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Single-photon description of the lossless optical Y coupler
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Using symmetry considerations, we derive a unitary scattering matrix for a three-port optical Y coupler or
Y branch. The result is shown to be unique up to external phase shifts. Unlike traditional passive linear-optical
one-way splitters, coupling light into the conventional output ports of the Y coupler results in strong coherent
back-reflections, making the device a hybrid between feed-forward devices like the beam splitter, which do
not reverse the direction of light, and a recently considered class of directionally unbiased multiport scatterers
(with dimension greater than two), which do. While the device could immediately find use as a novel scattering
vertex for the implementation of quantum walks, we also design a few simple but nonetheless useful optical
systems that can be constructed by taking advantage of the symmetry of the scattering process. This includes
an interference-free, resource-efficient implementation of the Grover four-port and a higher-dimensional Fabry-
Perot interferometer with tunable finesse. Symmetry-breaking generalizations are also considered.
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I. INTRODUCTION

Symmetry has long been a critical tool for defining phys-
ical theories. With the constraints that symmetries carry,
dimensionality and degrees of freedom can be reduced, sim-
plifying the study of many systems which otherwise cannot be
understood analytically. One instance where this tool is useful
is in classifying linear-optical scattering transformations. As
a simple example, quantum-mechanical U (1) gauge symme-
try allows any scattering matrices related by a global phase
factor eiθ to be considered equivalent because such a global
phase shift is not measurable. Other physical symmetries in
a single-photon scattering process translate to mathematical
constraints on the corresponding scattering matrix, allowing
scatterers to be designed within the subspace defined by these
constraints. The constraints carried by symmetric scatterers
are also often useful for simplifying the design and analysis
of larger systems formed from many symmetric scatterers.

The traditional view of feed-forward optical scattering
treats the beam splitter as a device with two input and two out-
put ports. However, there is no physical distinction between
a port treated as input or output; all ports are tied to a pair
of counterpropagating field modes. Dropping the distinction
between input and output allows a more general, directionally
unbiased scattering framework to be used, which we employ
here. In this framework, a four-port beam splitter would be
given a 4 × 4 scattering matrix.
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†Contact author: admanni@bu.edu
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§Contact author: alexserg@bu.edu

A Y coupler or Y branch is traditionally used to split one
beam of light into two. It is distinct from a beam splitter since
it has three ports instead of four. There is only one traditional
input port, so it cannot overlap two beams, but in situations
where this is unnecessary, a passive Y branch can be prefer-
able over a beam splitter for reasons such as compactness.
Y coupler designs are ubiquitous, as are their experimental
demonstrations in waveguide systems [1–12]. The device has
also been realized in photonic crystals [13], and can be readily
constructed using bulk materials, which we will describe in
further detail later. There have also been some proposals and
demonstrations to employ one or more low-loss Y couplers in
larger systems [14–17], such as for coherent applications like
interferometry [18–20], heterodyning [21], and amplification
[22,23].

Many Y couplers have been designed and realized for use
as a compact beam divider. When the Y coupler input is
confined to only the traditional input port, its description is
incomplete in our general, directionally unbiased scattering
formalism. A complete description of the device requires un-
derstanding its response to light being input separately to each
of its traditional output ports.

In this work, we use an assumed set of symmetries to derive
the full unitary scattering matrix for the standard optical Y
coupler. We later show this leads to major differences in the
behavior of this device in comparison to a traditional beam
splitter. For instance, light entering a beam splitter cannot
reverse direction, but this is not the case for the Y coupler.
The main result is that this well-known Y coupler is truly
a hybrid scatterer which is directionally unbiased or feed-
forward depending on the input port. The unitary scattering
matrix derived here provides this complete description of the
device and consequently suggests that a number of interesting
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systems can now be formed using the directionally biased
ports in conjunction with the traditional input port. A few
examples are provided in Sec. IV. Among them is a realization
of the four-port Grover coin, which significantly improves the
only other known optical implementation. This scatterer plays
a key role in unrealized theoretical proposals for enhanced
quantum optical interferometry and sensing [24,25], quantum
information processing [26], quantum walks, and quantum
search [27–31]. Employing the directionally unbiased ports of
the Y coupler allows construction of multiport interferometers
with useful properties, such as the generalized Fabry-Perot
resonator that will be discussed in detail in Sec. IV.

In the next section, we illustrate some important optical
scattering process symmetries. After this, in Sec. III, we use
a specific set of such symmetries to uniquely derive the field
transformation for the Y-coupler. In Sec. V we discuss some
potential applications of these devices and draw final conclu-
sions. Generalizations that occur when symmetries are broken
are analyzed in the Appendix.

II. OPTICAL SCATTERING SYMMETRIES

The ideal model of many quantum electromagnetic scat-
tering processes assumes time-reversal symmetry, originating
from Hermiticity of the underlying Hamiltonian H , and reci-
procity, guaranteed whenever there exists a certain antiunitary
operator K satisfying KHK−1 = H† [32]. These symmetries
respectively imply unitarity U = U † and diagonal symmetry
U = U T of the scattering matrix.

Some scatterers also exhibit forms of geometric symme-
try. For example, scattering structures which are invariant
under point group rotations behave identically no matter
which port is used for input. This implies that the numeri-
cal labels assigned to each port can be cyclically permuted
without affecting the form of the scattering matrix. The same
permutation-symmetric structure is accordingly imposed on
the scattering matrix: neighboring columns are neighboring
cyclic permutations of each other. Such matrices are known
as circulant, and have recently been studied in physical con-
texts, such as quantum walks [33]. These matrices are well
known in numerical analysis due to the property that they are
diagonalized by a discrete Fourier transform [34].

A prevalent circulant optical device is the circulator. De-
vices in this class are defined by the characteristic that light
entering port m always exits at port (m + j) mod N for some
m, j ∈ {1, . . . , N} such that (m + j) mod N �= N/2 when N
is even. This additional constraint is to ensure the devices in
this class lack reciprocal symmetry. For example, if N = 4
and j = 1, the scattering matrix is given by

C =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, (1)

but if N = 4 and j = 2, then the matrix would be symmetric.
Scattering transformations can also possess reflection sym-

metry about some line, so that pairs of output modes on either
side of this line have equal amplitudes; each pair will be
comprised of the outgoing modes with equal and opposite
k-vector components normal to the reflection line. A common

FIG. 1. (left) Pictorial depiction of a generic three-port scatterer,
such as the Y coupler. (right) Illustration of feed-forward and re-
flection symmetries with respect to input at port 1, which are the
defining properties of the standard Y coupler. Feed-forward implies
a photon is unable to back-reflect and populate the spatial mode
with propagation vector −k1. Meanwhile, the reflection symmetry
forces the output mode vectors k2 and k3 to be mirrored about
the red symmetry line, defined by the direction of the input field.
Accordingly, the scattering amplitudes at output ports 2 and 3 are
equal.

reflection invariance is with respect to the line defined by the
input mode propagation vector kin, as shown in Fig. 1. The
presence of a reflection symmetry allows the port labels of
any pair of mirrored modes to be swapped without changing
the scattering matrix.

The d-port Grover coin (where d � 3) is highly symmetric
[35]. It is unitary, reciprocal, circulant, and possesses reflec-
tion symmetry. Because the device is circulant, the reflection
symmetry automatically applies to all input ports, and thus
all transmitting amplitudes are equal. This structure allows
the port labels to be assigned arbitrarily, and any permutation
made to these labels will not affect the scattering matrix.
These assumptions impose the following form on a d-port
unitary:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r t t t . . . t
t r t t . . . t
t t r t . . . t

t t t r
...

...
...

...
. . . t

t t t . . . t r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Orthogonality implies

r∗t + t∗r + (d − 2)|t |2 = 0, (3)

while normalization requires

|r|2 + (d − 1)|t |2 = 1. (4)

We assume |t | is nonzero, otherwise the device is acting
as a mirror. Then, by expressing r = |r|eiφr and t = |t |eiφt

in polar coordinates, we may rewrite the first equation as
2|r| cos(φr − φt ) + (d − 2)|t | = 0. If we select φr − φt = π ,
we arrive at the Grover coin, as this gives |r| = (d/2 − 1)|t |,
which when placed in the normalization condition yields t =
2/d and r = 2/d − 1. An additional symmetry emerges when
d = 4, causing the reflected and transmitted probabilities to
coalesce at the value 1/4. This can be tied to a reflection
symmetry with respect to the forward transmitted and back-
reflected output modes.

In the analysis above, different values of φr − φt generate
valid scatterers whenever cos(φr − φt ) � 0. The Grover coin
can be identified as the value admitting minimal reflectivity
within this reciprocal, unitary, and circulant space. To see

023527-2



SINGLE-PHOTON DESCRIPTION OF THE LOSSLESS … PHYSICAL REVIEW A 110, 023527 (2024)

this, we let x = cos(φr − φt ) and combine Eqs. (3) and (4)
to obtain the constraint between x and |r|2,

|r|2x2 = c2
0(1 − |r|2), (5)

where c0 = (2 − d )/(2
√

d − 1). Solving for |r|2, we have

|r|2 = c2
0

c2
0 + x2

. (6)

Now, x2 = cos2(φr − φt ) lies in the set [0, 1]; for x = 0,
|r|2 = 1. Increasing x2 by varying x from 0 to −1 decreases
|r|2 until it reaches its minimum value,

|rmin|2 = c2
0

c2
0 + 1

= (d − 2)2

(d − 2)2 + 4(d − 1)
= (d − 2)2

d2
, (7)

corresponding to the d-port Grover coin. In general, the other
values of |r|2 in this set can be spanned by placing a mirror on
any port of a (d + 1)-port Grover coin and varying the phase
acquired between the coin and the mirror [25].

A traditional lossless, reciprocal beam splitter assumes a
feed-forward symmetry. This is physically encapsulated by
the fact that light entering any one of the four input ports only
can emerge from two of the ports on the other side; it cannot
reverse direction. Mathematically this results in a U (2) device
being embedded in a four-dimensional space,

B =

⎛
⎜⎜⎝

0 0 r1 t2
0 0 t1 r2

r1 t2 0 0
t1 r2 0 0

⎞
⎟⎟⎠. (8)

The symmetry can be expressed as an invariance of this matrix
under the port label mapping (1, 2) ←→ (3, 4).

Because the device operates in a two-dimensional uni-
tary subspace, there is little lost by assuming reciprocity
within this subspace as well. This is because for general,
nonreciprocal U (2) devices, the unitarity constraint carries
two implications. First, it requires |r1| = |r2| = √

1 − |t1| =√
1 − |t2| so that nonreciprocity only can appear in the ac-

quired phases. The second implication is that the phases must
satisfy the constraint arg r1 + arg r2 = arg t1 + arg t2 + π .

In fact, the Hong-Ou-Mandel effect originates directly as
a result of these phase and reciprocal probability constraints
when the auxiliary assumption |r1| = 1/

√
2 is made. For the

initial state of two indistinguishable monochromatic photons,
impinging adjacent ports of a beam splitter will transform to
a state

|ψ〉 = (|r1|eiarg r1 a† + |t1|eiarg t1 b†)

× (|r2|eiarg r2 b† + |t2|eiarg t2 a†)|0〉, (9)

where a† and b† are the creation operators for a photon prop-
agating out of the device at the corresponding output ports.
Carrying out the multiplication, the amplitude of the coin-
cidence term a†b† is |r1||r2|eiarg r1+iarg r2 + |t1||t2|eiarg t1+iarg t2 .
Thus, when |r1| = 1/

√
2, it follows from the above |r2| =

|t1| = |t2| = 1/
√

2, reducing the coincidence amplitude to
(eiarg r1+iarg r2 + eiarg t1+iarg t2 )/2. When the phase constraint is
placed into this expression, it nullifies, obtaining the standard
cancellation of coincident terms observed in the Hong-Ou-
Mandel effect.

III. Y-COUPLER UNITARY TRANSFORMATION

A symmetric Y-coupler transformation can be uniquely
defined (up to external phase shifts) by three assumptions.
Here, the term symmetric is used to imply the feed-forward
behavior is a 50:50 power splitting from port 1 into ports 2
and 3, and results from a reflection symmetry about the k
vector that defines the propagation direction of the incident
plane wave into port 1, which is depicted in Fig. 1. General-
izing the analysis that follows to nonequal splitting ratios is
straightforward and is conducted in the Appendix, along with
an analysis for the case of broken feed-forward symmetry. The
assumptions used to define the device are as follows:

(1) The scattering transformation can be represented by a
3 × 3 unitary matrix U where U †U = 1.

(2) The scattering process is reciprocal, i.e., U = U T .
(3) The device undergoes a feed-forward and reflection-

symmetric transformation with respect to input directed at
port 1. This can be represented by the transformation

|ψ0〉 = a†
1|0〉 → 1√

2
(a†

2 + a†
3)|0〉. (10)

The final assumption offers more than the equal intensity,
equal phase transformation above; the collection of assumed
symmetries also imply that light input to port 2 will undergo
the same transformation as port 3, except with the output
amplitudes for ports 2 and 3 swapped.

Combining assumptions 2 and 3 allows us to begin with the
matrix transformation

Y =

⎛
⎜⎝

0 1/
√

2 1/
√

2
1/

√
2 a b

1/
√

2 b a

⎞
⎟⎠. (11)

Next, assumption 1 can be enforced by requiring the columns
of Y form an orthonormal basis of C3. In particular,

|a|2 + |b|2 = 1/2 (12a)

(a + b) = 0 (12b)

1/2 + (a∗b + b∗a) = 0. (12c)

The middle equation implies a and b are offset in phase by
π and that |a| = |b|. Inserting this into the top equation results
in |a| = |b| = 1/2. Next, if we let a = eiφa/2 and b = eiφb/2,
the third equation can be written cos(φa − φb) = −1, con-
firming the phase relationship between a and b present in the
second equation.

Thus, the derived unitary matrix of the symmetric Y cou-
pler can be written

U =

⎛
⎜⎝

0 1/
√

2 1/
√

2
1/

√
2 −1/2 1/2

1/
√

2 1/2 −1/2

⎞
⎟⎠. (13)

Here, we have chosen the standard phase convention where
the reflected field acquires a phase of π . Other valid phase
conventions are easily obtained if external phase shifts are
placed outside the scatterer. In this case, the aggregate
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scattering matrix would become
⎛
⎜⎝

0 eiφ1+iφ2/
√

2 eiφ1+iφ3/
√

2

eiφ1+iφ2/
√

2 −e2iφ2/2 eiφ2+iφ3/2

eiφ1+iφ3/
√

2 eiφ2+iφ3/2 −e2iφ3/2

⎞
⎟⎠. (14)

Let φ2 = φ3 := φ/2 to preserve the reflection symmetry.
Then, fixing φ1 = 2π − φ/2 gives the matrix

⎛
⎜⎝

0 1/
√

2 1/
√

2

1/
√

2 −eiφ/2 eiφ/2

1/
√

2 eiφ/2 −eiφ/2

⎞
⎟⎠. (15)

From this we see that the choice of phase convention is arbi-
trary since it can always be changed with external phase shifts.
A similar result occurs with a 50:50 beam splitter, allowing the
Hadamard and equal-phase versions to be interchanged with
external phase shifts. Thus, replacing one convention with
another can in general only translate the system output in its
phase parameter space. The parametric curves themselves are
the same.

Equation (13) for the Y coupler represents the action of
a rather irregular optical multiport: when input to port 1 it
is directionally biased (no reflection back), and from ports 2
and 3 it is directionally unbiased. This hybrid nature allows
interesting devices to be constructed, mainly because the ori-
entation of the feed-forward and directionally unbiased ports
can be used to control the appearance of optical resonators.
We study some of the simplest devices in the next section.

IV. DIRECTIONALLY UNBIASED Y-COUPLER DEVICES

A. Four-port Grover coin

The previously known implementation of the four-port
Grover coin is a low-finesse ring-cavity system that requires
four mirrors, four beam splitters, and configuring eight phase
parameters [36]. However, with two Y couplers, the same
device can be realized without causing a resonator to form. In
fact, the device does not exhibit any interference whatsoever,
so in the absence of other devices, it will be unaffected by
phase noise. These properties make the following implemen-
tation significantly more stable and resource efficient than its
predecessor.

To obtain the Grover four-port, connect the feed-forward
ports of the two Y couplers together as shown in Fig. 2(a).
Assume the bridge carries a total phase shift of φ. Then,
inputting to any port, there is a back-reflected amplitude of
−1/2, a transmission amplitude of 1/2 to the neighboring
port, and a transmission into the bridge with amplitude 1/

√
2.

This portion of the optical state acquires the phase factor eiφ

and then splits equally at the other two ports, each ending with
a final scattering amplitude eiφ/2. Since the input port was
arbitrary, this result holds for all inputs. The matrix form of
this configuration is then

U = 1

2

⎛
⎜⎜⎝

−1 1 eiφ eiφ

1 −1 eiφ eiφ

eiφ eiφ −1 1
eiφ eiφ 1 −1

⎞
⎟⎟⎠. (16)

FIG. 2. Simple scattering configurations formed from one or
two symmetric Y couplers. The back-reflecting ports labeled 2 and
3 allow interesting devices to be formed: (a) resource-efficient,
cavity-free Grover four-port; (b) phase-independent loop mirror;
(c) single-parameter Michelson interferometer; and (d) a tunable
resonator that blends together the traditional Fabry-Perot and Mach-
Zehnder interferometers.

Any device enacting this transformation will be called a “gen-
eralized Grover four-port” since the standard four-port Grover
coin is matched exactly when φ is made 0 (modulo 2π ). In
some applications, allowing φ to be nonzero provides a valu-
able degree of freedom that cannot be accessed with external
phase shifts.

B. Loop mirror

A symmetric Y coupler can also be used to construct a
peculiar loop mirror [Fig. 2(b)]. This principle has been used
extensively in integrated-photonic Sagnac loop mirrors; for a
review, see Ref. [37]. By connecting the directionally unbi-
ased ports together, the device reflects light entering the loop
regardless of the phase it acquires inside the loop. Usually, the
phase shift is equally acquired by the two counterpropagating
loop modes, under the common assumption of reciprocity. In
this case, the loop phase can be factored out as a global phase
shift. In general, under ideal operation, this device can only
affect the phase of light exiting the device. A resonator will
not form unless the phase shift is nonreciprocal. If so, the
phase response will be nonlinear in the nonreciprocal phase
portion, opening up the possibility of using this device as an
enhanced Sagnac phase readout.

C. Michelson interferometer

When a mirror closes the feed-forward port, the device
behaves identically to a Michelson interferometer, except now
it only depends on a single controllable phase instead of two
[Fig. 2(c)]. In a standard Michelson, the second phase shift is
redundant, since the output probabilities only depend on the
difference of the arm phases.

D. Two-port tunable resonator

The final device presented in this paper is a tunable
resonator, formed by connecting each pair of directionally un-
biased ports of two symmetric Y couplers together [Fig. 2(d)].
This two-port device can be viewed as a mixture of a
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traditional Fabry-Perot and Mach-Zehnder interferometer. Let
the top arm that connects modes 2 and 2′ in Fig. 2(d) carry
a phase shift φ1. Similarly, assume the bottom arm linking
modes 3 and 3′ carries a phase shift of φ2. The output scatter-
ing amplitudes can be found by analyzing the coupled-cavity
supermodes. The computation, detailed in the Appendix, is
very much like that of the Grover-Michelson interferometer
[25], and the output amplitudes have a similar structure. Let

B = 1
2 (eiφ1 + eiφ2 ) and (17a)

C = 1
2 (eiφ1 − eiφ2 ). (17b)

Then, for the present device, it can be shown that

r = − C2

1 − B2
(18a)

t = B(1 − r). (18b)

The reflection amplitude r describes how the optical field
scatters between the same input and output, namely, from
port 1 to port 1 or from port 1′ to port 1′ for the labeling
in Fig. 2(d). t describes the scattering behavior for the light
passing through the device, from port 1 to port 1′ or vice
versa. From these scattering amplitudes r and t , the reflec-
tion and transmission probability can be found by taking
the square modulus: T (φ1, φ2) = |t (φ1, φ2)|2 and R(φ1, φ2) =
|r(φ1, φ2)|2.

In a traditional Fabry-Perot interferometer or etalon, the
finesse is a fixed function of the reflectivity of each optical
surface. With high finesse, the system will exhibit narrow
transmittance peaks. Here, the effective finesse can be con-
trolled by varying the relative phase between the two arms,
and the system will now exhibit narrow transmittance dips
instead of peaks. When the phase difference between the two
arms is varied further, the dips widen, allowing transmission
at a particular band of frequencies to be actively switched.

A basic illustration of this behavior is shown in Fig. 3.
When each resonator arm is equal in length, the system
fully transmits at each wavelength. Spectral dips form when
one phase is perturbed slightly—for instance, with a path-
length change inducing �φ(k) = kn(��) or a refractive index
change inducing �φ(k) = k(�n)�. For a small resonator
length, these spectral dips are widely spaced, and the width of
each notch can be widened by increasing the phase difference
between the two arms. Thus, at a larger phase change, the
system reflects relatively flat bands of frequencies. This allows
the system to act as a switchable dichroic.

V. DISCUSSION

A vast number of Y-coupler designs exist in the literature,
having the immediate potential to realize many interesting
applications of unbiased linear-optical scatterers. In addition
to the devices discussed above, a number of similar unbiased
devices could be considered by orienting the feed-forward
port of the Y coupler in different ways or by combining the
Y coupler with other multiport scatterers. In addition to the
many photonic and fiber implementations of the Y coupler,
it is possible to obtain a Y-coupler transformation in bulk
optics with a single beam splitter. As is suggested from the
Y-coupler-based Michelson interferometer discussed above,

FIG. 3. Basic illustration of switchable dichroic behavior. If the
two cavity arms are equal in length, the device will transmit all wave-
lengths. With a small index perturbation in one arm (dashed curve),
transmission notches appear. A short arm length causes these spectral
notches to be widely spaced apart. For a larger index perturbation, the
spectral response around any desired region can be made to invert
(solid curve), allowing the system to behave as a switchable dichroic
mirror. This switching capability is enabled by the additional degree
of freedom that the Y-coupler etalon possesses relative to a standard
Fabry-Perot.

forming a standard Michelson and removing one end mir-
ror can be shown to exactly reproduce the transformation of
Eq. (15). The spectral properties of the beam splitter and re-
maining end mirror determine those of the formed Y coupler.
This free-space configuration is depicted in Fig. 4. Note that
the phase acquired inside the mirror arm is arbitrary, since
it can be equivalently adjusted by external phase shifts. Such
external phase shifts merely represent an immeasurable global
translation to the value of any phases around the device when
it is placed in a larger system. In accord with this is the follow-
ing fact: naturally, if an additional end mirror is added to this
Y coupler, the system becomes a Michelson interferometer.
Changing the first end mirror′s position only translates the
sinusoidal interference pattern that is produced by dithering
the new end mirror.

An interesting perspective of the Grover four-port con-
structed above can be viewed as the result of two limiting

FIG. 4. A Y-coupler scattering graph node (left) and a simple
free-space optical implementation (right). The splitting ratio and
spectral response is determined by that of the beam splitter and
mirror. A nonequal splitting ratio results in the asymmetric behavior
detailed in the Appendix. The phase acquired inside the mirror arm
is arbitrary, since it can be equivalently adjusted by external phase
shifts. Such external phase shifts merely represent an immeasurable
global translation to the value of any controllable phases in the
system.
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FIG. 5. The Y-coupler Grover four-port of Eq. (16) can be
viewed as the device that emerges as the gap of a directional coupler
is brought to zero. In practice, the waveguide and coupler parameters
must be chosen so that the port created by the fused waveguides
does not have back-reflections when light is input to it. If this is
so, bringing the bridge length to zero will result in a passive Grover
four-port.

processes being applied to a beam splitter. First, a directional
coupler beam splitter is shown in Fig. 5 (left). The generalized
Grover four-port of Eq. (16) is obtained when the distance
between the parallel waveguides is brought to zero, as in
Fig. 5 (center). Then, the true Grover coin is obtained in the
limit that the middle branch length is brought to zero (right).
In practice, if the source coherence length is greater than
the branch length, the device will act as a Grover coin as
long as the branch phase is an integer multiple of 2π . This
is an advantage over the traditional, resonator-based version
[27,36], which requires the coherence length to be larger
than several round-trip lengths, allowing a greatly improved
design to be employed for the Grover coin′s growing number
of applications, such as higher-dimensional interferometry
[24,25], quantum state routing with a multimode version of
the Hong-Ou-Mandel effect [26], and applications of quantum
walks such as Hamiltonian simulation, quantum state transfer,
and quantum search [27–31]. It remains to be seen if the
present approach can be generalized to obtain Grover coins
in other dimensions without internal interference. Recursing
the structure of Fig. 2(a) can readily generate an eight-port
Grover coin but requires internal two-beam interference. The
present design of the four-port Grover coin might also en-
able more practical application of the method mentioned in
Ref. [25]: a (d + m − 2)-port Grover coin can be constructed
by connecting a d-port and m-port Grover coin with a bridge.
The bridge must carry a phase zero modulo 2π . Similarly, a
(d − m)-port Grover coin can be obtained by placing m mirror
seals on a d-port Grover coin, each with a round-trip phase of
zero modulo 2π . At other values of these phases, the device
spans the set of unitary, reciprocal, and circulant (d − m)-port
scatterers, as discussed in Sec. II.

The tunable resonator shown in Fig. 2(d) has more degrees
of freedom than a traditional Fabry-Perot. With proper control
of its phase parameters, a switchable dichroic mirror or band-
pass filter could be constructed. When the resonator length
increases, a dense transmission-dip comb spectrum appears,
which may offer improvements to traditional electro-optic fre-
quency comb systems [38] formed from Fabry-Perot systems.
Of course, with multiple frequencies, additional considera-
tions must be taken into account, such as the spectral response
of the three ports used to form the device and dispersion.

In this work, we derived a unitary scattering transfor-
mation for a Y coupler from symmetry considerations. The
device is somewhat unconventional, being a passive scatterer

which is a hybrid of feed-forward and back-reflecting. We
have presented but a small fraction of the possible Y-coupler
configurations. The hybrid scattering nature allows control
over whether resonators do or do not form in larger systems,
and thus might make an interesting centerpiece for study of
quantum walks on a three-regular lattice. It also remains to be
seen how symmetry might be used to find other useful optical
scatterers, and what benefits the endowed symmetry provides.
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APPENDIX A: Y-COUPLER GENERALIZATIONS

In single-photon scattering processes it is typical to assume
unitarity and reciprocity. Arriving at a unique, single-photon
description of the symmetric Y coupler requires two auxiliary
assumptions regarding how the device acts on light entering
port 1. First, input to port 1 is feed-forward, and second, the
outputs at port 2 and 3 were assumed to have a reflection
symmetry for this input. Here, we provide a separate descrip-
tion of a Y-coupler device that is valid when each of these
symmetries break. The reciprocity assumption could also be
lifted to further generalize the above cases using a similar
approach. This results in devices that can be decomposed
with a circulator but will be considered in detail elsewhere.
Abandoning both assumptions above would cause the device
to lack any characteristic of a Y coupler, and thus will also not
be considered here.

1. Asymmetric Y coupler

Relaxing the condition of a reflection-symmetric port 1
gives the matrix

Y =
⎛
⎝0 t1 t2

t1 a1 b
t2 b a2

⎞
⎠. (A1)

We again enforce unitarity and conduct a similar analysis
to the above. Assuming |t1| ∈ (0, 1) results in the following
restrictions on the probabilities:

|t1|2 + |t2|2 = 1 (A2a)

|a1|2 = |t2|4 (A2b)

|a2|2 = |t1|4 (A2c)

|b|2 = |t1|2|t2|2. (A2d)

Phase constraints are also derived from the orthogonality
requirement of the columns of the matrix (A1). From the first
and second columns, as well as second and third columns, we
obtain

φt2 − φt1 + π = φb − φa1 = φa2 − φb. (A3)

The final orthogonality constraint, obtained from columns two
and three, is redundant. Explicitly, we have

|t1||t2|eiφt2 −iφt1 + |b|(|a1|eiφb−iφa1 + |a2|eiφa2 −iφb ) = 0. (A4)

023527-6



SINGLE-PHOTON DESCRIPTION OF THE LOSSLESS … PHYSICAL REVIEW A 110, 023527 (2024)

The factors eiφb−iφa1 and eiφa2 −iφb can both be replaced with
−eiφt2 −iφt1 by Eq. (A3). After respectively interchanging |a1|
and |a2| for |t2|2 and |t1|2, this constraint becomes

|t1||t2|eiφt2 −iφt1 (1 − |t1|2 − |t2|2) = 0, (A5)

which is always true by virtue of the fact that |t1|2 + |t2|2 = 1.
Combining everything, we let t ∈ (0, 1) and put

Y =

⎛
⎜⎜⎝

0 teiφt1 eiφt2

√
1 − t2

teiφt1 −(1 − t2)eiφb−i(φt2 −φt1 )
√

t2(1 − t2)eiφb

eiφt2

√
1 − t2

√
t2(1 − t2)eiφb −t2eφb+i(φt2 −φt1 )

⎞
⎟⎟⎠,

(A6)

where φa1 and φa2 have been removed using the above phase
constraints. If we then define � = φt2 − φt1 and add external
phases of φ1 = −φt1 , φ2 = φ3 = −φb, a global factor e−iφb

emerges. This only works because the top-left entry of the
above matrix is zero. After discarding the global phase factor,
we are left with the two-parameter device

Y =

⎛
⎜⎜⎝

0 t ei�
√

1 − t2

t −(1 − t2)e−i�
√

t2(1 − t2)

ei�
√

1 − t2
√

t2(1 − t2) −t2ei�

⎞
⎟⎟⎠. (A7)

Therefore, relaxation of the reflection symmetry is encapsu-
lated by t and �. If t → 1/

√
2 and � → 0, the symmetric Y

coupler emerges.
The asymmetric scattering transformation found here can

also be realized in bulk optics by placing a mirror at one
port of a unitary beam splitter with asymmetric scattering
coefficients.

2. Directionally unbiased symmetric Y coupler

Removing the requirement of a feed-forward port 1 gives
the matrix

Y =
⎛
⎝r t t

t a b
t b a

⎞
⎠. (A8)

Enforcing unitary produces four equations:

|r|2 + 2|t |2 = 1, (A9a)

|t |2 + |a|2 + |b|2 = 1, (A9b)

|t |2 + (a∗b + b∗a) = 0, and (A9c)

r∗t + t∗(a + b) = 0. (A9d)

The matrix (A8) has four different complex-valued entries,
i.e., four magnitudes and four phases. The four equa-
tions above can remove four of the eight degrees of freedom.
With three external phases we can remove only two additional
parameters, because the phases at ports 2 and 3 must be the
same to maintain the assumed reflection symmetry.

Thus, we expect that up to external phase shifts the present
device can be described by two free parameters. This is
consistent with the fact that only the variable r has been
introduced with this generalization. When r is brought to zero,
the phase r carries loses its relevance, so two parameters are
removed.

Rewriting Eq. (A9c), we have |t |2 + 2|a||b| cos(φa −
φb) = 0. Since |t |2 and 2|a||b| are both non-negative, this
equation is solvable only for x = cos(φa − φb) � 0, with the
case x = 0 corresponding to |t | = 0. Replacing |t |2 with 1 −
|a|2 − |b|2, we obtain

|a|2 − 2|a||b|x + |b|2 = 1. (A10)

This is an elliptical equation for |a| and |b|, with x affecting
the eccentricity. We can use this equation to find |a| in terms
of |b| or vice versa. Solving for |b|, we have

|b| = |a|x ±
√

|a|2(x2 − 1) + 1. (A11)

Because x � 0, we must take the positive root, otherwise |b|
becomes negative. From this equation, a provided value of �
0|a| � 1 and −1 � x � 0 can be used to find |b|. Then, |a|
and |b| dictate |t | through Eq. (A9b), which in turn dictates |r|
through Eq. (A9a).

The remaining unknown is the phase between r and
t , which we can obtain from the orthogonality constraint
Eq. (A9d). To simplify what follows without any loss of gener-
ality, we now use the external phase freedom to fix φb = 0 and
φr = 0. The necessary external phases required to obtain this
are φ2 = φ3 = −φb/2 and φ1 = −φr/2; this transformation
will translate φt and φa, but this can be absorbed into their
definition.

Omitting the trivial case |t | �= 0, Eq. (A9d) can be
rewritten as

|r|e2iφt + |a|eiφa + |b| = 0. (A12)

Now, we define � := 2φt and remove |b| using Eq. (A11),
which gives

|r|ei� + |a|eiφa + |a|x +
√

|a|2(x2 − 1) + 1 = 0, (A13)

or split into real and imaginary parts,

|r| sin � + |a| sin φa = 0 and (A14a)

|r| cos � + 2|a|x +
√

|a|2(x2 − 1) + 1 = 0. (A14b)

Since |r| = 0 was already considered in the main text,
we assume otherwise and put sin � = −|a| sin φa/|r| =
−(|a|/|r|)√1 − x2.

Now generally, sin(π − �) = sin(�) but cos(π − �) =
− cos(�). Thus, we always have the freedom to invert the
sign of cos � without affecting sin �. This enables us to write
cos � = ±

√
1 − sin2 � = ±

√
1 − |a|2/|r|2(1 − x2) with the

understanding that the leading sign may be picked freely with-
out disturbing sin �, preserving the constraint of Eq. (A14a).
Placing this equation into the bottom equation (A14b), we
have

±
√

|r|2 − |a|2(1 − x2) = 2|a|x +
√

|a|2(x2 − 1) + 1.

(A15)

The final step is to show that Eq. (A15) is valid for any
choice of −1 � x � 0 and 0 � |a| � 1. Choosing � so that
each side has the same sign, we only need to compare their
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magnitudes, or equivalently, their magnitudes squared:

|r|2 − |a|2(1 − x)2 = 4|a|2x2 + |a|2x2

− |a|2 + 1 + 4|a|x
√

|a|2(x2 − 1) + 1.

(A16)

Or, after canceling terms,

|r|2 = 4|a|2x2 + 1 + 4|a|x
√

|a|2(x2 − 1) + 1. (A17)

Now, we replace |r|2 with an independently derived expres-
sion. We have that

|a|2 + |b|2 = |a|2 + (|a|x +
√

|a|2(x2 − 1) + 1)2, (A18)

while

|r|2 = 1 − 2|t |2 = 2(|a|2 + |b|2) − 1 (A19a)

= 2|a|2 + 2(|a|2x2 + |a|2(x2 − 1) + 1

+ 2|a|x
√

|a|2(x2 − 1) + 1) − 1 (A19b)

= 4|a|2x2 + 1 + 4|a|x
√

|a|2(x2 − 1). (A19c)

Hence, we see Eqs. (A19c) and (A17) are in fact identical,
indicating that for this choice of �, Eq. (A9d) is satisfied
with no additional restrictions imposed between |a| and x.
Thus, |a| and x are free parameters describing this class of
back-reflecting symmetric Y couplers, with all others being
computed directly from these.

Although we omitted the case |r| = 0 in deriving � above,
we see in the limit that when |r| goes to zero, � gets removed
from the equations (A14a) and (A14b). This is consistent with
the fact that a zero-energy back-reflection can be assigned any
phase, allowing the external phase freedom at port 1 to be used
to nullify �.

In the special case x = −1, we have an explicit
parametrization in terms of |r| alone. x = −1 implies |a| +
|b| = 1 with φa = π , so that a = −|a| and b = |b|. This can
be used in conjunction with Eqs. (A9a) and (A9b) to obtain a
quadratic in either |a| or |b| that depends on |r|2. If q is either
|a| or |b|, the quadratic is

4q2 − 4q + (1 − |r|2) = 0, (A20)

which is solved for q = (1 ± |r|)/2. Both solutions are valid,
but the signs must be selected oppositely for a and b in order
for |a| + |b| = 1 to remain true.

Because there are two ways to choose the signs, the form of
the device can be split into two classes. In the first class, |a| =
(1 + |r|)/2 and |b| = (1 − |r|)/2 so that when light is input to
port two (three), more of it reflects back than transmits to port
three (two). In the other class, the situation is reversed: |a| =
(1 − |r|)/2 and |b| = (1 + |r|)/2, so that less light reflects.

Combining r∗t + t∗(a + b) = 0 with the above gives

|t ||r|(eiφt −iφr ∓ e−iφt ) = 0. (A21)

We assume |t | and |r| are nonzero, otherwise, the device
behaves according to the above or like a mirror. After dividing
these quantities out, we have

e2iφt −iφr ∓ 1 = 0, (A22)

so that in the first class we have φt = φr/2 and in the second
class φt = (φr + π )/2. If we use the external phase freedom

at port 1 to set φr = 0, we can now write out a specific matrix
for both classes of the Y couplers considered here. We have,
for real r ∈ (0, 1),

Y± =

⎛
⎜⎜⎝

r
√

(1 − r2)/2
√

(1 − r2)/2√
(1 − r2)/2 −(1 ± r)/2 (1 ∓ r)/2√
(1 − r2)/2 (1 ∓ r)/2 −(1 ± r)/2

⎞
⎟⎟⎠.

(A23)

Alternatively, one could combine these into a single matrix
by allowing r to be negative, viz. to let r ∈ (−1, 1). In any
case, taking r → 0 reproduces the result in the main text. This
generalization of the device can be realized by placing a two-
port unitary scatterer with reflection amplitude r in port 1 of
the symmetric, feed-forward Y coupler.

APPENDIX B: TWO-PORT Y-COUPLER
INTERFEROMETER OUTPUT

We illustrate the output computation for the device shown
in Fig. 2(d) for one of the two input ports. The other input
behavior is the same due to the underlying symmetry.

First, we identify photon creation operators with the dif-
ferent spatial modes that are coupled by the device. With
reference to Fig. 2(d), port 1′ will be identified with a†, Port
1 with b†, the 2-2′ arm with a†

1, and the 3-3′ arm with a†
2.

We recall that the 2-2′ arm carries phase φ1 and the 3-3′ arm
carries φ2.

Next, we show that the quantity (a†
1 − a†

2) is a supermode
of the internal cavity. L and R subscripts will be used to
denote leftward and rightward propagation directions inside
this cavity. We have, during a single round trip,

(a†
1 − a†

2)L → 1√
2

(eiφ1 − eiφ2 )a†

− 1

2
(eiφ1 + eiφ2 )(a†

1 − a†
2)R (B1)

=
√

2Ca† − B(a†
1 − a†

2)R (B2)

→
√

2Ca† −
√

2BCb† + B2(a†
1 − a†

2)L. (B3)

B and C are functions of φ1 and φ2 defined in Eq. (17). The
direct recursion of each round trip shown in the preceding
equation is a manifestation of the fact that this superposition
of the cavity modes a†

1 and a†
2 is an eigenmode (or supermode)

of the coupled-mode resonator. The coefficients preceding
the operators a† and b† are readily turned into a geometric
series in the round-trip number T and summed to obtain the
steady-state output:

(a†
1 − a†

2)L
T →∞−−−→

√
2

(
C

1 − B2
a† − BC

1 − B2
b†

)
. (B4)

Now we start with our initial state |ψ0〉 = a†|0〉, which tran-
siently (before any round trips) maps to

a†|0〉 →
[

Bb† − 1√
2

C(a†
1 − a†

2)L

]
|0〉. (B5)
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Taking T → ∞ and substituting in the result of Eq. (B4), we
find the output state

|ψout〉 =
(

Bb† − C

[
C

1 − B2
a† − BC

1 − B2
b†

])
|0〉, (B6)

from which we extract

r = − C2

1 − B2
, t = B

(
1 + C2

1 − B2

)
= B(1 − r). (B7)
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