prepared in any state of polarization. The reflected light,
which is generally elliptically polarized, is then analyzed.
The polarization of the incident beam is adjusted to com-
pensate for the change in the relative amplitude and
phase, introduced by the sample, between the two eigen-
polarizations; thus the resulting reflected beam is linearly
polarized. If passed through an orthogonal linear polar-
izer, this linearly polarized beam will yield a null (zero)
measurement at the optical detector. The null ellipsom-
eter does not require a calibrated detector since it does
not measure intensity but instead records a null. The
principal drawback of null measurement techniques is
the need for a reference to calibrate the null, for example,
to find its initial location (the rotational axis of reference
at which an initial null is obtained) and then to compare
this with the subsequent location upon inserting the
sample into the apparatus. Such a technique thus alle-
viates the problem of an unreliable source and detector
but necessitates the use of a reference sample. The ac-
curacy and reliability of all measurements depend on our
knowledge of this reference sample. In this case, the
measurements are a function of c, D, and the parameters
of the reference sample.

Another possibility is to perform ellipsometry that em-
ploys an interferometric configuration in which the light
from the source follows more than one path, usually cre-
ated by beam splitters, before reaching the detector. The
sample is placed in one of those paths. We can then es-
timate the efficiency of the detector (assuming a reliable
source) by performing measurements when the sample is
removed from the interferometer. This configuration
thus alleviates the problem of an unreliable detector but
depends on the reliability of the source and suffers from
the drawback of requiring several optical components
(beam splitters, mirrors, etc.). The ellipsometric mea-
surements are a function of c, D, source intensity, and the
parameters of the optical elements. The accuracy of the
measurements are therefore limited by our knowledge of
the parameters characterizing these optical components.
The stability of the optical arrangement is also of impor-
tance to the performance of such a device.

Fig. 1. Null ellipsometer: S is an optical source, P is a linear
polarizer, l/4 is a quarter-wave plate (compensator), A is a linear
polarization analyzer, and D is an optical detector; u i is the angle
of incidence. The sample is characterized by the ellipsometric
parameters c and D defined in the text.
3. TWIN-PHOTON ELLIPSOMETRY
All classical optical sources (including ideal amplitude-
stabilized lasers) suffer from unavoidable quantum fluc-
tuations even if all other extraneous noise sources are re-
moved. Fluctuations in the photon number can only be
eliminated by constructing a source that emits nonover-
lapping wave packets, each of which contains a fixed pho-
ton number. Such sources have been investigated, and
indeed sub-Poisson light sources have been demon-
strated.26–28

One such source may be readily realized through the
process of spontaneous parametric downconversion
(SPDC) from a second-order nonlinear crystal (NLC)
when illuminated with a monochromatic laser beam
(pump).11 A portion of the pump photons disintegrate
into photon pairs. The two photons that comprise the
pair, known as signal and idler, are highly correlated
since they conserve the energy (frequency matching) and
momentum (phase matching) of the parent pump photon.

In type II SPDC the signal and idler photons have or-
thogonal polarizations, one extraordinary and the other
ordinary. These two photons emerge from the NLC with
a relative time delay due to the birefringence of the
NLC.29 Passing the pair through an appropriate bire-
fringent material of suitable length compensates for this
time delay. This temporal compensation is required for
extracting c and D from the measurements; we show sub-
sequently that when compensation is not employed, one
may obtain c but not D.

The signal and idler may be emitted in two different di-
rections, a case known as noncollinear SPDC, or in the
same direction, a case known as collinear SPDC. In the
former situation, the SPDC state is polarization en-
tangled; its quantum state is described by29

uC& 5
1

A2
~ uHV& 1 uVH&), (1)

where H and V represent horizontal and vertical polariza-
tions, respectively.30 It is understood that the first polar-
ization indicated in a ket is that of the signal photon, and
the second is that of the idler. Such a state may not be
written as the product of states of the signal and idler
photons. Although Eq. (1) represents a pure quantum
state, the signal and idler photons considered separately
are each unpolarized.31,32 The state represented in Eq.
(1) assumes that there is no relative phase between the
two kets. Although the relative phase may not be zero, it
can, in general, be arbitrarily chosen by making small ad-
justments to the NLC.

In the collinear case the SPDC state is in a
polarization-product state,

uC& 5 uHV&. (2)

Because this state is factorizable (i.e., it may be written
as the product of states of the signal and idler photons), it
is not entangled.

We first discuss a configuration based on the use of col-
linear type II SPDC, which we call an unentangled twin-
photon ellipsometer. This configuration is introduced for
pedagogical reasons as a precursor to the configuration of
principal interest to us, called the entangled twin-photon
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ellipsometer, which makes use of polarization-entangled
photon pairs (noncollinear type II SPDC). Both arrange-
ments are described with a generalization of the Jones-
matrix formalism appropriate for twin-photon polarized
beams.

A. Unentangled Twin-Photon Ellipsometer
We now examine the use of collinear type II SPDC in a
standard twin-photon polarization interferometer, previ-
ously used in numerous experiments30 and shown in Fig.
2. The twin photons, with the state shown in Eq. (2), im-
pinge on the input port of a nonpolarizing beam splitter,
so that on 50% of the trials the two photons are separated
into the two output ports of the beam splitter.33 In the
remainder of the trials, the two photons emerge together
from the beam splitter out of one of the ports, but such
cases do not contribute to coincidence measurements and
thus may be ignored. Photons emerging from the one of
the output ports of the beam splitter are directed to the
sample under test and are then directed to polarization
analyzer A1 followed by single-photon detector D1 . Pho-
tons emerging from the other output port are directed to
polarization analyzer A2 followed by single-photon detec-
tor D2 . A coincidence circuit registers the coincidence
rate Nc of the detectors D1 and D2 , which is proportional
to the fourth-order coherence function of the fields at the
detectors.34,35 In this subsection, we demonstrate how
this unentangled twin-photon polarization interferometer
yields ellipsometric measurements.

We first introduce a matrix formalism that facilitates
the derivation of the fields at the detectors. We begin by
defining a twin-photon Jones vector that represents the
field operators of the signal and idler in two spatially dis-
tinct modes. If âs(v) and â i(v8) are the boson annihila-
tion operators for the signal-frequency mode v and idler-
frequency mode v8, respectively, then the twin-photon
Jones vector of the field following the beam splitter is

Ĵ1 5 S j$ 2 Âs~v! 1 Âi~v8!%

Âs~v! 1 Âi~v8!
D , (3)

where Âs(v) 5 âs(v)(0
1) and Âi(v8) 5 â i(v8)(1

0).36 The
vectors (0

1) (horizontal) and (1
0) (vertical) are the familiar

Jones vectors representing orthogonal polarization
states.37 The operators Âs(v) and Âi(v8) thus are anni-
hilation operators that include the vectorial polarization

Fig. 2. Unentangled twin-photon ellipsometer: NLC stands for
nonlinear crystal; BS is a nonpolarizing beam splitter; A1 and A2
are linear polarization analyzers; D1 and D2 are single-photon
detectors; and Nc is the coincidence rate.
information of the field mode. The first element in Ĵ1 ,
j $2Âs(v) 1 Âi(v8)%, represents the annihilation opera-
tor of the field in beam 1, which is a superposition of sig-
nal and idler field operators. The second element in Ĵ1 ,
Âs(v) 1 Âi(v8), is the annihilation operator of the field
in beam 2.

We now define a twin-photon Jones matrix that repre-
sents the action of linear deterministic optical elements,
placed in the two beams, on the polarization of the field as
follows:

T 5 FT11 T12

T21 T22
G , (4)

where Tkl (k, l 5 1, 2) is the familiar 2 3 2 Jones ma-
trix that represents the polarization transformation per-
formed by a linear deterministic optical element. The in-
dices refer to the spatial modes of the input and output
beams. For example, T11 is the Jones matrix of an opti-
cal element placed in beam 1 whose output is also in beam
1, whereas T21 is the Jones matrix of an optical element
placed in beam 1 whose output is in beam 2, and similarly
for T12 and T22 . In most cases, when an optical element
is placed in beam 1 and another in beam 2, T12 5 T21
5 0. An exception is, e.g., a beam splitter with beams 1
and 2 incident on its two input ports, or other optical com-
ponents that mix the spatial modes of the two beams.
The twin-photon Jones matrix T transforms a twin-
photon Jones vector Ĵ1 into Ĵ2 according to Ĵ2 5 TĴ1 .

Applying this formalism to the arrangement in Fig. 2,
assuming that beams 1 and 2 impinge on the two polar-
ization analyzers A1 and A2 directly (in absence of the
sample), the twin-photon Jones matrix is given by

Tp 5 FP~2u1! 0

0 P~u2!
G , (5)

where

P~u! 5 F cos2 u cos u sin u

cos u sin u sin2 u
G ,

and u1 and u2 are the angles of the axes of the analyzers
with respect to the horizontal direction. In this case the
twin-photon Jones vector following the analyzers is there-
fore

Ĵ2 5 TpĴ1 5 S jP~2u1!$2Âs~v! 1 Âi~v8!%

P~u2!$Âs~v! 1 Âi~v8!%
D

5 S j$2cos u1âs~v! 1 sin u1â i~v8!%S cos u1

2sin u1
D

$cos u2âs~v! 1 sin u2â i~v8!%S cos u2

sin u2
D D .

(6)

Using the twin-photon Jones vector Ĵ2 , one can obtain
expressions for the fields at the detectors. The positive-
frequency components of the field at detectors D1 and D2,
denoted Ê1

1 and Ê2
1 , respectively, are given by
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Ê1
1~t ! 5 j H 2cos u1E dv exp~2jvt !âs~v!

1 sin u1E dv8 exp~2jv8t !â i~v8!J S cos u1

2sin u1
D ,

(7)

Ê2
1~t ! 5 H cos u2E dv exp~2jvt !âs~v!

1 sin u2E dv8 exp~2jv8t !â i~v8!J S cos u2

sin u2
D ,

(8)

while the negative frequency components are given by
their Hermitian conjugates. With these fields one can
show that the coincidence rate Nc } sin2 (u1 2 u2) using
the expressions developed in Appendix A.

Consider now that the sample, assumed to have
frequency-independent reflection coefficients, is placed in
the optical arrangement illustrated in Fig. 2, and that the
polarizations of the downconverted photons are along the
eigenpolarizations of the sample. The effect of the
sample, placed in beam 1, may be represented by the fol-
lowing twin-photon Jones matrix:

Ts 5 FR 0

0 IG , (9)

where

R 5 F r̃1 0

0 r̃2
G (10)

(the justification for using this matrix to represent the ac-
tion of the sample is provided in Appendix A), I is the 2
3 2 identity matrix, and r̃1 and r̃2 are the complex re-
flection coefficients of the sample described earlier. The
twin-photon Jones vector after reflection from the sample
and passage through the polarization analyzers is given
by

Ĵ3 5 TpTsĴ1

5 S j$2r̃1 cos u1âs~v! 1 r̃2 sin u1â i~v8!%S cos u1

2sin u1
D

$cos u2âs~v! 1 sin u2â i~v8!%S cos u2

sin u2
D D ,

(11)

which results in

Ê1
1~t ! 5 j H 2r̃1 cos u1E dv exp~2jvt !âs~v!

1 r̃2 sin u1E dv8 exp~2jv8t !â i~v8!J S cos u1

2sin u1
D ,

(12)

with Ê2
1(t) identical to Eq. (8), since there is no sample in

this beam.
Finally, using the expressions developed in Appendix A,

it is straightforward to show that
Nc 5 C@tan2 c cos2 u1 sin2 u2 1 sin2 u1 cos2 u2

2 2 tan c cos D cos u1 cos u2 sin u1 sin u2#, (13)

where the constant of proportionality C depends on the ef-
ficiencies of the detectors and the duration of accumula-
tion of coincidences. One can obtain C, c, and D with a
minimum of three measurements with different analyzer
settings, e.g., u2 5 0°, u2 5 90°, and u2 5 45°, while u1
remains fixed at any angle except 0° and 90°.

If the sample is replaced by a perfect mirror, the coin-
cidence rate in Eq. (13) becomes a sinusoidal pattern of
100% visibility, C sin2(u1 2 u2), as previously indicated.
In practice, by judicious control of the apertures placed in
the downconverted beams, visibilities close to 100% can
be obtained.

To understand the need for temporal compensation dis-
cussed previously, we rederive Eq. (13), which assumes
full compensation, when a birefringent compensator is
placed in one of the arms of the configuration:

Nc 5 C@tan2 c cos2 u1 sin2 u2 1 sin2 u1 cos2 u2

2 2 tan c cos D cos u1 cos u2 sin u1

3 sin u2F~t!cos~v0t!#. (14)

Here t is the birefringent delay, v0 is half the pump fre-
quency, and F(t) is the Fourier transform of the SPDC
normalized power spectrum. When t 5 0, we recover
Eq. (13), whereas when t is larger than the inverse of the
SPDC bandwidth, the third term that includes D becomes
zero, and thus D cannot be determined.

The drawback of the arrangement illustrated in Fig. 2
is the requirement for a beam splitter, as in classical in-
terferometric ellipsometry. Any deviation from the as-
sumed symmetric reflectance/transmittance of this device
will impair the measurements and necessitate the use of
a reference sample for calibration.

B. Entangled Twin-Photon Ellipsometer
As in classical interferometry, the configuration in the
previous subsection uses a beam splitter as a means of
creating the multiple paths that lead to interference. We
now show that one can construct an interferometer that
makes use of quantum entanglement, which then dis-
penses with the beam splitter. This has the salutary ef-
fect of keeping 100% of the incoming photon flux (rather
than 50%) while eliminating the requirement of charac-
terizing it. Moreover, no other optical elements are intro-
duced, so one need not be concerned with the character-
ization of any components. This is a remarkable feature
of entanglement-based quantum interferometry.

The NLC is adjusted to produce SPDC in a type II non-
collinear configuration, as illustrated in Fig. 3. Follow-
ing the procedure discussed in the previous subsection, it
is straightforward to show that the resulting coincidence
rate is given by

Nc 5 C@tan2 c cos2 u1 sin2 u2 1 sin2 u1 cos2 u2

1 2 tan c cos D cos u1 cos u2 sin u1 sin u2#. (15)

This expression is virtually identical to the one presented
in Eq. (13) (except for the substitution of the plus sign for
the minus sign in the last term). An interesting feature
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of this interferometer is that it is not sensitive to an over-
all mismatch in the length of the two arms of the setup,
and this increases the robustness of the arrangement.

An illuminating way of representing the action of the
entangled twin-photon quantum ellipsometer is readily
achieved by redrawing Fig. 3 in the unfolded configura-
tion shown in Fig. 4. Using the advanced-wave interpre-
tation, which was suggested by Klyshko in the context of
twin-photon imaging,38 the coincidence rate for photons
at D1 and D2 may be obtained by tracing light waves
originating from D2 to the NLC and then onto D1 upon re-
flection from the sample. With this interpretation, the
configuration in Fig. 4 becomes geometrically similar to
the classical ellipsometer. Although none of the optical
components usually associated with interferometers
(beam splitters and wave plates) are present in this
scheme, interferometry is still effected through the en-
tanglement of the source.

An advantage of this setup over its idealized null ellip-
sometric counterpart, discussed in Section 2, is that the
two arms of the ellipsometer are separate, and the light
beams traverse them independently in different direc-
tions. This allows various instrumentation errors of the
classical setup to be circumvented. For example, placing
optical elements before the sample causes beam deviation
errors39 when the faces of the optical components are not

Fig. 4. Unfolded version of the entangled twin-photon ellipsom-
eter displayed in Fig. 3.

Fig. 3. Entangled twin-photon ellipsometer.
exactly parallel. This leads to an error in the angle of in-
cidence and, consequently, errors in the estimated param-
eters. In our case no optical components are placed be-
tween the source (NLC) and the sample; any desired
polarization manipulation may be performed in the other
arm of the entangled twin-photon ellipsometer. Further-
more, one can change the angle of incidence to the sample
easily and repeatedly.

A significant drawback of classical ellipsometry is the
difficulty of fully controlling the polarization of the incom-
ing light. A linear polarizer is usually employed at the
input of the ellipsometer, but the finite extinction coeffi-
cient of this polarizer causes errors in the estimated
parameters.2 In the entangled twin-photon ellipsometer
the polarization of the incoming light is dictated by the
phase-matching conditions of the nonlinear interaction in
the NLC. The polarizations defined by the orientation of
the optical axis of the NLC play the role of the input po-
larization in classical ellipsometry. The NLC is aligned
for type II SPDC so that only one polarization component
of the pump generates SPDC, whereas the orthogonal
(undesired) component of the pump does not (since it does
not satisfy the phase-matching conditions). The advan-
tage is therefore that the downconversion process ensures
the stability of polarization along a particular direction.

4. CONCLUSION
Classical ellipsometric measurements are limited in their
accuracy by virtue of the need for an absolutely calibrated
source and detector. Mitigating this limitation requires
the use of a well-characterized reference sample in a null
configuration.

Twin-photon ellipsometry, which makes use of simulta-
neously emitted photon pairs, is superior because it re-
moves the need for a reference sample. Nevertheless,
the unentangled twin-photon ellipsometer requires that
the optical components employed in the interferometric
arrangement be well characterized.

We have demonstrated that entangled twin-photon el-
lipsometry is self-referencing and therefore eliminates
the necessity of constructing an interferometer alto-
gether. The underlying physics that leads to this re-
markable result is the presence of fourth-order (coinci-
dence) quantum interference of the photon pairs in
conjunction with nonlocal polarization entanglement.

Our proposed entangled twin-photon ellipsometer is
subject to the same shot-noise-limited, as well as angu-
larly resolved, precision that is obtained with traditional
ellipsometers (interferometric and null systems, respec-
tively), but removes the limitation in accuracy that re-
sults from the necessity of using a reference sample in
traditional ellipsometers.

Since the SPDC source is inherently broadband,
narrow-band spectral filters must be used to ensure that
the ellipsometric data are measured at a specific fre-
quency. Spectroscopic data can be obtained by employing
a bank of such filters. Alternatively, techniques from
Fourier-transform spectroscopy may be used to directly
make use of the broadband nature of the source in ellip-
sometric measurements.
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APPENDIX A
We investigate the effect that reflection from a sample
has on the quantized-field operators. We model the
sample as a lossless beam splitter, with complex reflection
coefficient r̃ and complex transmission coefficient t̃ , that
transforms the input field operators â1 and âv into output
field operators b̂1 and b̂v according to

b̂1 5 jr̃â1 1 t̃ âv , b̂v 5 t̃ â1 1 jr̃âv , (A1)

where u t̃ u2 1 u r̃u2 5 1 (so that the bosonic commutation
relations are preserved for b̂1 and b̂v), â1 is the annihila-
tion operator of a single mode of the incident optical field,
and âv is the annihilation operator of the vacuum enter-
ing the other port of the beam splitter.

The coincidence rate at the detectors at times t1 and t2
is given by

G~t1 , t2! 5 ^CuÊ1
~2!~t1!Ê2

~2!~t2!Ê2
~1!~t2!Ê1

~1!~t1!uC&,
(A2)

where Ê1
(1)(t) 5 *dv exp(2jvt)b̂1(v), Ê2

(1)(t)
5 *dv exp(2jvt)â2(v), and uC& is the twin-photon state
at the output of the NLC:

uC& 5 E dvw~v, vp 2 v!u1v, 1vp2v, 0v&. (A3)

The first element in the ket corresponds to the signal
mode at frequency v, the second element corresponds to
the idler mode at frequency vp 2 v (conservation of en-
ergy ensures that the signal and idler frequencies add up
to the pump frequency vp), and the third element corre-
sponds to the vacuum mode at frequency v at the other
input port of the beam splitter that represents the
sample. The function w(v, vp 2 v) is the probability
amplitude of the possible combinations of frequencies for
pairs of signal and idler modes emitted by the NLC.

Inserting the identity operator

(n1,n2,n3
un1 , n2 , n3&^n1 , n2 , n3u

(represented in the Fock basis of the Hilbert space
spanned by the signal, idler, and vacuum fields) into Eq.
(A2) gives

G~t1 , t2! 5 (
n1 ,n2 ,n3

^CuÊ1
~2!~t1!Ê2

~2!~t2!un1 , n2 , n3&

3 ^n1 , n2 , n3uÊ2
~1!~t2!Ê1

~1!~t1!uC&

5 (
n1 ,n2 ,n3

u^n1 , n2 , n3uÊ2
~1!~t2!Ê1

~1!~t1!uC&u2.

(A4)

It is straightforward to show that using the state in Eq.
(A3) results in all terms in the summation in Eq. (A4)
vanishing except for the term where n1 5 n2 5 n3 5 0,
so that G(t1 , t2) 5 u^0, 0, 0uÊ2

(1)(t2)Ê1
(1)(t1)uC&u2, and

also results in the terms containing t̃ âv vanishing. Thus
in coincidence measurements, the effect of reflection from
the sample appears as a direct multiplication of the rel-
evant operators by the suitable complex reflection coeffi-
cient, which justifies the use of the matrix in Eq. (10)
when two orthogonal polarizations of the fields (and thus
two corresponding complex reflection coefficients) are
taken into consideration. Note that the detectors actu-
ally record a time-averaged coincidence rate Nc since the
response time for optical detectors is usually much longer
than the inverse bandwidth of the function w(v, vp
2 v) (see Ref. 35 for details).
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