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Quantum cryptography and quantum key distribution (QKD) have been the most successful applications
of quantum information processing, highlighting the unique capability of quantum mechanics, through the
no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to
high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and
the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source,
as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement
with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary
for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose
orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement
a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled
OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols,
reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based
protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of
OAM used.
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I. INTRODUCTION

Much recent work in quantum key distribution (QKD) has
shifted from the use of two-dimensional polarization spaces to
larger Hilbert spaces. Increasing the dimension of the effective
Hilbert space increases coding capacity, as well as allowing
use of higher-dimensional nonorthogonal bases in security
checks, thereby increasing detectable eavesdropper-induced
error rates [1–5]. The most promising way to achieve larger
Hilbert spaces is via optical orbital angular momentum (OAM)
[6–8]. However, the only practical way to produce entangled
OAM states is with spontaneous parametric down-conversion
(SPDC), in which generating efficiencies drop rapidly with
increasing OAM. The complexity of the apparatus for using
such high-dimensional states in applications also increases
rapidly with the size of Hilbert space.

Recently, optical beams carrying single OAM states have
been produced using planar plasmonic interfaces [9]. Distinc-
tive scattering resonances in nanoplasmonic Vogel spiral arrays
have also been demonstrated to carry OAM modes [10]. Vogel
spirals have been shown to support photonic band gaps with
band-edge modes carrying multiple OAM values distributed
among the Fibonacci numbers [11,12]. It has been analytically
demonstrated that Vogel spiral arrays can generate multiple
OAM states encoding well-defined numerical sequences in
their far-field radiation patterns [13]. In the case of golden
angle (GA) spirals, the generated states carry OAM that follow
the Fibonacci sequence. (Recall that the Fibonacci sequence
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[14] obeys the recurrence relation Fn = Fn−1 + Fn−2, with
initial values F1 = 1 and F2 = 2.)

Here, we propose a different type of entangled QKD
protocol which makes use of the automatic appearance of
nonorthogonal states in the intermediate stages, formed from
superpositions of elements arising randomly from among
a fixed discrete set. Although the general principle behind
the protocol can be applied using other physical degrees of
freedom, such as phase, we will primarily focus on illustrating
the idea here using optical OAM states. A source of entangled
Fibonacci-valued OAM states based on a Vogel spiral is
arranged so that these nonorthogonal states naturally appear
and randomly change with each entangled pair. The protocol
works due to combined action of the random nonorthogonal
intermediate states together with the fact that if one participant
receives a particular Fibonacci number, there is still a twofold
uncertainty in the Fibonacci number the other receives. We
combine a GA spiral array with SPDC in a nonlinear crystal
to engineer a source of entangled light, producing photon
pairs whose OAM values always sum to a Fibonacci number,
allowing efficient production of states with large OAM values
that can be exploited in new ways. We show that the properties
of these states allow encryption keys with large numbers of
digits to be generated by much smaller numbers of photons,
exceeding the two bits per photon provided by quantum dense
coding [15], while maintaining high security.

The proposed Fibonacci protocol has a number of advan-
tages. Please note the following, for example: (i) The protocol
is high capacity in the sense that it allows secure generation
of long keys from few photons. The number of digits of the
key that can be carried per photon is limited only by practical
considerations, not by any matter of principle. (ii) If carried
out in free space, irrelevant photons coming from ambient light
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tend to be automatically screened out since only photons with
Fibonacci-valued OAM (or other physical degree of freedom)
contribute. (iii) Fewer of the detected entangled pairs have to
be discarded by the legitimate users after basis comparison
than is the case in BB84 or E91 protocols (see Sec. IV).
Combined with the increased key capacity per photon and the
ability to vary the detection bases in a passive and automatic
manner (see the next paragraph), this has potential to greatly
speed up key generation rates. (iv) Beyond the first few, the
Fibonacci numbers have gaps between them, greatly reducing
misattribution errors. (v) From a purely mathematical point of
view, Fibonacci coding is more efficient than binary coding for
some purposes [16]. (vii) Unlike the case in polarization-based
QKD, no reference frame alignment is needed.

A further significant advantage of the procedure to be
described is as follows. Any OAM-based analog of standard
QKD protocols, with randomly modulated preparation and
detection bases, for high values (say up to l = 100) of OAM
would require active modulation of bases in a 100-dimensional
space, and this modulation needs to be done after each trial.
This would be extremely complicated; even for a three-state
basis, the procedure used in [5], for example, involves actively
displacing multiple holograms by precise amounts. Increasing
the size of the basis would correspondingly increase the
complexity, making the use of very large bases prohibitively
difficult. For such high-dimensional spaces, the protocol
described here involves a technically much simpler procedure:
modulation only occurs between two fixed bases, and can be
done passively by means of beam splitters with appropriate
reflection and transmission coefficients. Going to larger basis
sets involves only the addition of more detectors and beam
splitters and (if the detection procedure of Sec. VI is used)
additional images superimposed on a hologram.

The outline of the paper is as follows. We describe the
most general setting in Sec. II, before narrowing our focus
to the specific implementation involving Fibonacci-valued
OAM for the remainder of the paper. In Sec. III, we describe
the source of Fibonacci-valued OAM-entangled photon pairs,
before explaining in detail the QKD protocol in Sec. IV. For
most trials, the classical information exchange between the
two users of the system simply requires them to tell each
other which measurement basis was used on the trial; however,
on some of the trials some additional information is needed.
One way of exchanging this information while minimizing the
useful information gained by unauthorized parties listening in
on the classical channel is discussed in Sec. V. Section VI
describes briefly describes one possible means of detecting
and sorting the OAM superposition states required for the
protocol, with more detailed explanation in the Appendix. It is
then shown in Sec. VII that the capacity of the system can be
doubled by one additional change to the setup. Brief discussion
of turbulence effects and OAM sorting errors is given in
Sec. VIII, before discussion and conclusions in Sec. IX.

II. GENERAL APPROACH

Consider some physical variable x; for example OAM,
phase, frequency, time, etc. Appropriate filters can be placed
at the input of a down-conversion crystal, selecting out some
discrete subset of x values Xin = {x1,x2, . . . ,xN }. Filters at

output (identical filters in both outgoing beams) similarly
select out a set of values Xout = {x ′

1,x
′
2, . . . ,x

′
N } in such a

way that each element of Xin can uniquely be written as a sum
of two elements in Xout. If x is a conserved quantity, then we
know that the ingoing value xn and the outgoing values x ′

m1

and x ′
m2

must obey

xn = x ′
m1

+ x ′
m2

. (1)

If x is not conserved, then some additional means must
be implemented to enforce such a relation. More generally,
we could replace the summation requirement of Eq. (1)
by any relation of the form xn = f (x ′

m1
,x ′

m2
) with some

function f (x,y) which is only required to be single-valued
and symmetric, f (x,y) = f (y,x). However, we will restrict
ourselves to the linear relation of Eq. (1). The incoming
value then determines the two outgoing values; but, which
of the outgoing photons has which value is not determined,
so that bipartite outgoing states carrying these values will be
entangled. This ordering ambiguity is the key to much that
follows in Sec. IV. Under these conditions, regardless of the
physical nature of the variable x, the protocol then proceeds as
described in the next section. Only the means of enforcing the
summation condition and the means of carrying out the sorting
and detection will differ for different physical variables.

If Xin and Xout are taken to be subsets of the same larger
set X (Xin,Xout ⊂ X), then a very natural way to satisfy the
relation (1) is to let X be a collection of consecutive Fibonacci
numbers, in which the Fibonacci recurrence relation Fn =
Fn−1 + Fn−2 automatically enforces the required relationship.
This is the case we will focus on here, although it should be
noted that any other two-term recurrence relation will work
just as well.

We now focus specifically on the details of the protocol
using the Fibonacci relation. This relation can be imprinted
on a number of physical variables, but we will illustrate the
idea by concentrating on the specific case of photon orbital
angular momentum. This not only provides an example in
which the physics is simple and where a conservation law is
available to automatically enforce the summation relation of
Eq. (1), but it also allows an opportunity to illustrate the use of
a different type of entangled OAM source based on scattering
from Fibonacci spirals combined with spontaneous parametric
down-conversion.

III. ENTANGLED FIBONACCI SPIRAL SOURCE

Before describing the proposed QKD protocol, we discuss
a different entangled light source which may be used to
physically implement the OAM-based realization of it. A
Vogel spiral is an array of N particles with polar positions
(rn,θn) given in terms of scaling factor a0 and divergence angle
α by rn = √

na0 and θn = nα. An array of point scatterers, as
in Fig. 1(a), is then represented by a density function:

ρ(r,θ ) =
N∑

n=1

δ(r − √
na0)δ(θ − nα). (2)

The Fraunhofer far field of Vogel spirals can be calculated
analytically, within scalar diffraction theory, for arbitrary α and
a0 [13]. In cylindrical coordinates, the far field of a diffracted
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FIG. 1. (Color online.) (a) Schematic of GA spiral Fibonacci
OAM generator. (b) Far-field pattern of GA spiral within a 2◦

half-angle cone for a structure with 2000 particles and a0 = 9.28 μm
at 405 nm. (c) Hankel transform of image in (b). (d) Sum of (c) over
k, with peaks at Fibonacci values.

input beam is [13]

E∞(νr ,νθ ) = E0

N∑
n=1

ej2π
√

na0νr cos(νθ−nα), (3)

where (νr ,νθ ) are the Fourier conjugate variables of (r,θ ). As
seen in Fig. 1(c), Fourier-Hankel analysis of the calculated
far-field radiation [Fig. 1(b)] is performed to decompose it
into radial and azimuthal components, providing the OAM
values [11,13,17]. We see in Fig. 1(d) that for GA spirals, the
OAM azimuthal numbers follow the Fibonacci sequence. This
follows directly from the geometrical properties of GA spirals
encoded in the far-field patterns [11,13]. Figure 2 then shows
a schematic of our full QKD setup, in which the properties
of the spiral source lead to a different approach to high-
capacity QKD. Filters after the crystal can be used to equalize
the probability of detecting different Fibonacci numbers,
compensating for the different production amplitudes seen in
Fig. 1(d).

Although down-conversion offers low-pair-production
rates, and the post-selection involved in the protocol described
below will lower the output rate further, it should be noted that
the spiral source can be strongly pumped. When combined
with the fact that multiple digits of the key can be produced
with a single photon pair, the number of pairs needed to
generate a key of given length can be made competitive to the
number needed in other entanglement-based protocols, which
also involve post-selection and low-production rates.

IV. FIBONACCI PROTOCOL WITH OAM STATES

In E91 [18] and BB84 [19] protocols, photon polarization
provides digits of a key (assigning, for example, 1 to horizontal
polarization and 0 to vertical) and also provides security
against eavesdropping: Alice and Bob each randomly pick

D

L

L

D

Spiral SPDC

Bob’s Lab

Alice’s Lab

State can be
prepared by Alice
or Bob, or by a
third party.

Two-photon
output state:

Pump

Fibonacci Source

Classical
communication

FIG. 2. (Color online.) Setup for QKD with Fibonacci-valued
OAM. A laser interacts with a Vogel spiral array, producing intense
superpositions of states with Fibonacci OAM, l = Fn, that then pump
the nonlinear crystal, producing signal-idler pairs through SPDC.
The OAM sorters (labeled L) are arranged to only allow photons to
reach the arrays of single-photon detectors if they also are Fibonacci
valued. Similarly, the devices labeled D only allow passage of allowed
“diagonal” superpositions of the form 1√

2
(|Fn〉 + |Fn+2〉).

one of two complementary bases in which to measure the
photon polarization, keeping only photons for which the bases
match. Eavesdropping is detectable by a drop in polarization
correlations. OAM analogs of these protocols work in a similar
manner, but with increased key generation capacity [2–5],
allowing multiple-digit segments of key to be transmitted by
a single photon. The increasing capacity in the latter case is,
however, accompanied by a much greater degree of technical
complication.

In the present case, light coming from the entangle spiral
source of the previous section will be in a superposition
of states with OAM equal to Fibonacci numbers. For the
protocol, we choose N consecutive Fibonacci values F =
{Fn0 ,Fn0+1, . . . ,Fn0+N−1}, and assign a block of binary digits
to each in such a way that equal numbers of 0′s and 1′s occur.
If OAM values in this set are used, each photon generates
enough digits to encode log2 N bits of information. Here, we
assume N = 8 to illustrate the potential for high capacity. For
example, the Fibonacci numbers from 3 to 89 may be assigned
three-digit blocks as follows:

3 = 000 8 = 010 21 = 100 55 = 110

5 = 001 13 = 011 34 = 101 89 = 111. (4)

Three digits of the key are then carried by the OAM of
each photon. The SPDC spiral bandwidth (the range of
OAM values) must be sufficient to span the largest gap in
F . The entangled OAM bandwidths that can be reached
experimentally are increasing rapidly; for example, a down-
conversion bandwidth of over 40 has been achieved in [20],
and recently entanglement between photons with OAM on the
order of 600 has been demonstrated [21]. So, the values used
here are well within current practicality. Greater bandwidths
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allow larger sets F , increasing the information capacity. For
simplicity, assume here that OAM sorters [22–24] only allow
positive OAM values to reach the detectors. (We remove this
restriction below.)

The setup is shown in Fig. 2. The Fibonacci source may
belong to either Alice or Bob, or to a third party, with each of
the two legitimate participants, Alice and Bob, receiving half
of each entangled pair on which to make their measurements.
In each of the two laboratories, there is a beam splitter directing
some fixed proportion of the beam to an OAM sorter (L) and
the remainder to a different type of detection stage (D). This
second arrangement D is designed to detect various pairwise
OAM superpositions of the form |Fn〉 + |Fn+2〉. (See Sec. VI
below for more detail on how the D-type superposition states
sorting can be accomplished.) The sorters are arranged to direct
any non-Fibonacci values away from the detectors.

The states leaving the spiral and entering the down-
conversion crystal are superposition states of the form∑n0+N−1

n=n0
|Fn〉. Down-conversion breaks each Fn into two

lower OAM values. The outgoing values are not a priori
Fibonacci valued, but OAM sorters can be arranged to
block any outgoing states that are not Fibonacci, and more
specifically, to block any values that are not in F . (Thus, any
values not in F at either the transmission or detection end
are blocked; this protects against various possible problems,
such as turbulence-induced OAM changes, that could arise
otherwise.) For collinear SPDC (either type I or type II), OAM
conservation implies Fni

+ Fns
= Fn. Together with Fibonacci

recurrence relation and the restriction to outgoing values in
F , this forces Fni

and Fns
to be the two Fibonacci numbers

immediately preceding Fn: the signal and idler values are Fn−1

and Fn−2. However, either value can be in either beam, so the
result is an OAM-entangled outgoing state:∑

n

{|Fn−1〉A|Fn−2〉B + |Fn−1〉A|Fn−2〉B} . (5)

Note that if pump values Fn between 3 and 89 are used, then
only values of Fni

and Fns
between 1 and 54 should appear.

In the absence of eavesdropping, there are three possible
cases for the outcomes at Alice’s and Bob’s detectors:

(1) The beam splitters in both laboratories send the two
photons to the L sorters. So, both Alice and Bob detect a
definite OAM value. If Alice measures value Fm, then Bob
must measure either Fm−1 or Fm+1. Exchange of a single bit of
information each way (using the scheme described in Sec. V,
for example) allows them to determine each other’s values,
and therefore the pump value. The exchange carries some
information about Alice’s and Bob’s values, but not enough
for anyone listening on the classical line to uniquely determine
the key values (see Sec. V for details). Alice and Bob can then
reconstruct each other’s values, and add them to get the pump
value. The pump value can then be used as the key. Or they
could instead, by prior arrangement, agree to use either Alice’s
or Bob’s value for the key on trials where both measurements
are L type.

(2) The beam splitter in one laboratory sends the photon
to the L sorter, while in the other laboratory the photon
goes to the D sorter. If, for example, Alice (in the L basis)
measures value Fm, then Bob (in the D basis) must receive
the superposition state |Fm−1〉 + |Fm+1〉. One bit of classical

information is exchanged again, but in this case it need not
contain any information about the outcome, just information
about whether each participant detected a given event in the D

detectors or the L detectors. Once each knows that the other
has detected an event in the opposite detector type, that is
sufficient for each to know the other’s state. For that segment
of the key, they can then agree to use the value obtained by
whoever got the L-type signal.

(3) The beam splitters in both laboratories send the two
photons to theD sorters. In this case, both Alice and Bob
receive superposition states, and the pump itself remains a
superposition. Alice and Bob can not uniquely determine each
other’s value or the pump value, so the trial is discarded.

Therefore, only one in four trials has to be discarded, in
contrast to BB84 or Ekert protocols, which require discarding
half. The classical information exchange carries information
about the actual measured values (as opposed to the measure-
ment bases) in only 1

3 of the trials that are kept.
The states obtained in the L-type measurement are

nonorthogonal to the states in the D-type measurement, just
as states of the horizontal-vertical basis are nonorthogonal to
the diagonal-basis states in the BB84 and Ekert protocols.
But, it is an unusual feature of the current case that, while
the states that can be detected in the L-type measurement
(the OAM eigenstates) form a mutually orthogonal set among
themselves, those found in the D-type measurements are not
all orthogonal to each other: the latter states form a chain,
where each state is nonorthogonal to the two adjacent states in
the chain.

If an eavesdropper is acting, say on the photon heading to
Bob, she does not know which type of detection (D or L)
will occur in Alice’s and Bob’s laboratories. If Alice measures
an eigenstate, then the state arriving at Bob’s end should be
a superposition, whereas if Alice measures a superposition,
then the state heading toward Bob should be an eigenstate. If
Eve makes a D-type measurement when Bob’s photon is in an
L state or if she makes an L-type measurement when Bob’s
photon is in a D state, a 50% chance of error is introduced
into Bob’s measurements, which will become apparent when
he compares a random subset of his trials with Alice’s.

In more detail: (i) Suppose Eve makes a D-type measure-
ment on a photon which is actually in the eigenstate |Fm〉.
She will detect one of the two superpositions |Fm〉 + |Fm−2〉
or |Fm〉 + |Fm+2〉, each with 50% probability, and send on a
copy of it. If Bob receives one of these superpositions and
makes an L measurement, he will see one of the values Fm,
Fm−2, or Fm+2, with respective probabilities of 1

2 , 1
4 , 1

4 . In
Eve’s absence, he should only see Fm with 100% probability.

(ii) On the other hand, suppose Eve makes an L-type
measurement on a photon which is actually in the superposition
state |Fm〉 + |Fm−2〉. She will detect one of the two eigenstates
|Fm〉 or |Fm−2〉, each with 50% probability, and send on a copy
of it. If Bob receives one of these eigenstates and makes a D

measurement, he will see one of the superpositions |Fm〉 +
|Fm−2〉, |Fm〉 + |Fm+2〉, or |Fm−2〉 + |Fm−4〉, with respective
probabilities of 1

2 , 1
4 , 1

4 . In Eve’s absence, he should only see
|Fm〉 + |Fm−2〉 with 100% probability.

In either of these two cases, if Eve is acting on a fraction η

of the trials, then when Bob compares his results with Alice’s,
the two will find that their outcomes are inconsistent a fraction
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f of the time, where

f = (fraction of times Eve interferes)

× (fraction of times Eve guesses wrong basis)

× (fraction of time wrong basis leads to error) (6)

= η × (
1
2

) × (
1
2

)
(7)

= η

4
, (8)

which is exactly the same as for the BB84 or Eckert protocols.
One potential misconception should be noted at this point,

regarding the notion of “orthogonal bases.” In standard QKD
protocols such as the BB84 and Ekert protocols, two or more
sets of bases are used for polarization measurements. These
bases are nonorthogonal both in the physical three-dimensional
state and in the Hilbert space. Each polarization vector
defines both a direction in physical space and a state in the
Hilbert space; in other words, there is a direct correspondence
between directions in the physical plane perpendicular to the
propagation direction and directions in the Hilbert space. In
the case of orbital angular momentum, this correspondence
breaks down: states that are orthogonal in Hilbert space are
not necessarily associated to orthogonal vectors in physical
space. It is the nonorthogonality of states in Hilbert space, not
in physical three-dimensional space, that is essential to QKD.
Exposure of eavesdropping in the protocol presented here uses
states that are nonorthogonal to each other in Hilbert space,
but these states do not have associated nonorthogonal physical
spatial vectors.

V. CLASSICAL COMMUNICATION EXCHANGE

As discussed in Sec. IV, on 2
3 of the trials that survive

the basis comparison and sifting the classical and potentially
public exchange need only contain information about which
measurement basis was used by each party. On the remaining
1
3 of the surviving trials, the classical exchange must carry
some information about the actual values that were measured
by Alice and Bob, so that they may reconstruct each other’s
values. Obviously, this needs to be done in such a way that
anyone else listening over the public channel can not also
determine the values. We now discuss one way in which this
can be done. (Of course, anyone listening on both the classical
and quantum channels can determine the values, but only at the
expense of introducing errors and being detected, as described
in the last section.)

Imagine a photon with OAM in F (take l = Fn = 21 as
an example) entering the crystal. Suppose both Alice and Bob
make L-type measurements, so that each obtains an OAM
eigenvalue a result. As in Sec. IV, the setup is arranged so that
the two OAM values they obtain must be the two Fibonacci
values preceding that of the pump (Fn−2 = 8 and Fn−1 = 13 in
our example). However, which reaches Bob and which reaches
Alice is undetermined, so there are two possibilities [Fig. 3(a)].
Suppose Bob receives li = 8 and Alice receives ls = 13. Then,
Alice does not know if Bob has 8 or 21 (the value before hers,
or the one after). Similarly, Bob does not know if Alice has
5 or 13. To determine each other’s values, each must send
one classical (potentially public) bit to the other. By prior
agreement, they can then use either Alice’s or Bob’s value as

Pump

Pump

l = 21

l = 13
B

l = 8
A

Alice: Does Bob have l =5 or l =13?

Bob: Does Alice have l =8 or l =21?

B B

A Al = 21

l = 8
B

l = 13
A

Alice: Does Bob have l =8 or l =21?

Bob: Does Alice have l =5 or l =13?

B B

A A

-------- OR ----------
(a)

(b)

Basis A
(Diagonal)

--OR–

H

V
Basis B

(Vertical and
Horizontal)

yA xA

yB

xB

yB

xB

FIG. 3. (Color online.) Possible outcomes (a) for the example of
l = 21. Neither Alice nor Bob knows the value received by the other;
each knows that the two transmitted values must be adjacent Fibonacci
numbers, but neither knows if the other’s value is larger or smaller
than their own. Ambiguity from the superposition of these replaces the
ambiguity introduced in standard protocols by the nonorthogonality
of the possible polarization bases (b), where a vector along one axis
in the A basis could be measured along either axis in the B basis.

one segment of the key, or add their values in order to use the
pump value Fn = 21.

One possible scheme for the classical information exchange
is the following. Alice first sends either a 0 or 1 to Bob in the
following manner:

Alice has 1 2 3 5 8 13 21 34 55
Alice sends 0 0 1 1 0 0 1 1 0 . (9)

Once Bob receives this information, he can determine Alice’s
value since he already knows it has to be one of the two values
adjacent to his. Then, if he determines that Alice’s value
is even, he sends one bit to Alice according to the same
scheme she used; if Alice’s value is odd, he uses the conjugate
scheme with zeros and ones interchanged. Alice then has
sufficient information to figure out his value as well. But,
for an eavesdropper listening in on the classical channel, the
information exchanged is insufficient to determine the value
since each classical exchange leads to ambiguous results for
her:

Eve sees 00 01 10 11
l could be 3,21,34,89 3,5,13,21 8,55,89 5,13,34,55 .

(10)

(In the top row, the first digit in each pair is the bit sent by Alice,
the second is that sent by Bob.) Note that each l value except
8 can be represented by two different classical exchanges,
and that each exchange can represent three or four different
l values: if Eve intercepts the classical exchange (but not the
quantum exchange), she has a probability of only 1

4 to 1
3 of

correctly guessing the value of Fn, with the average probability
of a correct guess being 27.08%. This probability drops as
the number N of Fibonacci values used increases. Alice and
Bob can determine each other’s values, while Eve can not.
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This is possible only because of the combined action of the
entanglement and the use of a recurrence relation.

The classical exchange clearly carries some information
about the key, but the setup is designed to keep the mutual
information between the outcomes of the classical exchange
and those of the photon exchange sufficiently low so that those
listening to the public exchange can not uniquely reconstruct
the key. This level of mutual information is, however, sufficient
for the legitimate users since each had already started with half
of the needed information.

The protocol utilizes two complementary sources of am-
biguity for secure communication: uncertainty in how the
OAM Fibonacci state is decomposed between Alice and
Bob [Fig. 3(a)] minimizes the information an eavesdropper
could obtain from the classical exchange (as discussed above),
whereas Eve reveals her interception of the quantum channel
through her inability to know which of the two detection
bases will be used in Alice’s and Bob’s labs (as discussed in
Sec. IV).

VI. DISTINGUISHING SUPERPOSITIONS

We now look at one way that the D-type sorter required for
the OAM-based protocol may be implemented. Any such de-
tection system will need to preserve phases between different
OAM basis states contained in the superposition, so that Alice
and Bob can avoid being fooled by mistaking an incoherent
mixture of eigenstates for the required coherent superposition.
Various methods of detecting superpositions can be imagined,
with varying degrees of practicality. They all require use of the
fact that photons can interfere with themselves. Here, we focus
on one particular method, making use of holographic matched
filtering; this is essentially a generalization of a method used in
[25] to distinguish different images by means of single-photon
probes.

The general idea (described in more detail in the Appendix)
is to use a multiple-exposure hologram designed to distinguish
between several different states of light: each incoming state
produces a different output after the hologram. It is important
to realize that this can be done at the single-photon level [25].
We will use interference between modes propagating in a
single direction, but the hologram can also be used to cause
different input states to produce output with different spatial
momentum modes, as well. (This was the approach actually
used in [25].) Moreover, holograms have been produced
which have superpositions of up to 10 000 different patterns
[26], allowing the ability to distinguish between very large
numbers of different single-photon states. In this way we can
easily distinguish between different OAM superpositions. This
amounts to designing a device that directly sorts the particular
superpositions of interest, rather than the more usual case of
devices that sort the eigenstates. This holographic approach is
simply an optical implementation of the well-known informa-
tion processing technique of matched filtering [27]. Also, note
that this method works both for the spatially structured photons
examined in [25] and for the OAM-structured photons in which
we are interested since OAM states are really just states with
extended spatial structure in the azimuthal direction. See the
Appendix for a more detailed technical description of how the
method works.

VII. DOUBLING THE INFORMATION CAPACITY

We assumed above that only positive OAM values were
used. The OAM sorters before the detectors in Fig. 1 allow
diversion of negative OAM away from the detectors, keeping
only positive signal and idler values. This in turn implies
that only positive OAM pump photons contribute. However,
negative OAM values are also created by the source, at the
same rate as the positive values. It is to our advantage to
expand the setup to make use of these, rather than letting half
of the created photons go to waste. When we do this, we find
that the number of bits of key generation per photon can be
doubled.

Alice and Bob can record both positive and negative OAM
values, and let each other know the signs they received. They
then only keep trials on which they received the same signs.
Each positive or negative Fibonacci number can then represent
a four-digit binary string:

l Binary string l Binary string
3 0000 −3 1000
5 0001 −5 1001
8 0010 −8 1010
13 0011 −13 1011
21 0100 −21 1100
34 0101 −34 1101
55 0110 −55 1110
89 0111 −89 1111

So we now have 16 possible outcomes for the key segment,
with each segment capable of encoding 4 bits of information
via a single photon.

VIII. TURBULENCE AND MEASUREMENT ERRORS

One important consideration in evaluating the usefulness of
any communication channel is the effect of noise on the system,
and the error rate produced as a result. In the present case, the
main source of noise in the communication channel itself (as
opposed to noise in the detection system) is turbulence, which
has the effect of adding random spatially varying fluctuations
to the phase of the optical wavefront. Like all forms of
communication with OAM, the realization of the Fibonacci
protocol described in this paper is sensitive to the effects of
turbulence, which can turn a single well-defined input OAM
value into a broad distribution of outgoing values. In the
scheme being discussed, turbulence will introduce losses and
thereby decrease the transmission rate; however, the structure
of the protocol provides a large measure of protection against
errors in the measurement of the photon pairs that survive.

The effects of turbulence on OAM states can be analyzed
using the methods described in [28]. We define a conditional
probability P (l|l0) for the detection of OAM value l given that
the value l0 was sent. This probability is given by

P (l|l0) = 1

2π

∫ ∞

0

∫ 2π

0
R(r,z)Cφ(r,
θ )e−il
l 
θdr d(
θ ),

(11)
where

Cφ(r,
θ ) = e− 1
2 Dφ [|2r sin(
θ/2)|] (12)

032312-6



HIGH-CAPACITY QUANTUM FIBONACCI CODING FOR . . . PHYSICAL REVIEW A 87, 032312 (2013)

is the angular coherence function. The phase structure function

Dφ(|
x|) = 〈|φ(x) − φ(x + 
x)|2〉 (13)

is given in the Kolmogorov model [29,30] by

Dφ(|
x|) = 6.88

(

x

r0

)5/3

. (14)

For horizontal line-of-sight communication, the Fried param-
eter r0 can be taken to be

r0 = 3.02
(
k2zC2

n

)−3/5
, (15)

where k = 2π
λ

is the wave number of the photon and C2
n

is the index of refraction structure constant. Typically, C2
n

ranges from about 10−16–10−17 m−2/3 for weak turbulence,
to 10−12–10−13 m−2/3 for strong turbulence. The probability
of transmission without an error is then given by p ≡
P (l0|l0). The probability of the particular error l0 → l0 + 
l

is P (l0 + 
l|l0), while the probability of any error occurring
(for given l0) is 1 − p. OAM eigenstates are particularly
vulnerable to errors due to turbulence-induced mixing of
OAM states; for example, in the case of initial value l0 = 0
(Fig. 4), the probability of error-free propagation drops rapidly
with distance in the presence of reasonable turbulence levels,
limiting the error-free transmission range to well under a
kilometer. The highest probability error is due to the nearest-
neighbor transition 
l = 1, also plotted in Fig. 4, which grows
correspondingly with distance. The transition probabilities
drop with increasing 
l.

In the present situation, however, only Fibonacci-valued
outcomes for l are measured; photons which make transitions
to non-Fibonacci values are discarded and do not contribute to
the error rate. Thus, only transitions from Fibonacci values to
Fibonacci values are relevant, and the dominant transitions are
to the nearest Fibonacci-valued neighbors, as in Fig. 5, where
the probabilities of transitions from the Fibonacci number
l0 = 5 to its nearest Fibonacci neighbors 3 and 8 are plotted
versus distance for strong turbulence. Because of the gaps
between the Fibonacci numbers and the reduced transition

FIG. 4. (Color online) For initial value l0 = 0, probability of
measuring values l = 0 and 1 versus propagation distance in the
presence of turbulence. The solid curves represent the probability
of transmission with no error (
l = 0), while the dashed curves
represent the probability of the dominant 
l = 1 error. The error
probabilities start becoming appreciable after distances on the order
of a 100 m for strong turbulence (C2

n = 10−12 m−2/3, blue curves
online). For weak turbulence (C2

n = 10−12 m−2/3, red curves online),
the errors accumulate more slowly, but still become appreciable after
a few kilometers.

FIG. 5. (Color online) For initial value l0 = 5, probability of
measuring values of the nearest Fibonacci-valued neighbors l = 3
(
l = −2) and l = 8 (
l = +3). The probabilities are plotted versus
distance for strong turbulence (C2

n = 10−12 m−2/3). The error rates are
similar to the strong turbulence case of Fig. 4 for 
l = 2, but an order
of magnitude lower for 
l = 3. They continue to drop rapidly as l0
increases (see Fig. 6).

probabilities for larger 
l, the error rate is therefore smaller in
the Fibonacci scheme than in other OAM-based protocols. The
errors are correspondingly smaller as the range of Fibonacci
numbers used is shifted to higher values. This is shown in
Fig. 6, where nearest Fibonacci neighbor transitions are shown
at three distances in the presence of strong turbulence. With
each increase in initial l0 = Fn, the probability of a transition
to neighboring Fibonacci values decreases significantly. Thus,
by avoiding the use of the lowest-lying Fibonacci values in the
encoding alphabet, transmission errors can be made negligible.

The process of sorting the OAM values at the end will
similarly have reduced errors due to the gaps between the
values being used. Once the sorting has been done and the
digital OAM values have been converted into binary numbers,
the analysis of error rates, error correction, and privacy
amplification are identical to those involved in any other QKD
protocol.

The price to be paid for the low error rate, of course, will
be a high rate of loss: any photons making transitions from
Fibonacci to non-Fibonacci values will be lost from the system.

FIG. 6. (Color online) Given initial angular momentum Fn, the
probability of measuring values of the next lower nearest Fibonacci-
valued neighbor l = Fn−1 at several distances z. The probabilities are
plotted versus initial Fn for strong turbulence (C2

n = 10−12 m−2/3).
The induced error rates become rapidly smaller as Fn increases. (Note
that transitions upward to the next higher nearest Fibonacci neighbor
can also be obtained from this plot since the probability of l0 = Fn →
l = Fn+1 and of l0 = Fn+1 → l = Fn are equal.)
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FIG. 7. (Color online) Loss rate versus distance for strong (C2
n =

10−12 m−2/3, red online) and weak (C2
n = 10−17 m−2/3, blue online)

turbulence.

Figure 7 plots these transmission losses for l0 = 5 and 34 for
strong and weak turbulence. We see that the losses accumulate
rapidly with distance. This can be compensated for to some
extent by the fact that the source can be strongly pumped,
putting out a high initial rate of pair production; only one
photon pair per pulse needs to survive in order to generate
a key segment. But, losses in the presence of turbulence are
over 99% after only about 35 m for l0 = 34 and 350–500 km
(depending on degree of turbulence) for l0 = 5, so it is clear
that the OAM-based realization of the Fibonacci protocol can
only be useful for applications involving short distances or
situations in which turbulence is expected to be negligible.
(This could be the case, for example, if multimode fibers can
be engineered that can carry multiple Fibonacci OAM values.)
We see from the plot that there is an essential tradeoff involved:
use of high-l values can lead to extremely low error rates, but
only over short distances, while lower values of l can travel
longer distances but at the expense of higher error rates.

We stress again that the basic protocol can be implemented
in terms of other degrees of freedom instead of angular
momentum. The analysis of losses and transmission errors
will be different for each physical implementation since each
degree of freedom will have its own unique physical sources
of disruption. However, it should be expected that in all
implementations, there should be low error rates due to the
gaps between the allowed values. Implementations based on
encoding in phase shifts or time bins, in particular, will be
largely immune to the turbulent effects that are the source
of so much trouble for free-space angular-momentum-based
communication, and so should be much more promising for
simultaneously achieving long distances and low error rates.

IX. DISCUSSION AND CONCLUSIONS

We have proposed a different form of high-capacity, high-
efficiency quantum cryptography, and described a specific
physical realization of it using specially engineered OAM-
entangled states of light and the recurrence properties of the
Fibonacci sequence. We have also introduced a type of OAM-
entangled two-photon source that is capable of producing the
states needed for this particular realization of the protocol.
The proposed approach is general enough to lead to different
QKD implementations using other physical variables aside
from OAM, such as by encoding Fibonacci numbers onto
phase shifts. This latter variation, which is currently under

investigation, is an especially promising avenue due to the fact
that phase encoding is more stable against turbulence and other
disruptive effects than OAM encoding.

We iterate once again that the basic principles described
here are much more general than the specific realization
detailed in this paper. For example, the protocol depends
only on the structure of the Fibonacci recurrence relation,
not on the initial values used: changing the starting values
(F1 = 1, F2 = 2) of the sequence does not change anything
fundamental. Thus, an identical procedure will also work for
the Lucas sequence [14], which obeys the Fibonacci recursion
relations but starts from different initial values. More generally,
similar protocols can be constructed using other two-term
recurrence relations in place of the Fibonacci relation.

Note added in proof. Recently, an experimental verification
of the far-field spectrum simulation displayed in Fig. 1 has
been published [31].
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APPENDIX: HOLOGRAPHIC SORTING
OF SUPERPOSITIONS

Here, we describe in more detail one method of carrying
out the sorting of superposition states that was described
in more schematically in Sec. VI. We will eventually want
to distinguish between multiple possible objects by matched
filtering. But, start first by supposing that we want to compare
an unknown object U0(x) to a single known object C0(x). The
setup for forming the hologram is shown in Fig. 8. The object
C0(x0) is placed in the (x0,y0) plane and the blank hologram
in the (x,y) plane. The image of the object is superposed with
a reference beam R(x) in the hologram plane. Assume that the
reference beam is a plane wave propagating with wave vector
k, which may be at a nonzero angle to the z axis. Then, in the

z

x

y

x

y

Lens

Object plane
(known object)

Hologram
plane

f f

Reference
Beam

0

0

C C0

FIG. 8. Creating the hologram. C0(x) is a known object whose
Fourier transform is to be stored on the hologram using plane-wave
reference beam R.
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z
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y
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Object
plane

Hologram
plane

f f

x’

y’

Lens

f

0

0

f

Object plane
(unknown object)

U0 E

0C

U E’

FIG. 9. Using the hologram as matched filter to detect whether
an unknown object U0(x) matches the stored object C(x).

hologram plane the incident field is

E(x) = R(x) + C(x), (A1)

where

R(x) = R0e
ik·x, (A2)

C(x) = − i

λf

∫
C0(x)e

ik
f

x·x0d2x0. (A3)

(For simplicity, the fields are treated as scalars here.) The
transmittance of the hologram will then be proportional to the
incident intensity:

t(x) ∝ |E(x)|2 (A4)

= R2
0 + |C(x)|2 + R0C(x)e−ik·x + R0C

∗(x)eik·x .
(A5)

The relevant term is the last one, which we will denote by
t ′(x):

t ′(x) = R0C
∗(x)eik·x . (A6)

Once the hologram has been constructed, it is used in the
4f setup shown in Fig. 9. Place the unknown object U0(x0)
in the (x0,y0) plane and the previously prepared hologram in
the (x,y) plane. The field incident on the hologram from the
object is now

U (x) = − i

λf

∫
U0(x′

0) e
ik
f

x·x′
0 d2x ′

0. (A7)

The relevant part of the transmitted field just after the
hologram is

E(x) = U (x)t ′(x) (A8)

= R0

(λf )2
eik·x

∫
U0(x′

0) C∗
0 (x0)

× e
ik
f

x·(x′
0−x0)

d2x0d
2x ′

0. (A9)

The field in the final (x ′,y ′) plane is

E′(x′) =
(

− i

λf

) ∫
E(x)e

ik
f

x·x′
d2x. (A10)

Using Eq. (A9) and carrying out the x integration, we have

E′(x′) = −
(

4π2iR0

(λf )3

)∫
U0(x′

0) C∗
0 (x0)

× δ(2)

[
k

f
(x′

0 − x0 + x′ + f k̂)

]
d2x0d

2x ′
0

(A11)

Δ0

Δk

ak

0

Ci

Cj

FIG. 10. (Color online) Array of images stored on lattice of
nonoverlapping cells, forming a tiling of the hologram. Images {Ck}
are stored on cells {
k} centered at points {ak}. Each cell is a copy of
a unit cell 
0 centered at the origin.

= K

∫
U0(x′

0 − x0 + x′ + f k̂)

×C∗
0 (x0) d2x0, (A12)

where K = − f

k
( 4π2iR0

(λf )3 ) = − 2πiR0
c2 and c is the speed of

light.
Now, suppose that instead of a single object, the image

stored on the hologram is of a collection of objects Ci . These
images are contained in nonoverlapping cells 
i , centered at
an array of points ai (Fig. 10). We will assume that the 
i are
displaced copies of some 
0 centered at the origin. We will
assume here that each of the images uses the same reference
beam of wave vector k, although different reference beams can
be used for each if desired. The total stored object is therefore
of the form

C0(x) =
∑

k

Ck(x + ak), (A13)

where Ck(x + ak) is nonzero only on 
k [or equivalently,
Ck(x) is nonzero only on 
0]. We assume that the Ci are
orthogonal to each other in the usual sense,

∫
Cj (x)Ck(x)d2x = δjk (A14)

(so the Cj could be Laguerre-Gauss functions for example)
and that 
0 is sufficiently large that the orthogonality relation
is still approximately true when carried out only over 
0; in
other words, the images of the Ck drop to approximately zero
intensity near the edges of the 
k .

Assume now that the unknown object happens to be one
of the objects whose images are stored on the hologram; for
example, suppose that U0(x) = Cj (x). Inserting the array of
stored images, Eq. (A13) into Eq. (A12), we find then that
the field at detector j is given by a correlation function which
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compares the j th image with all the others,

E′
j (x′) = K

∑
k

∫
Cj (x0 − x′ + f k̂)C∗

k (x0 + ak)d2x0

= K
∑

k

∫
Cj (x0)C∗

k (x0 + ak + x′ − f k̂)d2x0.

Suppose we place a set of detectors in the output plane at an ar-
ray of points given by x ′

n = f k̂ − an, for n = 1,2, . . . . Then,

E′
j (x′

n) = K
∑

k

∫
Cj (x0)C∗

k (x0 + ak − an)d2x0. (A15)

The Cj and Ck functions will only be nonzero at the same
time if they are evaluated in the same 
k; this forces ak = an,
and so k = n:

E′
j (x′

n) = K

∫
Cj (x0)C∗

n(x0)d2x0. (A16)

But, by the orthogonality relation, we finally have

E′
j (x′

n) = Kδjn. (A17)

Thus, only one of the detectors will fire, and which one fires
will identify which of the {Ck} the object was.

To detect the desired superposition, we then carry out the
following procedure. First note from Eq. (A17) that regardless
of the input OAM, the output field from the hologram is

(approximately) constant over the area of the given cell;
thus, these output fields carry no OAM. Since these outputs
all have l = 0 and the same propagation direction, they are
indistinguishable except for their exit location. So, if we
erase the information about which cell the output leaves, then
the two possibilities in each superposition state will be able
to interfere with each other. We may replace the detectors
at the different possible output locations by pinholes, then
allow the light from these pinholes to fall on an opaque
screen or on a detector. If there are two possible paths
the photon could have taken (two OAM eigenstates in the
superposition) and therefore the photon could have exited
through either of two pinholes, then these two possibilities
will constructively interfere only at certain possible locations
on the screen. We can easily arrange for the interference
maxima from different pinhole pairs to be located at distinct
positions from the maxima for other pairs. If necessary, phase
shifts can be added selectively before some of the pinholes to
steer the maxima to locations where they can be more easily
distinguished. Thus, from the locations of the detections at the
final outputs, we can determine which two OAM components
were present in the incoming superposition. This effectively
acts as a sorter for superposition states. Note that an incoherent
mixture of photons will not produce the required interference
pattern.
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