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Two-photon spiral imaging with correlated orbital angular momentum states
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The concept of correlated two-photon spiral imaging is introduced. We begin by analyzing the joint orbital
angular momentum (OAM) spectrum of correlated photon pairs. The mutual information carried by the photon
pairs is evaluated, and it is shown that when an object is placed in one of the beam paths the value of the mutual
information is strongly dependent on object shape and is closely related to the degree of rotational symmetry
present. After analyzing the effect of the object on the OAM correlations, the method of correlated spiral imaging
is described. We first present a version using parametric down-conversion, in which entangled pairs of photons
with opposite OAM values are produced, placing an object in the path of one beam. We then present a classical
(correlated, but nonentangled) version. The relative problems and benefits of the classical versus entangled
configurations are discussed. The prospect is raised of carrying out compressive imaging via two-photon OAM
detection to reconstruct sparse objects with few measurements.
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I. INTRODUCTION

In digital spiral imaging (DSI) [1], an object is illumi-
nated by light with a known spatial phase distribution, or
equivalently, of known orbital angular momentum (OAM)
[2–4] distribution, and the OAM spectrum after the object
is measured. The shape of the outgoing spectrum allows
determination of some properties of the object, or possibly
identification of the object from a known set. However, as we
will see below, this method is incapable of reconstructing the
actual shape of the object; despite its name, it is inherently a
nonimaging technique.

Here, we propose correlated spiral imaging (CSI), measur-
ing correlations of OAM values within two-photon states or
between two light beams. We will consider measurement of the
correlations both through coincidence counting and through
interference between the two beams. We will then show that
(i) the CSI coincidence rate displays clear signatures of object
spatial properties, (ii) the mutual information carried by the
detected pair has a strong dependence on object shape and
measures the object’s rotational symmetry, and (iii) a version
of the setup does allow efficient reconstruction of object shape,
opening up the possibility of carrying out compressive imaging
with high-dimensional OAM states.

The experiments proposed here differ significantly from
that carried out in Ref. [5]. In the latter, after filtering for
specific OAM values, the spatial locations of the outgoing
photons are measured in one arm, as in traditional ghost
imaging [6–9]. But in the present case, no information about
the spatial location or momentum of the photon is recorded;
only angular momentum values are detected.

In the following sections, we describe two categories of
correlated spiral imaging experiments, one involving entan-
gled photon pairs produced via down-conversion, the other
using classically correlated beams. The key point in all of the
variations we describe is that there are two light beams (or
two photons) with correlated OAM values. Our purposes here
are twofold: both scientific and applied. On the pure science

side, the entangled version is of great interest, following in
a direct line from work such as that of [5,10], and offering
a new window into both the down-conversion process and
the quantum correlations between the signal and idler OAM
values. The latter correlations are certainly of scientific interest
in their own right, apart from any applications. On the applied
side, the classical version is likely to be more useful, as
discussed more fully in Sec. VI.

II. BACKGROUND

A. Laguerre-Gauss modes

We decompose ingoing and outgoing beams in terms of
optical Laguerre-Gauss (LG) modes. The LG wave function
with OAM lh̄ and with p radial nodes is [11]

ulp(r,z,φ) = C
|l|
p

w(z)

(√
2r

w(z)

)|l|
e−r2/w2(r)L|l|

p

(
2r2

w2(r)

)

× e−ikr2z/[2(z2+z2
R )]e−iφl+i(2p+|l|+1) arctan(z/zR ), (1)

with normalization C
|l|
p =

√
2p!

π(p+|l|)! and beam radius w(z) =
w0

√
1 + z

zR
at z. zr = πw2

0
λ

is the Rayleigh range and the
arctangent term is the Gouy phase.

B. Digital spiral imaging

DSI [1] is a form of angular momentum spectroscopy in
which properties of an object are reconstructed based on how
it alters the OAM spectrum of light used to illuminate it (Fig. 1).
The input and output light may be expanded in LG functions,
with the object acting by transforming the coefficients of
the ingoing expansion into those of the outgoing expansion.
Information about the transmission profiles of both phase and
amplitude objects may be retrieved [1,12].

The idea naturally arises of trying to use the measured
OAM spectrum to reconstruct an image of the object. But,
although a great deal of information may be obtained about
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FIG. 1. (Color online) Digital spiral imaging: the presence of an
object in the light beam alters the distribution of angular momentum
values in the outgoing light.

the object in this manner, it is not sufficient to reconstruct
a full image of the transmission or reflection profile. To see
this, expand the output amplitude according to

∑
lp Alpulp.

Projecting out particular l and p values, the detector tells us
the intensity of each component, allowing the |Alp|2 to be
found, with no phase information retrieved. We thus have an
incoherent imaging setup, with total detected intensity of the
form

∑
lp |Alp|2|ulp|2. But the quantities |ulp|2 are rotationally

symmetric for all values of l and p (see the right-most panel of
Fig. 2). Any image built from them is also symmetric; variation
of the object about the axis is lost. In contrast, the real and
imaginary parts are not rotationally invariant (left two panels
of Fig. 2), so a coherent sum of the form |∑lp Alpulp|2 allows
azimuthal structure to be reconstructed from the interference
terms. For image reconstruction, we thus need to obtain a
coherent superposition of amplitudes. This can be seen in
Fig. 3: an opaque square is placed in the beam and the two
expansions (coherent and incoherent) are computed, assuming
that only the p = 0 components are measured and keeping
terms up to |lmax| = 15. In the left panel, where no phase
information is assumed, the reconstructed image is rotationally
invariant and there is no way to distinguish what the actual
shape of the object was. In contrast, the coherent expansion
on the right side of the figure produces a recognizably square
output. The phase information is vital in reconstructing the
actual image shape.

FIG. 2. (Color online) The real and imaginary parts of the
Laguerre-Gauss function are not rotationally invariant, in contrast
to its absolute square. This is illustrated for the case of l = 1, p = 0,
but is true generally.
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FIG. 3. (Color online) Incoherent (left) and coherent (right)
expansions in Laguerre-Gauss functions, an opaque square object.
In the former case, all variation of the object with angle around the
axis is lost. (pmax = 0 and lmax = 15 assumed.)

C. Entangled OAM pairs

The form of the two-photon state produced by spontaneous
parametric down-conversion (SPDC) is well known. It is most
often written as an expansion in the space of transverse linear
momenta of the outgoing signal and idler:

|�〉 =
∫

d2qs d2qiẼ(qs + qi)W̃ (qs − qi)â
†
qs

â†
qi
|0〉. (2)

Here, Ẽ is the momentum-space pump profile, and W̃ is the
phase-matching function given by [13]

W̃ (qs − qi) =
√

2L

π2k
sinc

( |qs − qi |2L
4k

)

× exp

(
−i

|qs − qi |2L
4k

)
, (3)

where L is the thickness of the crystal and k = ωpnp

c
is the

magnitude of the pump momentum.
In our case, however, we wish to expand in the space

of orbital angular momentum instead of transverse linear
momentum. Consider a pump beam of spatial profile E(r) =
ul0p0 (r) encountering a χ2 nonlinear crystal, producing two
outgoing beams via SPDC. For a fixed beam waist, the range
of OAM values produced by the crystal is roughly inversely
proportional to the square root of the crystal thickness L [12].
We wish a broad OAM bandwidth, so we assume a thin crystal
located at the beam waist (z = 0). The output is an entangled
state [10], with a superposition of terms of the form ul′1,p

′
1
ul′2,p

′
2
,

angular momentum conservation requiring l0 = l′1 + l′2. We
will take the pump to have l0 = 0, so that the OAM values
just after the crystal are equal and opposite: l′1 = −l′2 ≡ l. The
p′

1,p
′
2 values are unconstrained, although the amplitudes drop

rapidly with increasing p′ values [see Eq. (6) below]. The
output of the crystal may be expanded as a superposition of
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signal and idler LG states:

|�〉 =
∞∑

l′1,l
′
2=−∞

∞∑
p′

1,p
′
2=0

C
l′1,l

′
2

p′
1p

′
2
|l′1,p′

1; l′2,p
′
2〉δ(l0 − l′1 − l′2), (4)

where the coupling coefficients are given by

C
l′1,l

′
2

p′
1p

′
2
=

∫
d2r 	(r)

[
ul′1p

′
1
(r)ul′2p

′
2
(r)

]∗
. (5)

For the case of a pump beam with l0 = p0 = 0 this gives the
coefficients [12,14]

Cl,−l
p1,p2

=
p1∑

m=0

p2∑
n=0

(
2

3

)m+n+l

(−1)m+n

×
√

p1!p2!(l + p1)!(l + p2)! (l + m + n)!

(p1 − m)!(p2 − n)!(l + m)!(l + n)! m! n!
. (6)

III. JOINT OAM SPECTRA

We now investigate the use of two beams, rather than one,
in combination with spiral imaging. The full benefits of doing
this will emerge in Sec. V. In the current section, we focus
on examination of the OAM correlations. We begin with
an entangled version, where the light source is parametric
down-conversion in a nonlinear crystal such as β-barium
borate (BBO). Imagine an object in the signal beam (Fig. 4).
Since OAM conservation holds exactly only in the paraxial
case, we assume the signal and idler are produced in collinear
down-conversion, then directed into separate branches by a
beam splitter (BS). (Throughout this paper we assume all beam
splitters are 50:50.) Assume perfect detectors for simplicity
(imperfect detectors can be accounted for by the method in
Ref. [14]). For our purposes, either type I down-conversion
with a nonpolarizing beam splitter or type II with a polarizing
beam splitter will work, since the processes involved are not
polarization dependent. The only difference is that the use
of type II with a polarizing beam splitter will increase the
coincidence rate by a factor of 2. (Note that both photons enter
the beam splitter through the same port, rather than through
opposite ports, so there is no possibility of complete destructive
interference of the kind that leads to the HOM dip.)

l =p=0
0 0

Pump
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z
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2z
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FIG. 4. (Color online) Setup for analyzing object via orbital
angular momentum of entangled photon pairs.

Let P (l1,p1; l2,p2) be the joint probability for detecting
signal with quantum numbers l1,p1 and idler with values l2,p2.
The marginal probabilities at the two detectors (probabilities
for detection of a single photon, rather than for coincidence
detection) are

Ps(l1,p1) =
∑
l2,p2

P (l1,p1; l2,p2), (7)

Pi(l2,p2) =
∑
l1,p1

P (l1,p1; l2,p2). (8)

Then the mutual information for the pair is

I (s,i) =
lmax∑

l1,l2=lmin

pmax∑
p1,p2=0

P (l1,p1; l2,p2)

× log2

(
P (l1,p1; l2,p2)

Ps(l1,p1)Pi(l2,p2)

)
. (9)

The most common experimental cases are when (i) the values
of p1 and p2 are not measured (so all possible values of p1 and
p2 must be summed, pmax = ∞), or (ii) only the p1 = p2 = 0
modes are detected (pmax = 0). Except when stated otherwise,
we will use lmax = −lmin = 10 and pmax = 0.

If the transmission function for the object is T (x), the
coincidence probabilities P (l1,p1; l2,p2) = |Al1l2

p1p2
|2 have am-

plitudes

Al1l2
p1p2

= C0

∑
p′

1

C
−l2,l2
p′

1p2
a

−l2,l1
p′

1p1
(z), (10)

a
l′1l1
p′

1p1
(z) =

∫
ul′1p

′
1
(x,z)

[
ul1p1 (x,z)

]∗
T (x)d2x, (11)

where C0 is a normalization constant. Here it is assumed that
the total distance in each branch is 2z (see Fig. 4).

That the object’s size and shape affect the coincidence
rate is easy to see. For example, Fig. 5 shows the calculated
spectrum when a single opaque strip of width d is placed in the
beam. Figure 6 shows the corresponding mutual information,
assuming that only the p1 = p2 = 0 component is detected.
In both figures, we see clear effects of changing an object
parameter (the strip width).

The central peak of the spectrum (Fig. 5) broadens as d

increases from zero, reducing the correlation between l1 and
l2; the mutual information between them thus declines, as
seen in the d/w0 < 1 portion of Fig. 6. But at d/w0 ≈ 1, the
central peak in {l1,l2} space bifurcates into two narrower peaks
(right side of Fig. 5); the information thus goes back up as the

FIG. 5. (Color online) An opaque strip of width d placed in the
signal path. The widths are (a) d = 0.1w0, (b) d = 0.9w0, and (c) d =
2.5w0. The outgoing joint angular momentum spectra are plotted.
As the width increases, the peak in the spectrum broadens, then (at
d = w0) splits into two peaks.
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FIG. 6. (Color online) Mutual information vs width of opaque
strip. The horizontal axis is in units of w0. The minimum information
occurs at d = w0.

peaks separate, as indeed is the case in the d/w0 > 1 region
of Fig. 6. If we continue to wider d, the two peaks once again
broaden and the mutual information decays gradually to zero.
In addition, the total intensity getting past the opaque strip will
continue to drop, so coincidence counts decay rapidly.

IV. MUTUAL INFORMATION AND SYMMETRY

Figure 7 shows the computed mutual information for
several simple shapes. It can be seen that I depends strongly on
the size and shape of the object, so that for object identification
from among a small set a comparison of the I values rather
than of the full probability distribution may suffice.

If the object has rotational symmetry about the pump
axis, then its transmission function T (r) depends only on
radial distance r , not on azimuthal angle φ. The angular
integral in Eq. (11) is then

∫ 2π

0 e−iφ(l−l′)dφ = 2πδl,l′ . So the
joint probabilities reduce to the form P (l1,l2) = f (l1)δl1,l2

(assuming p1 = p2 = 0) for some function f . The marginal
probabilities for each arm reduce to P1(l1) = f (l1) and
P2(l2) = f (l2). The mutual information I (L1,L2) = S1(L1)
where S1(L1) = −∑

l1
f (l1) ln f (l1) is the Shannon informa-

tion of the object arm OAM spectrum. Thus in the case
of rotational symmetry, the second arm becomes irrelevant
from an information standpoint. In this sense, the quantity
μ(L1,L2) ≡ |I (L1,L2) − S1(L1)| is an order parameter, capa-
ble of detecting breaking of rotational symmetry.

More generally, suppose that the object has a rotational
symmetry group of order N ; i.e., it is invariant under φ → φ +
2π
N

. From Eqs. (1) and (11) it follows that the coefficients must

then satisfy a
l′1l1
p′

1p1
= e

2πi
N

(l′1−l1)a
l′1l1
p′

1p1
, which implies a

l′1l1
p′

1p1
= 0

except when l′1−l1
N

is an integer. When N goes up (enlarged

symmetry group), the number of nonzero a
l′1l1
p′

1p1
goes down;

with the probability concentrated in a smaller number of
configurations, correlations increase and mutual information

I=2.7174 I=3.0112I=2.7589I=2.5704I=2.3589

FIG. 7. (Color online) The mutual information depends strongly
on size and shape of the object. Here, the two objects on the left have
widths 1.5w0 and 0.2w0; all other widths are 0.4w0.

goes up. This may be seen in the three right-most objects of
Fig. 7, for example.

V. IMAGING

The inability of DSI to produce images due to loss of
phase information has been pointed out. Here we show that
a variation on the entangled CSI setup can be used to find the
expansion coefficients including phase.

First, we note from Eq. (6) that the factors C
l′1,l

′
2

p′
1p

′
2

are real

and positive, so the phases of the amplitudes Al1l2
p1p2

are entirely

determined by the phases of the a
−l2,l1
p′

1p1
(z). Note further from

Eqs. (1) and (11) that the only p dependence in the phase of
a

−l2,l1
p′

1p1
(z) is in the factor e−2ipψ(z), where ψ(z) = arctan z

zR
. If

z is much greater than zR , then ψ ≈ π
2 is roughly constant,

so that e−2ipψ(z) ≈ (−1)p. Since we assume the outgoing p

values are p1 = p2 = 0, the relevant detection amplitude is

A
l1l2
00 =

∑
p′

1

C
−l2,l2
p′

10 a
−l2,l1
p′

10 ≈ C
−l2,l2
00 a

−l2,l1
00 + C

−l2,l2
10 a

−l2,l1
10 ,

(12)

due to rapid decay of the C
−l2,l2
p′

10 with increasing |p′
1 − p1|.

So if we break a
−l2,l1
p′

10 into amplitude and phase, a
−l2,l1
p′

10 =
r

−l2,l1
p′

1
e
iφp′

1 l1 l2 , then the phase is independent of p′
1, except for a

relative minus sign between even and odd p′
1 terms, so that

A
l1l2
00 = ρl1,l2e

iφl1 l2 , (13)

where φl1l2 is the value of φp′
1l1l2

for even p′
1, and ρl1l2 ≡

(C−l2,l2
00 − C

−l2,l2
10 )r−l2,l1

0 is real and positive. Thus, the phase
of A

l1l2
00 is the same as the phase of ap′

10 for even p′
1 and differs

from that of ap′
10 by a factor of π for p′

1 odd. Finding the

phases of the coincidence detection amplitudes A
l1l2
00 therefore

suffices to determine the phases of all of the ap′
10 coefficients.

The measurement of these phases is accomplished by
inserting a beam splitter to mix the signal and idler beams
before detection, as in Fig. 8, erasing information about
which photon followed which path. We then count singles
rates in the two detection stages, rather than the coincidence
rate. If value l is detected at a given detector it could
have arrived by two different paths, so interference occurs
between these two possibilities. The detection amplitudes

Object

Detectors D

OAM
sorter

OAM
sorter

Detectors D+

-

BS

l =p=0
0 0

Pump BBO Crystal

BS

FIG. 8. (Color online) A configuration allowing image re-
construction via phase-sensitive measurement of entangled OAM
content.
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in the two sets of detectors D+ and D− involve factors
A+ ∼ (1 + ia

l0−l2,l1
00 ) and A− ∼ (i + a

l0−l2,l1
00 ), with detection

rates R± ∼ 1 + |al0−l2,l1
00 |2 ± 2i Im a

l0−l2,l1
00 . From these count-

ing rates, both the amplitudes and the relative phases of all
coefficients can be found, allowing full image reconstruction.

Once the coefficients a
l′1,l1
p′

1,p1
have been found from the

coincidence rates, image reconstruction requires the inversion
of Eq. (11) to find the object transmission function T (r). To
facilitate this, we first define an operator T̂ to represent the
effect of the object on the beam. We may expand this operator
in the position basis,

T̂ =
∫

d2r d2r ′|r ′〉T (r,r ′)〈r| (14)

=
∫

d2r |r〉T (r)〈r|, (15)

where in the last line we assumed that the operator is a local
operator, diagonal in the position space basis. The object
function T (r) in Eq. (11) is then given by

T (r) = 〈r|T̂ |r〉. (16)

Alternatively, the object operator may be expanded in the
Laguerre-Gauss basis,

T̂ =
∑
ll′

∑
pp′

dl′l
p′p |l′p′〉〈lp|. (17)

Making use of these definitions and of Eq. (11), it follows
immediately that

d
l′1,l1
p′

1,p1
= 〈l′1p′

1|T̂ |l1p1〉 = a
l1,l

′
1

p1,p
′
1
. (18)

(Note the reversal in the order of the indices.) Using this result
in Eq. (17), then applying Eq. (16) and the fact that

ulp(r) = 〈r|lp〉, (19)

we find that determination of the a
l′1,l1
p′

1,p1
coefficients is equiva-

lent to reconstructing the object, since

T (r) = 〈r|T̂ |r〉 =
∑
ll′

∑
pp′

a
l′1,l1
p′

1,p1
ul1p1 (r)

[
ul′1p

′
1
(r)

]∗
. (20)

An example is shown in Fig. 9, in which the object
composed of a single opaque band of the type used in the
simulations of Sec. III (strip width is equal to 0.5 times the
beam waist) is reconstructed using Eq. (20) for different values
of lmax and pmax. We see that as the number of values of
l included is increased, a valley appears in the transmission
profile at the location of the opaque band, and gradually
becomes sharper and more pronounced as we increase lmax.

Note for reference in Sec. VII below that in the previous
example, only (2lmax + 1)pmax = 76 measurements are needed
to reconstruct the bottom 60 × 60 pixel image, yet the result
is already a reasonably good approximation to the original
object.

VI. CLASSICAL CSI

In recent years, it has been shown that ghost imaging and
other “quantum” two-photon effects may be carried out using
classically correlated sources [15–20]. It is apparent that the

l    =1
p   =1
max

max

l    =3
p   =1
max

max

l    =3
p   =3
max

max

l    =5
p   =3
max

max

l    =9
p   =3
max

max

FIG. 9. (Color online) Reconstruction of the transmission profile
of an object with a single opaque band of width 0.5w0 for several
values of lmax and pmax. We see the shape of the object appear and
begin to sharpen as more l and p values are included.

same is true in the case of correlated spiral imaging: classical
OAM correlation, rather than entanglement, is sufficient. The
essential point in the present case is having two spatially
separated beams such that if the OAM detected in one
beam is known, then the OAM reaching the object can be
predicted. So all that is needed is strong classical correlation
or anticorrelation between the OAM in the two arms.

The classical analog of apparatus of Fig. 8 is shown in
Fig. 10. At the left, the system is illuminated with light that
has a broad range of OAM values (a broad spiral spectrum).
The beam is split, with one copy passing through the object,
and the other entering the reference branch. The two beams are
mixed at the beam splitter, then the OAM content at the two
detectors is measured. The coefficients Cl1,l2

p1,p2
will no longer be

given by Eq. (6), but instead will have values determined by the
properties of the specific input beam being used. The mutual
information between the classical beams may be defined just
as in Eq. (9).
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OAM
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OAM
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BS

Broad spiral-
spectrum input
beam

BS

FIG. 10. (Color online) A classical version of correlated spiral
imaging. An input beam with a broad range of OAM values is split at
a beam splitter, sending a portion through the reference branch, and
the rest to the object.

The classical configuration of CSI has a number of practical
advantages over the entangled version: alignment issues are
greatly reduced, single photon detectors are not needed, and
much higher brightness and counting rate may be obtained.
There is one problem that arises, however, which is not present
in the entangled case: if a broad spiral spectrum is used for
the illumination, then there is no intrinsic correlation between
the OAM value l2 in the reference branch and the value l′1 that
occurs between the source and object. Without this correlation,
the value of l′1 is unknown and so the change in l produced
by the object is also unknown. On the other hand, instead of
a broad spiral spectrum, we may send in single OAM values,
one at a time, building up the OAM correlation function one
value of l′1 at a time. But this slows the process of image
reconstruction considerably: a range of OAM values needs to
be scanned over, one after another, changing a spiral phase
plate or some other type of OAM filter multiple times in each
run. In a kind of quantum parallelism, the entangled version
can send in a broad range of values simultaneously, and the
entangled nature of the source will automatically ensure that
the pairs detected are of opposite initial OAM if a short enough
coincidence time window is used. In any case, whether the
classical or entangled version is used, two correlated beams
are necessary in order to reconstruct the relative phases of the
various OAM amplitudes.

VII. COMPRESSIVE IMAGING

Recent years have shown an explosion of interest in
compressive sensing [21–25], including compressive ghost
imaging [26]. The basic idea is that most images are very
sparse when expanded in an appropriate basis, with the vast
majority of expansion coefficients being very small. So if a
sampling procedure is used that only measures the relatively
small number of large expansion coefficients and neglects the
rest, the image may be reconstructed from a very small number
of measurements, often much smaller than naively expected
from the Shannon-Nyquist theorem.

The joint OAM spectra (such as those shown in Fig. 5) have
been calculated for a variety of other opaque objects of various
shapes, and in all of them it has been found that only a relatively
small number of the coefficients have significant amplitude.

Recall also that in the example associated with Fig. 9 the
images shown were reconstructed using the values of far fewer
amplitudes than there were pixels in the reconstruction. The
LG functions can therefore serve as a sparse basis for these
simple shapes. It is likely that this will also be true of at least
some classes of more complex objects. The possibility thus
opens of compressive imaging with OAM states by the CSI
method. Only two additional ingredients are needed: (i) Instead
of taking l0 = 0, as we did in Sec. III, we should illuminate the
crystal with a broad range of l0, providing a large number of
randomly occurring input states; this provides the large number
of randomly chosen sampling bases needed for compressive
imaging. (ii) The basis used for sensing (LG basis, |l,p〉) and
that used to reconstruct the image (position basis |r〉) should
have low mutual coherence [21,25]; this means the maximum
value of |〈r|lp〉| = |ulp(r)| should be as small as possible,
implying that the range of l and p values used should be
centered at the largest possible mean value.

The combined requirements of high mean l and large spread
in l are easily satisfied. If a pump beam of OAM l0 is used,
the signal and idler will each have mean value l0/2, so a pump
beam of high angular momentum will lead to satisfaction of
the first condition. The second condition can be satisfied by
placing an obstruction in the path of the pump which blocks
all light except that passing through an angular aperture of
narrow angle 
φ (see Fig. 11). Since l and φ are conjugate
variables, restricting the values of φ causes spreading of the
l values [27], allowing the second condition to be satisfied.
Alternatively, a wider pump beam and thinner crystal can also
broaden the OAM bandwidth.

To briefly review compressive imaging, we start by imag-
ining that we wish to measure some signal s. In our case, s

will be a vector specifying how the signal is distributed in the
detection plane, from which we wish to reconstruct an image.
We consider expansion of the signal |s〉 and our reconstructed
image |i〉 in two different bases:

|s〉 = signal =
∑
lp

dlp|lp〉, (21)

|i〉 = image =
∑

k

ck|ψk〉. (22)

Narrow l inΔ

Broad l outΔ

Narrow aperture,
angular width Δϕ

Pump beam

FIG. 11. (Color online) An aperture allowing passage of only a
narrow range of angles about the propagation axis causes a spread in
the outgoing OAM values.
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Here, the Laguerre-Gauss basis, spanned by the |lp〉 basis
vectors, will be our measurement basis: we sample the signal
by measuring M projections

ylp = 〈s|lp〉 ∈ {
dlp

}
(23)

onto a randomly selected collection of the basis vectors,
{l1,p1}, . . . ,{lM,pM}. The second basis, consisting of the
N vectors |ψk〉 is the reconstruction basis: we build our
final image as a linear combination of these basis vectors.
Compressive imaging then consists of measuring the M sample
values ylp in the |lp〉 basis, then minimizing the L1 norm of
the |ψk〉 expansion,∑

k

|ck| = minimum, (24)

subject to the M constraints

ylp =
∑

k

c∗
k〈ψk|l,p〉. (25)

This reflects the requirement that the reconstructed image
be consistent with the sampled data, or in other words, the
requirement that ylp = 〈i|lp〉. The bases should be chosen to
have a high degree of mutual incoherence, meaning that the
maximum value of 〈ψk|l,p〉 should be small. The incoherence
requirement means that each |lp〉 state overlaps with many
|ψk〉, and thus samples many of them simultaneously.

To construct an image, the simplest choice for the recon-
struction basis is a discretized position basis; in other words,
ψk = xk is taken to be the position of the kth pixel. The overlap
between the kth element of position basis and the l,p element
of the OAM basis is given by the Laguerre-Gauss function at
the location of the kth pixel, 〈ψk|l,p〉 = 〈xk|l,p〉 = ulp(xk);
the degree of coherence for an image containing n pixels is
then defined to be

μ = √
n maxl,p,kulp(xk), (26)

where maxl,p,k means to maximize over all values of l, p,
and k. The degree of coherence, which is always between
1 and

√
n, should be as close to 1 as possible for maximum

compressibility. As shown in Fig. 12, for an image on an n × n

array of pixels the coherence between the LG and position
bases converges rapidly to μ = 2.407 as n increases.
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FIG. 12. (Color online) The coherence between the position and
Laguerre-Gauss basis for an image displayed on an n × n square
array of pixels. The coherence drops rapidly with increasing n for
small n values, then converges rapidly to a value of μ = 2.407.

FIG. 13. (Color online) The ratio of number of pixels (n2) to
number of OAM measurements needed for exact image reconstruc-
tion (CSμ2 log2 n) plotted in units of 1/CS.

The image can then be reconstructed exactly with over-
whelming probability if the number of samples M (the number
of l,p combinations measured) satisfies

M > CSμ2 log2 n, (27)

where S is the sparsity of the image [the number of coefficients
in Eq. (21) which are not negligibly small] and C is a constant.
Specifically, if inequality (27) is satisfied, then the probability
of successful imaging with M samples is greater than 1 −
M−δ , where δ = C

22 − 1 [21]. δ should be positive, so C should
always be taken to be larger than 22.

For an object of sparseness S in the OAM basis and
coherence μ used to reconstruct an n × n-pixel image, the
information normally carried by a minimum number n2 of
photons can instead be obtained from a number of photons on
the order of CSμ2 log2 n. This situation can be interpreted
as extracting from each photon an effective amount of
information that is larger than normal by a factor on the order
of n2/(CSμ2 log2 n). This multiplication factor is plotted in
Fig. 13; we see that even if CS is on the order of several
hundred, the information gain per photon increases with n and
is significant for n × n arrays of pixels of realistic size (n
greater than a few hundred).

VIII. CONCLUSION

We have shown that correlations between the orbital angular
momentum of correlated or entangled photon pairs can carry
information about the size and shape of an object. A procedure
has been described for using this information for image
reconstruction and arguments have been given to believe that
compressive imaging can be productively carried out with
OAM correlations.

It is easy to envision a number of variations on the
configurations of the current paper that may be worth exploring
in the future. One example is “ghost” spiral imaging, where
the OAM sorter is removed from the object arm and the l1
values are not measured at all (analogous to having a bucket
detector in ordinary ghost imaging). That signatures of the
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object will still appear can easily be seen by imagining taking
the sum over the l1 rows in the histograms of Fig. 5: it is
immediately obvious that the resulting distributions still vary
from one object to the next.
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