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An effective-medium approach is used to derive a set of coupled-mode equations describing quadratic
parametric interactions in a one-dimensional inhomogeneous medium of finite length. The solutions for both
copropagating and counterpropagating interactions are used to study the quantum-mechanical process of spon-
taneous parametric down-conversion(SPDC). An example is studied in which the inhomogeneous medium is
a photonic crystal. The effect that device geometry has on both the efficiency and bandwidth of SPDC is
explored. With appropriate design, we find that it is possible not only to enhance the efficiency of SPDC, but
also to generate broadband copropagating and narrowband counterpropagating down-converted light. A setup
is proposed with the potential to act as a source of entangled photon pairs.
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I. INTRODUCTION

In homogeneous, nonlinear media, efficient exchange of
energy between interacting modes of the electromagnetic
field is determined by the linear and nonlinear susceptibili-
ties of the medium. Specifically, the material’s permittivity
determines how “phase matched” is a given parametric pro-
cess, whereas the actual coupling of energy between the
modes is a function of the material’s nonlinear polarizability.
In bulk nonlinear optics, the experimenter is ultimately con-
strained by the linear and nonlinear properties available in
existing media.

In an attempt to circumvent material constraints, much
work has focused on the possibility of using periodic media
to mediate nonlinear processes. The idea of using inhomoge-
neous media in nonlinear optics, though, is not new. Arm-
stronget al. [1], Franken and Ward[2], and Yariv [3] long
ago proposed the introduction of periodic structure into the
linear and nonlinear material properties to aid in phase
matching parametric interactions. In particular, periodic
modulation of the nonlinearity to assist in phase matching
nonlinear processes has been coined quasiphase matching
(QPM). QPM has been studied in the context of classical and
quantum nonlinear optics[4–8]. The introduction of the pe-
riodic, nonlinear modulation leads to both flexibility in phase
matching and also makes accessible a material’s largest non-
linear coefficient. But, even though QPM can allow experi-
menters to access a material’s largest nonlinear coupling co-
efficient, QPM is still constrained to the material’s largest
available nonlinear coefficient.

It has only recently been understood that periodic modu-
lation of a nonlinear material’s refractive index can lead to
enhanced conversion efficiencies in parametric processes
[9–12]. By proper selection of the periodic structure’s linear
properties and physical geometry, it is possible to achieve the
phase matching flexibility of QPM while at the same time

realize effective nonlinear coupling coefficients larger than
any coupling coefficients available from homogeneous non-
linear media[13].

Photonic crystals, structures with the aforementioned pe-
riodicity in the medium’s linear properties, were first con-
ceived by Yablonovitch and John[14,15]. Initial interest was
directed toward determining how such structures could
modify the rate of an atom’s spontaneous emission or pro-
vide a means for localizing electromagnetic radiation. Cur-
rently, though, photonic crystals are on the verge of changing
how one practices nonlinear optics. Instead of searching
handbooks in the hope of finding a homogeneous material
with particular physical attributes, a device that possesses the
desired properties is engineered.

The enhancement of parametric interactions afforded by
photonic crystals has been relatively unexplored in the realm
of quantum nonlinear optics[9]. Specifically, the use of a
photonic crystal to mediate the process of spontaneous para-
metric down-conversion(SPDC) would be of interest to the
experimental quantum optics community. SPDC acts as a
robust source of entangled photon pairs for a variety of ex-
periments, but unfortunately suffers from low conversion ef-
ficiencies, on the order of 10−9 photon pairs per mode per
pump photon[16]. Sources of ultrabright entangled pairs are
of current interest and photonic crystals could provide the
means for realizing high-flux entangled photon sources[17].
Also, the potential for a photonic crystal acting as a source of
broadband entangled photons would be of interest in quan-
tum optical metrology techniques such as quantum optical
coherence tomography[18].

In this paper we develop a general theory that describes
SPDC from media with a one-dimensional spatial variation
in both its linear and nonlinear dielectric functions. We then
use this theory to examine the special case in which the
material’s linear properties are periodic and its nonlinear
properties are either periodic or homogeneous. We explore
the effect of the device’s geometry and material parameters
on both the conversion efficiency and spectrum of SPDC. By
manipulating these two controls, it is possible to engineer
both the spectrum and overall conversion efficiency of
SPDC. We find that periodic structures simultaneously sup-
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port copropagating and counterpropagating down conver-
sion.

II. SPDC FROM A ONE-DIMENSIONAL
INHOMOGENEOUS MEDIUM

A semiclassical approach is sufficient for correctly calcu-
lating the efficiency of SPDC from homogeneous, nonlinear
media[19,20]. The solutions of the coupled-mode equations
governing three-wave mixing processes and knowledge of
the quantum nature of the electromagnetic field, when com-
bined, yield the appropriate analytic expression for the SPDC
conversion efficiency. However, it is assumed in the afore-
mentioned calculation that the medium’s linear and nonlinear
susceptibilities are homogeneous. If no assumption is made
about the spatial distribution of the linear and nonlinear sus-
ceptibilities, then it is necessary to modify the usual three-
wave mixing coupled-mode equations in a manner consistent
with the inhomogeneous material properties.1

For one-dimensional quadratic nonlinear interactions, the
following set of scalar Helmholtz equations govern all pos-
sible interactions for three field modes with angular frequen-
cies vp=vs+vi, where the subscriptsp, s, and i denote
pump, signal, and idler:

S d2

dz2 +
vs

2«sszd
c2 DEs =

− 2vs
2dszd

c2 Ei
*Ep,
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In Eq. (2.1), both the medium’s permittivity« and nonlinear
coupling coefficientd are functions of the positionz. Also,
the subscripts on the permittivity allow for the possibility of
material dispersion.

Recently, a generalized coupled-mode theory has been de-
veloped to characterize one-dimensional quadratic, nonlinear
interactions of linearly polarized monochromatic plane-wave
fields in isotropic, dispersive linear gratings with arbitrarily
deep index contrast[10]. The approach relies on decompos-
ing the steady-state solution of the linear Helmholtz equa-
tion, within the grating, into a superposition of left-to-right
(LTR) and right-to-left(RTL) propagating modes. The gen-
eral solution for the total fieldEmszd at angular frequencyvm

is

Emszd = Am
s+dszdFm

s+dszd + Am
s−dszdFm

s−dszd, m= s,i,p,

s2.2d

whereAm
s±dszd are the complex envelopes of the electric field

incident on the structure from the lefts+d / rights−d and
Fm

s±dszd are the LTR/RTL mode functions. The functions

Fm
s±dszd can be calculated using the standard linear matrix

transfer technique assuming a unit-amplitude field incident
from the left to right[21]. The effect of the material’s non-
linear polarization is to permit exchange of energy between
the LTR-RTL complex envelopes of the field modes at dif-
ferent angular frequencies, provided energy conservation is
not violated.

Recognizing that the dynamics governed by Eq.(2.1) oc-
curs on two distinct length scales makes it possible to derive
coupled-mode equations governing general three-wave mix-
ing processes in one-dimensional inhomogeneous media.
Specifically, we assume the effect of the nonlinear polariz-
ability [the source term in Eq.(2.1)] is to modulate the so-
lution in Eq.(2.2) far more slowly than the rapid variation of
the linear solution itself[10]. Physically, the parameters de-
scribing the medium vary on a length scale comparable with
the amplitude modulation of the linear solution, whereas the
variation of each mode’s complex envelope due to nonlinear
coupling occurs over a much larger distance. This does not
mean that the nonlinear coupling coefficient is small in mag-
nitude, but rather that significant energy exchange among the
modes requires a length that is far greater than the variation
of the medium’s parameters. Introducing this physical intu-
ition into our mathematical equations requires the use of a
perturbation technique known as a multiple-scale expansion.

As detailed by D’Aguannoet al. [10], the multiple-scale
expansion leads to the following set of coupled mode equa-
tions for copropagating pump, signal, and idler modes of
the field in the undepleted pump approximationfAp

s+dszd
>Ap

s+ds0dg:

dAs
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Here, j is the imaginary unit,Z0 is the impedance of free
space andL is the medium length. The superscript “co” sig-
nifies copropagating signal and idler modes. TheKm

co coeffi-
cients are effective, complex coupling coefficients since they
are functions of the generally complex LTR/RTL mode pro-

1Note that Ref.[7] addresses the case when only the nonlinear
polarizability is periodic.
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files. Note the absence of an explicit function of the phase
mismatch between the interacting modes. The phase match-
ing conditions appear implicitly in the above coupled-mode
equations through the effective, complex coupling coeffi-
cientsKm

co. To ensure efficient parametric processes,Fm
s±d of

the field modes must overlap within the inhomogeneous me-
dium.

Equations(2.3) are the usual equations for a parametric
amplifier with a complex coupling coefficient. If we renor-
malize the field complex envelopes according toam

s+d

=Am
s+dBm

co/vm, then it is possible to symmetrize Eq.(2.3).
Specifically

das
s+d

dz
= − jgcoai

s+d*szd,

dai
s+d

dz
= − jgcoas

s+d*szd, s2.8d

wheregco=ÎvsviZ0
2Bs

coBi
co. The solution for the signal in the

absence of any idler input is

as
s+dszd = − jai

* s+ds0dsinhsgcozd. s2.9d

At the end of an inhomogeneous medium of lengthL, assum-
ing low gainsgcoL!1d, the powerPs

+ in the signal mode will
then be

Ps
s+dsLd = Cs

co 2p

"vi

L2

A
Pi

s+ds0dPp
s+ds0d, s2.10d

where

Cs
co = 2h0

3vs
2uBs

cou2
neff,realsvsd

neff,realsvidneff,realsvpd
. s2.11d

Hereneff,realsvmd is the effective index defined for each of the
interacting field modes andA is the transverse crystal area.
To determineneff,realsvmd, the effective dispersion relation,
we use knowledge of the inhomogeneous structure’slinear
input/output relation and construct an equivalent-length ho-
mogeneous medium sharing an identical input/output rela-
tion [22].

Focusing on single transverse-mode interactions, it is now
possible to derive an expression for the output signal power
assuming that the only input idler power is the vacuum noise
energy. It is here that we make the “quantum assumption” to
derive an expression for the efficiency of SPDC. Specifically,
the incremental output power, in the signal mode, due to
input pump power and a single quantum of energy in each of
the idler modesdsPi /Ad=13"vi 3dvi /2p is

dPs
s+dsLd = Cs

coL2

A
Pp

s+ds0ddvi . s2.12d

The conversion efficiency of pump photons into signal pho-
tons is determined by integrating Eq.(2.12) over all idler
frequencies

heff
co =

Ps
s+dsLd

Pp
s+ds0d

=
L2

A
E Cs

cosviddvi , s2.13d

where we have made explicit the dependence ofCs
co on the

idler frequency. Only those idler noise photons that are com-
mensurate with energy and momentum conservation contrib-
ute to Eq.(2.13). Also, the spectral width of above integral’s
kernel gives a measure of the signal mode’s bandwidth.

The generalized coupled-mode equations(2.13) describe
the interaction of copropagating field modes. The generalized
coupled-mode theory also governs the dynamics for other
parametric processes. In particular, it is possible to derive an
expression analogous to Eq.(2.13) for counterpropagating
signal and idler modes. The end result is

heff
counter=

Ps
s−dsLd

Pp
s+ds0d

=
L2

A
E Cs

countersviddvi , s2.14d

whereCs
counter is the same as Eq.(2.11) except that

Bs
counter=

− ps
s−,+dGs

s+,+d + ps
s+,+dGs

s−,+d

detspsd
. s2.15d

Equations(2.13)–(2.15) provide the central results of this
paper. The two relations provide expressions for the conver-
sion efficiency and spectrum of both copropagating and
counterpropagating SPDC from media with inhomogeneous
linear and nonlinear susceptibilities. Examination of Eqs.
(2.13) and(2.14) makes clear that the kernel of each integral,
Cs

countersvid or Cs
cosvid, determines both the efficiency and

spectrum of SPDC. Specifically, the spectrum of SPDC can
be obtained by plotting the normalized integrand as a func-
tion of frequency. Next, if we sum the correctly weighted
kernel across all frequencies, it is possible to quantify the
conversion efficiency for SPDC. Our specific interest will be
in how uBs

cou2 or uBs
counteru2 influences the spectrum and effi-

ciency of SPDC for a device with periodic linear material
properties, a one-dimensional photonic crystal. SinceuBs

cou2
and uBs

counteru2 are functions of both the photonic crystal’s
linear mode profiles, as determined by the linear Helmholtz
equation, and the distribution of the material nonlinearity,
device geometry is an important consideration in designing a
photonic crystal to mediate SPDC. Through appropriate se-
lection of device geometry, it becomes possible to compen-
sate for the phase mismatch introduced by the material dis-
persion of the individual device layers and realize conversion
efficiencies larger than would be expected from an equiva-
lent length medium with homogeneous linear and nonlinear
properties.

Prior to presenting the results of the numerical simula-
tions, it is important to elucidate the distinction between us-
ing a photonic crystal to mediate a classical, three-wave mix-
ing process and the process of SPDC. In classical nonlinear
optics, the energy-conservation constraint yields asingleper-
missible solution for a given three-wave interaction. Since
only three field modes are involved in the process, it is pos-
sible to design a photonic crystal such that the interacting
field modes are tuned to peaks of transmission resonances
[23] at the edge of the photonic crystal’s band gap. Physi-
cally this is desirable since the field mode’s energy then be-
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comes strongly localized within the structure. Strong local-
ization results in an enhancement of the energy exchange
among the modes, provided that the device geometry is se-
lected to compensate for material dispersion so that the in-
teracting modes are phase matched. Mathematically, when
the fields are tuned to band-edge resonances and the inhomo-
geneity is periodic, the significance of the coupling coeffi-
cient uBs

cou2 is transparent[10]. It is a simple function of the
linear mode profiles and the nonlinear dielectric function.

The discussion provided above should be contrasted with
that for the process of SPDC, the inverse process to sum
frequency generation. For SPDC, the input of only a pump
field mode leads to aninfinite number of signal and idler
mode solutions satisfying the constraint of energy conserva-
tion. Design of a photonic crystal to mediate the process of
SPDC becomes difficult since the total output SPDC energy
is the result of a collective interaction of multiple signal and
idler frequency modes. For a given signal and idler pair, the
strength of their interaction depends both on how localized
each mode is within the structure and how the two down-
converted modes overlap with the pump mode. In calculating
the overall conversion efficiency of pump power into down-
converted photons, there is a tradeoff between the number of
contributing modes and how efficiently these modes contrib-
ute to SPDC growth. Unfortunately, even though the medium
is periodic, uBs

cou2 does not simplify mathematically and its
interpretation is less obvious. In the following section we
numerically investigate copropagating and counterpropagat-
ing SPDC from a one-dimensional photonic crystal.

III. SPDC FROM A ONE-DIMENSIONAL PHOTONIC
CRYSTAL

In this section we analyze collinear copropagating and
counterpropagating SPDC from a generic one-dimensional
photonic crystal. An illustration of the general device we
consider is presented in Fig. 1. The material parameters are
described in the caption. We assume that the material’s linear

and nonlinear properties are periodic along thez direction
and that the structure has a transverse areaA. Further, since
we assume the material properties are isotropic and all fields
propagate collinearly alongz, the structure treats the TE and
TM modes identically. Therefore, by focusing initially on
type-I SPDC we do not lose any generality in our analysis.
Finally, for all studies, the pump mode is assumed to have a
wavelengthlp=845 nm.

Specifically, we explore the effect device geometry has on
both the conversion efficiency per unit length and on the
spectrum for copropagating and counterpropagating, collin-
ear SPDC. To study this influence, we designed two generic
photonic crystals. The first structuresS1d has layer widths of
a=0.25mm andb=0.35mm, whereas the second structure
sS2d has layer widths ofa=0.50mm andb=0.70mm. With
the layer widths fixed, we then calculated the conversion
efficiency per unit length as a function of the number of
device periodsN. For each structure, the 0-period case cor-
responds to a single, homogeneous high index layer of length
2.5 µm. The relevance of the 0-period case was to verify that
our theory yields the appropriate conversion efficiency when
compared with a homogeneous structure.

In Fig. 2, the efficiency per unit length for both copropa-
gating and counterpropagating SPDC is plotted forS1. To
determine the conversion efficiency we numerically inte-
grated Eqs.(2.13) and (2.14) over all idler angular frequen-
cies. It should be emphasized that by plotting per unit length,
the length dependence of the conversion efficiency is re-
moved and it is possible to compare the performance of the
photonic crystal structure to a longer, bulk nonlinear crystal.
From Fig. 2, it is apparent that by appropriate selection of the
number of device periodsN, the conversion efficiency of
SPDC can be enhanced. In particular, for devices with more
than 16 periods, the conversion efficiency per unit length for
copropagating SPDC is increased compared to the homoge-
neous case. Also, for the case of counterpropagating SPDC,
the conversion efficiency is enhanced for all numbersN of
device periods.S1 provided proof-of-principle that enhanced
conversion efficiencies are possible from photonic-crystal
structures designed with the appropriate number of device
periodsN. In Fig. 3, we have once again plotted the effi-
ciency per unit length for both copropagating and counter-
propagating SPDC, but this time forS2. There are two inter-
esting features in this figure. First, for copropagating SPDC,
there is an order-of-magnitude enhancement in the SPDC
conversion efficiency when compared with a homogeneous
nonlinear crystal. By simply doubling the individual layer
widths ofS1, the SPDC conversion efficiency is dramatically
affected. Second, in the counterpropagating case, we see that
the conversion efficiency saturates and increasing the num-
ber of device periods has no further effect on the conversion
process.

To understand the origin of this observed enhancement, it
is instructive to examine the complex coupling coefficient
Gs

sn,kd [Eq. (2.7)]. Gs
sn,kd is a function of both the structure’s

nonlinear susceptibility and the mode functions for the three
interacting modes. It is a measure of the overlap of these four
possibly complex functions. It is necessary that the magni-
tude of the three mode profiles is commensurate within the
structure so that the potential exists for efficient energy ex-

FIG. 1. (a) Schematic of a one-dimensional photonic crystal.
The layer of widtha has refractive indexna and the layer of width
b layer has refractive indexnb. Also, na=1 for all frequencies and
we assumenbsvs,id=1.428 for signal/idler frequencies, butnbsvpd
=1.519 for the pump frequency. The field is incident normal to the
structure and has either “s” (TE) or “p” (TM) type polarization.L is
the width of the structure’s unit cell and the overall device length is
L=NL. In our study, we assume that the field is TE polarized.
Initially, the nonlinearity is distributed only in the high index layers
and has a value of 44 pm/V in these layers.
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change. This alone, though, does not guarantee increased
conversion efficiency. Since there is no explicit phase-
matching condition,Gs

sn,kd must also ensure that the interact-
ing modes are in phase. If both the previous conditions are
satisfied, then it will be possible to mediate nonlinear pro-
cesses with a photonic crystal. For enhanced conversion ef-
ficiencies, it is not only necessary for the previous conditions
to be met, but also that the interacting modes are strongly
localized within the device. Localization depends on how
close a given mode’s frequency is to the edge of a band gap.
Finally, to understand the influence of the nonlinear distribu-
tion on this quantity, we repeated the efficiency calculations
reported above, but with a homogeneously distributed non-
linearity of ds2d=44 pm/V. This change had no effect on the
conversion efficiency. This result is not unexpected since, in
both structures considered, the pump mode is tuned to the
low-frequency side of a band gap. It is well known that field
modes tuned to the low edge of a band gap localize in the

material’s high-index layers[24]. Therefore, if the pump
mode function is zero in the low-index layers, distributing
the nonlinearity in these layers will not couple energy from
the pump mode into the signal and idler modes.

In the second part of this study, we examined the SPDC
spectrum from structuresS1 andS2. To determine the spec-
trum, for both the copropagating and counterpropagating
cases, we evaluated Eqs.(2.13) and (2.14) over all angular
frequencies. In Fig. 4 we plot the results of this calculation
for both structures. It is clear that manipulation of the device
geometry leads to marked differences in the spectral proper-
ties of the down-converted photons. First, we see that by
changing the number of structure periods, it is possible to
realize both degenerate and nondegenerate copropagating
and counterpropagating SPDC. In Fig. 4(a), the spectrum is
shown for a nine-periodS1 photonic crystal that exhibits
enhanced conversion efficiency when compared to a homo-
geneous nonlinear crystal. The full width at half maximum

FIG. 2. SPDC efficiency per unit length vs number of device periodsN from fixed widthsa=0.25mm/b=0.35mm photonic crystal for
(a) copropagating and(b) counterpropagating SPDC. The dashed horizontal line represents the conversion efficiency from a single high-
index layer so that the nonlinear crystal is homogeneous. The photonic-crystal material properties are defined in Fig. 1.

FIG. 3. SPDC efficiency per unit length vs number of device periodsN from fixed widthsa=0.5 mm/b=0.7 mm photonic crystal for(a)
copropagating and(b) counterpropagating SPDC. The dashed horizontal line represents the conversion efficiency from a single high-index
layer so that the nonlinear crystal is homogeneous. The photonic-crystal material properties are defined in Fig. 1.
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(FWHM) bandwidth for SPDC in this copropagating case is
1.14 µm. One may argue that the reason for such a broad
spectrum is the length ofS1. But, the point is that it may be
possible to take advantage of the enhanced conversion effi-
ciency from a photonic crystal and engineer short structures
to mediate broadband SPDC at least as efficiently as in a
homogeneous nonlinear crystal.

The spectral and spatial features of the counterpropagat-
ing SPDC fromS2, displayed in Fig. 4(d), would be of in-
terest for quantum information processing tasks such as
cryptography. With a FWHM bandwidth of 15 nm, the coun-
terpropagating down-converted photons would be in an en-
tangled quantum state. Specifically, by distinguishing be-
tween the forward and backward spatial modes,S2 would
generate discrete frequency entanglement.

It is clear that if one wishes to use a photonic crystal to
mediate SPDC, care must be taken in device design. We have
given generic examples of how a photonic crystal’s geometry
and material properties directly influence collinear, copropa-
gating, and counterpropagating SPDC conversion efficiency
and spectrum. If the device geometry is chosen such that the
interacting modes overlap in phase within the structure, it is
possible to overcome the intrinsic device-material dispersion
and realize enhanced SPDC conversion efficiencies. At the
same time as we observe enhanced efficiency, it is possible
to generate both broadband and narrowband SPDC. In par-
ticular, we designed a structure that could generate discrete
frequency entanglement.

IV. SUMMARY AND CONCLUSIONS

In Sec. II, we developed a general theory to describe
spontaneous parametric down conversion from a medium

with an inhomogeneous linear and nonlinear dielectric func-
tion. In Sec. III, we constrained the inhomogeneity to be
periodic and discovered that a photonic crystal simulta-
neously supports down conversion into copropagating and
counterpropagating signal and idler modes. We showed how
the device geometry and material parameters directly influ-
ence the efficiency and spectrum of the conversion process.
Through appropriate design, it is possible to not only achieve
enhanced conversion efficiencies, but also to produce degen-
erate and nondegenerate SPDC with interesting spectral
properties.

Recently, there has been much interest within the
nonlinear-optics community in using periodically poled(PP)
materials as a source of SPDC[5–8]. It is important to com-
pare the use of PP structures with photonic-crystal devices as
described here. First, a PP structure is a device that has a
periodic nonlinear susceptibility. The length scale of the pe-
riodicity is selected depending on the nonlinear process that
one is trying to phase match. In particular, a PP nonlinear
crystal provides more flexibility in phase matching paramet-
ric interactions in comparison to bulk crystals, but the con-
version efficiency of such interactions is ultimately con-
strained by the magnitude of the unpoled crystal’s nonlinear
coefficient. Also, the types of interactions supported by PP
materials are very much influenced by the material properties
of the unpoled crystal. From the discussion provided here, it
is clear that periodically poling a material allows one to ex-
tend the range of operation of the underlying bulk nonlinear
crystal.

In contrast, as we have seen, it is possible to utilize a
photonic crystal not only to enhance the conversion efficien-
cies of SPDC, but also to phase match various types of non-

FIG. 4. SPDC spectrum vs frequency normalized to the half the pump mode frequency for(a) copropagating SPDC from a nine-period
photonic crystal witha=0.25mm/b=0.35mm, (b) counterpropagating SPDC from a 20-period photonic crystal witha=0.25mm/b
=0.35mm; and(c) copropagating, and(d) counterpropagating SPDC from a 50-period photonic crystal witha=0.5 mm/b=0.7 mm. The
photonic-crystal material properties are defined in Fig. 1.
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linear interactions. The function of a photonic crystal in me-
diating SPDC is very much dependent on geometric device
properties such as individual layer widths and the number of
device periods. The relationship between the underlying
crystal’s material properties and the periodic photonic crystal
is not as clear as it is with the PP structures. In fact, by using
photonic crystals, experimenters are no longer ultimately
constrained by the underlying bulk crystal material proper-
ties, but only by their ingenuity in device design.

Although we have studied a generic structure in this pa-
per, an appropriate choice of semiconductor materials would
allow photonic crystals to be realized in practice as a source
of down-converted photons. Since our analysis was restricted
to a single propagation mode, further study is required to
understand the effect that higher-dimensional photonic crys-
tals would have on the down-conversion process. Finally,

embedding the photonic-crystal structure in a wave guide
would allow the transverse spatial profile of the field mode to
be manipulated. The use of a photonic crystal, in conjunction
with a wave guiding structure, would give an experimenter
total control over the spatial and spectral features of the
down-converted photons, as well as the ability to achieve
enhanced overall conversion efficiencies not available in
bulk nonlinear crystals.
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