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We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk. Two identical
bosons with no mutual interactions nonetheless can remain clustered together as they walk on a lattice of
directionally reversible optical four-ports acting as Grover coins; both photons move in the same direction at
each step due to a two-photon quantum interference phenomenon reminiscent of the Hong-Ou-Mandel effect.
The clustered two-photon amplitude splits into two localized parts, one oscillating near the initial point and
the other moving ballistically without spatial spread, in solitonlike fashion. But the two photons are always
clustered in the same part of the superposition, leading to potential applications for transport of entanglement
and opportunities for novel two-photon interferometry experiments.
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I. INTRODUCTION

The Hong-Ou-Mandel (HOM) effect [1] is probably the
best-known two-photon interference effect. Two identical
photons are simultaneously incident on different inputs of a
50:50 beam splitter as in Fig. 1(a). Each photon could exit
either output port, so naively one expects nonzero amplitudes
for three possible outcomes: both exiting at port 3, both exit-
ing at port 4, or one photon exiting at each of ports 3 and 4. But
in fact, no coincidences are seen between port 3 and port 4;
the two photons always leave at the same port. Which port the
pair exits is entirely random. Coincidences between the two
output ports are absent because of cancelations between the
two indistinguishable processes on the upper line of Fig. 1(b).
As a result, the two photons always remain clustered together
in the same output spatial mode. This gives a method for
measuring time intervals to subpicosecond-level accuracy: as
the delay between the photons varies, the coincidence rate
exhibits a sharp dip (the HOM dip) when the wave functions
briefly overlap on the beam splitter.

Quantum walks [2,3] are currently the subject of exten-
sive investigation, in part because they have been shown
to be formally equivalent to a universal quantum computer
[4–6], and so they provide new insights into a variety of
quantum algorithms, especially quantum search algorithms.
In a Hadamard walk, the walker’s amplitude produces two
peaks that move ballistically in opposite directions [Fig. 2(a)],
so the distribution’s width grows linearly in time, σ ∼ t . In
contrast, classical random walks give approximately Gaus-
sian distributions whose widths spread diffusively (σ ∼ √

t).
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Consequently, quantum walks can probe large regions more
rapidly than classical walks, leading to quantum speedups of
walk-based algorithms. Details differ for specific implementa-
tions of quantum walks, but discussion of quadratic speedups
can be found in [7] for Hadamard walks and in [8,9] for
Grover walk-based searches.

A variety of two-particle quantum walks have been studied
[10–19]. Here we look at an arrangement in which two in-
distinguishable bosons undergo a discrete-time quantum walk
along a dual-rail- or ladder-type system [Fig. 3(a)], with a
four-dimensional Grover coin at each vertex. Such a chain
could be considered as a pair of quantum wires (representing
a pair of states), with the Grover coins serving as directional
couplers [20,21] between them; more pertinently to our pur-
poses here, we may also think of the system as a single
double-stranded quantum wire in which we care only about
the horizontal location of the particle, not whether it is on the
upper or lower strand.

For specificity, assume that the walking particles are pho-
tons. Then the Grover coins can be implemented using a
linear-optical four-port (Fig. 4), which is a special case of
the directionally unbiased multiports studied in [22–27]. The
three-port version of this device has been demonstrated in
a tabletop setup [26], and initial work on integrated chip
versions of such structures is under way. The system is based
entirely on linear optics, with no interactions between the
photons. In particular, if the photons are distinguishable, then
each exhibits an independent quantum walk and can later
be detected in widely separated spatial regions. However,
once the photons become indistinguishable, the two-photon
interference alters the picture: it is shown below that for a
particular input state the two photons remain spatially clus-
tered and are always found at the same horizontal location
at each moment. Moreover, the two-photon amplitude shows
no sign of the randomness normally associated with random
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FIG. 1. Two photons entering a beam splitter at different ports
(a) lead to four different outcomes (b), labeled according to whether
each photon reflects (R) or transmits (T). Outcomes on the top
line (RR and TT) are indistinguishable. Being of equal magnitude
but opposite sign, their amplitudes cancel, so coincidences between
output ports vanish. Although exiting at a random output port, both
photons are always found to cluster together in the same port.

walks: it splits into a quantum superposition of two localized
packets that each move deterministically over time, with the
two photons always remaining clustered in one packet or the
other.

These effects depend only on indistinguishable photons
being inserted into the same Grover coin vertex simultane-
ously; entanglement is not required. However, if the photons
are entangled, then they remain together with entanglement
undiminished as they move, opening up new possibilities for
quantum information processing, as briefly commented upon
in the Conclusions (Sec. VI).

Experimentally, the most practical realization of the struc-
tures described here is on integrated optical chips. Losses,
decoherence, and chip imperfections will of course limit the
possible walk lengths of experimental implementations. Up
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FIG. 2. (a) A typical one-dimensional (Hadamard) quantum
walk. Spatial probability distributions have a low probability of
remaining near the origin and widths that increase linearly with
time. (b) In contrast, classical walks yield approximately Gaussian
distributions, whose widths increase more slowly, ∼√

t .
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FIG. 3. (a) A chain of four-ports connected by pairs of edges.
Each edge pair is thought of as a single double-stranded connection
line, and vertex positions are labeled by integers. (b) The initial state
consists of two indistinguishable, right-moving photons injected into
ports 1 and 2 of the m = 0 multiport, in the middle of the chain.

to this point, quantum walks of both single photons and
entangled photon pairs have typically been implemented using
integrated optics for walks of lengths of the order of 5 to 10
time steps (for example, [15,28–30]), although proposals have
been made for arrangements that may allow longer walks [31].
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FIG. 4. One possible optical implementation of the four-
dimensional Grover coin, the directionally reversible four-port de-
vice. Photons can both enter and exit each of the four external
ports. At each corner of the loop there is a beam splitter, a mirror
(green rectangles), and a phase shifter (blue rectangles). Similar
n-port devices can be constructed for any n; their workings are
analyzed in detail in [22] and the three-port version is experimentally
demonstrated in [26].
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In what follows, we assume an idealized system, neglecting
losses and other imperfections.

II. SETUP AND MAIN RESULT

Consider a directionally unbiased four-port acting as a
Grover coin [32,33], with ports labeled as in Fig. 3(b). The
action of the four-port is given by the unitary matrix

U = 1

2

⎛
⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞
⎟⎠, (1)

where rows and columns represent the four ports. Regardless
of which port a photon enters, exit amplitudes at all outputs
are real and equal in magnitude. Importantly, the amplitude to
reflect back to the input port has an extra minus sign relative
to all other transitions.

Consider two photons entering the linear chain in Fig. 3(a)
simultaneously. Assume that one enters port 1 and the other
enters port 2 of the same multiport, as in Fig. 3(b), somewhere
in the middle of the chain, far enough from the ends that we
do not need to worry about the photons leaving the system
during the duration of the experiment. Experimentally, two
photons can be produced simultaneously using spontaneous
parametric down conversion [34] and then coupled into the
chain by means of an electro-optical or magneto-optical
switch. Horizontal positions are specified by an integer m
corresponding to the multiport label, and discrete time t = nT
by integer n, where T is the photon travel time between
multiports. At time n = 0, the photons are moving rightward,
entering the m = 0 multiport.

Then if the locations of the two photons at any later time
n > 0 are measured, two striking things are found. First,
the photons cluster spatially: if the two parallel input-output
edges between adjacent multiports are treated as a single
double-stranded connecting line, then the photons are always
found on the same double line. Assuming no loss and ideal
measuring devices, measurement at any horizontal location
always finds either two photons or none. This can be seen as
a quantum walk analog of the HOM effect: amplitudes for
indistinguishable outcomes in which the photons move apart
always cancel among themselves, as shown in the next sec-
tion. However, the HOM quantum interference effect occurs
just once, whereas clustering of the walk persists indefinitely,
over an arbitrarily long sequence of steps.

Second, this clustered two-photon amplitude behaves in an
unusual manner. It breaks after the first step into a sustainable
superposition of two distinct localized states (Fig. 5). One two-
photon cluster in the superposition moves away from the start-
ing point ballistically, exhibiting no randomness. The other
cluster stays near m = 0, bouncing back and forth between
two adjacent locations (a phenomenon dubbed oscillatory
localization [35]). So another way to look at the state is as
an odd sort of two-photon clustered Schrodinger cat state, in
which the parts of the cat rapidly separate from each other:
the two-photon cat speeds away after a rat and simultaneously
remains rocking contentedly in its warm cat bed.

For comparison, imagine a single photon entering the
present system, initially localized on one input port. This can

Position

Time

FIG. 5. After the first step, the amplitude splits: it becomes an
equal superposition of two photons moving away ballistically and
two photons oscillating near the initial point.

be seen as the sum of two states, one symmetric over the upper
and lower lines and one antisymmetric:

|1〉 = 1
2 (|1〉 + |2〉) + 1

2 (|1〉 − |2〉) (2)

= |ψs〉 + |ψa〉. (3)

The symmetric part will always continue rightward at each
step, while the antisymmetric portion reflects at each step,
leading to oscillations. These single-particle behaviors have
been discussed in [35] for Grover coin systems. What is
remarkable in the two-particle case is that measurement of
the two particles will always find them in the same part of
the superposition; one will never be found in the oscillating
portion and the other in the ballistic portion. Which part of
the superposition the two photons are found to be clustered in
is completely random, just as the output port in which the two
photons are clustered in the HOM effect is purely random.

The two halves of the clustered amplitude do not spread as
they propagate, exhibiting solitonlike behavior. Note that the
wave-packet spread in quantum walks is of statistical origin,
not a result of dispersive material properties. So cancellation
of spreading occurs in the current system from linear interfer-
ence processes, with no need for nonlinear interactions.

III. TIME EVOLUTION

A. First time step

Here we sketch the time evolution of the system. Addi-
tional details of the calculations can be found in Appendix A.

Momentarily treating the photons as distinguishable, there
are 16 possible exit outcomes from the four-port for the
input state in Fig. 3(b). Applying tensor product U ⊗ U to
the two-photon input, each of these real exit amplitudes has
absolute value ( 1

2 )
2 = 1

4 if the photons exit at different ports

or
√

2
4 = 1

2
√

2
if they exit at the same port. [The extra

√
2

appears when the indistinguishability is restored, due to the
normalization of two-boson Fock states, |2〉 = 1√

2
(a†)

2|0〉.]
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Amplitudes gain one minus sign for each photon that exits
back out the port through which it entered. So signs and
magnitudes of all transition amplitudes are readily obtained;
these are tabulated in Appendix A.

The initial state is |ψ0〉in = |12; 0, RR〉; the notation
|i j; m, RR〉 (|i j; m, LL〉) means one right-moving (left-
moving) photon in port i and one in port j at lattice site m.
The resulting output state is

|ψ1〉 = 1

2
√

2
[|33; 0, RR〉 + |44; 0, RR〉 − |11; 0, LL〉

− |22; 0, LL〉] + 1

2
[|34; 0, RR〉 + |12; 0, LL〉]. (4)

Assume that we only want to know the exit direction of the
photons (left or right) and do not care if the photon is in the
upper or lower channel. Then clustering can already be seen
in the transition probabilities for the first step of the walk:

(i) One possible outcome is for both photons entering
the left side of the multiport to exit back on the left side
(LL → LL). The probability of this is the sum of three terms
corresponding, respectively, to the amplitudes of both photons
exiting at port 1, one photon at each port, and both at port 2:

P(LL → LL) = P(|12〉 → |11〉) + P(|12〉 → |12〉)
+ P(|12〉 → |22〉) (5)

=
(

− 1

2
√

2

)2

+
(

1

2

)2

+
(

− 1

2
√

2

)2

= 1

2
. (6)

(ii) Similarly, both photons can exit right (ports 3 and 4):

P(LL → RR) = P(|12〉 → |33〉) + P(|12〉 → |34〉)
+ P(|12〉 → |44〉) (7)

=
(

+ 1

2
√

2

)2

+
(

1

2

)2

+
(

1

2
√

2

)2

= 1

2
. (8)

(iii) Finally, one photon can exit left and one right. The
appearance of extra minus signs in half the amplitudes (see
Appendix A) leads to complete cancellation:

P(LL → LR) = P(12 → 13) + P(12 → 14)

+ P(12 → 23) + P(12 → 24) (9)

= 0. (10)

The result is that even though the photons do not interact
and should walk independently, they in fact always step in the
same direction: both go right or both go left. Destructive in-
terference between indistinguishable amplitudes conspires to
eliminate outcomes in which they step in opposite directions.

B. Subsequent steps

Paragraphs (i)–(iii) above describe the first step. Transition
amplitudes can again be tabulated to find the outcomes of

subsequent steps. Summing over unmeasured intermediate
states in previous steps, one finds the amplitude splitting into
an equal superposition of two two-photon states.

The output of the first step [Eq. (4)] can be written as

|ψ1〉out = 1√
2

(|ψt ; 0, RR〉 + |ψr ; 0, LL〉), (11)

where

|ψt ; m, R〉 = |33; m, RR〉 + |44; m, RR〉
2

+|34; m, RR〉√
2

(12)

= |11; m + 1, RR〉 + |22; m + 1, RR〉
2

+|12; m + 1, RR〉√
2

(13)

|ψr ; m, LL〉 = −|11; m, LL〉 + |22; m, LL〉
2

+ |12; m, LL〉√
2

(14)

= −|33; m − 1, LL〉 + |44; m − 1, LL〉
2

+|34; m − 1, LL〉√
2

. (15)

Here, we have used the fact that states leaving ports 3 and 4
enter the adjacent vertex at ports 1 and 2, respectively.

Suppressing some labels for brevity, one finds that apply-
ing U × U again gives

|11〉 + |22〉
2

→ |33〉 + |44〉 + |11〉 + |22〉
4

+ |34〉 − |12〉
2
√

2
,

(16)

|12〉√
2

→ |33〉 + |44〉 − |11〉 − |22〉
4

+ |34〉 + |12〉
2
√

2
. (17)

Taking the sum of these as in Eq. (13), one finds that the
amplitudes |11〉, |22〉, and |12〉 cancel out at each step, so
that |ψt 〉 simply reproduces itself, but shifted one step to the
right:

|ψt ; m, RR〉 → |ψt ; m + 1, RR〉 → |ψt ; m + 2, RR〉 → . . . .

(18)

This is the ballistic state: it is totally transmitting at each
step. If the initiating state of the walk had been moving left
(|34; m, LL〉 instead of |12; m, RR〉), similar ballistic motion
occurs to the left.

The multiport action on |ψr〉 in Eq. (14) is found by taking
the difference of Eqs. (16) and (17), leading to cancellation of
the |33〉, |44〉, and |34〉 terms. So |ψr ; m, RR〉 simply reflects at
each multiport encounter, causing it to bounce back and forth
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Coincidence probability distribution for two indistinguishable photons
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FIG. 6. The spatial distribution of the photon amplitudes for two
photons at four times, given an initial state with two indistinguishable
photons entering ports 1 and 2 of the four-port at position m = 0.
The two axes give the locations of the two photons, labeled by the
integer-valued four-port index. It is shown that the amplitude splits
into two localized components, but that the two photons are always
found clustered together within the same component, as indicated by
the absence of amplitude away from the descending diagonal.

indefinitely:

|ψr ; m, RR〉 → |ψr ; m − 1, LL〉 → |ψr ; m, RR〉 → . . . .

(19)

The state is totally reflecting at each step, and the amplitude
acts as if it is confined in a virtual cavity, oscillating between
lattice sites m = 0 and m = 1.

Up to a spatial shift of one step per unit of time, states |ψt 〉
and |ψr〉 are both eigenstates of (U × U )2, with eigenvalue
+1, so evolution in subsequent steps is simply a repetition of
what happened in the first two steps: one two-photon ampli-
tude repeatedly reflects, and the other repeatedly transmits.

So the photons remain spatially clustered as they walk
along the line. This quantum walk-based analog of the HOM
effect might be referred to as a quantum-clustered two-photon
walk. But in addition, the two-photon state at each moment
localizes onto a quantum superposition of just two nondisper-
sive spatial amplitudes: one moves ballistically at a constant
speed, while the other flips direction at each step and never
moves more than 1 unit from its starting point. This is anal-
ogous to the single-particle Grover walk behavior, but with
the unexpected feature that the two photons are always found
clustered in the same localized part of the distribution and
never separate from each other.

The behavior of the system is shown in Fig. 6, where
the amplitude for the position of each photon is shown. It
is clearly shown that the amplitude splits into two localized
portions, with one portion staying near the origin and the other
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Coincidence probability distribution for two distinguishable photons
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FIG. 7. Spatial distribution of the photon amplitudes for two
distinguishable photons. In contrast to the indistinguishable case,
off-diagonal terms appear, indicating that the two photons no longer
remain clustered together.

moving away at a constant speed. Moreover, it can be seen
that the two indistinguishable photons remain together: there
is no amplitude away from the diagonal. In contrast, if the two
photons are distinguishable (Fig. 7), the lack of destructive
interference leads to the appearance of nonzero off-diagonal
amplitudes, indicating that the photons may become spatially
separated.

In all of the considerations above, the two photons have
been assumed to be in product states. In the next section, we
examine the behavior of polarization-entangled states in this
system.

IV. POLARIZATION-ENTANGLED INPUT

Thus far, no entanglement has been assumed between the
two input photon states. Now suppose that the two photons
inserted at the origin are polarization entangled. In particular,
define the states:

|Ai j
±〉 = 1√

2
{|iH〉| jV 〉 ± |iV 〉| jH〉}, (20)

|Bi j
±〉 = 1√

2
{|iH〉|iV 〉 ± | jV 〉| jH〉}. (21)

Here, i and j label the input-outport ports, while H and V label
the polarization states at each port. When necessary, we can
add position and direction labels, for example, |Ai j

±, m, LL〉
or |Bi j

±, m, LR〉. These states are polarization entangled for
i �= j. For i = j, the + states are product states, while the −
states vanish. It is straightforward to work out the action of
the multiport on these states by the same means as in Sec. III.

Analogously to previous sections, focus on the initial state
|ψ0〉in = |A12

+ , m〉. (Additional analysis of the A and B states,
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along with a third set of polarization-entangled states, is given
in Appendix B.) The output of the first step is

|ψ0〉out = 1
2 (|A12

+ , m, L〉 + |A34
+ , m, R〉

+ |B34
+ , m, R〉 − |B12

+ , m, L〉)out. (22)

It is readily seen that, once again, the photons cluster: both exit
left (ports 1 and 2) or both exit right (ports 3 and 4). Crucially
for entanglement, the two photons are always at different ports:
one exits onto the upper line and one onto the lower line.

This state enters adjacent multiports at the next step as

|ψ1〉in = 1
2 (|A34

+ , m − 1, LL〉 + |A12
+ , m + 1, RR〉

+ |B12
+ , m + 1, RR〉 − |B34

+ , m − 1, LL〉)in (23)

= 1√
2

(|ψr, m − 1, LL〉 + |ψt , m + 1, RR〉), (24)

where

|ψr〉 ≡ 1√
2

(|A34
+ 〉 − |B34

+ 〉) (25)

and

|ψt 〉 ≡ 1√
2

(|A12
+ 〉 + |B12

+ 〉). (26)

[Similarly, if the input state had been |B12
+ , m〉, the result-

ing output would have been 1√
2
(|ψr, m − 1, LL〉 − |ψt , m+1,

nRR〉).] Calculations similar to those in the previous section
show these again to be totally transmitting and totally re-
flecting: |ψr〉 subsequently oscillates back and forth near the
origin, while |ψt 〉 remains unchanged aside from repeatedly
shifting rightward by one step per unit of time. So the picture
remains the same as in the previous section, but with the
additional feature that the polarization entanglement remains
undiminished as the walk proceeds. Which polarization is on
which edge is indeterminate until measured, and clustered
two-photon states remain polarization entangled between up-
per and lower edges as they propagate. Perfect state transport
occurs probabilistically (50% probability) for |ψt 〉, delivering
two entangled photons to the same horizontal location at the
same time.

V. COHERENT-STATE INPUT

It is natural to ask how other types of states propagate
through this system. Consider, for example, coherent-state
input. In particular, consider the state

|ψin〉 = |α〉1|α〉2|0〉3|0〉4, (27)

with equal-amplitude coherent states entering ports 1 and 2 at
some lattice site (here we omit directional and site labels again
to streamline notation). This state can be written in terms of
displaced vacuum states as

|ψin〉 = e− 1
2 |α|2 eαâ†1 −α∗â1 e− 1

2 |α|2

×eαâ†2 −α∗â2 |0〉1|0〉2|0〉3|0〉4. (28)

After passage through the four-port, the output state is

|ψout〉 = e− 1
2 |α|2 e

1
2 α(−â†1 +â†2 +â†3 â†4 )e−α∗(−â1+â2+â3+â4 )

× e− 1
2 |α|2 e

1
2 α(â†1 −â†2 +â†3 +â†4 )

× e−α∗(â1−â2+â3+â4 )|0〉1|0〉2|0〉3|0〉4 (29)

= e−|α|2 eα(â†3 +â†4 )−α∗(â3+â4 )|0〉1|0〉2|0〉3|0〉4 (30)

= |0〉1|0〉2|α〉3|α〉4. (31)

Iterating the process, it is clear that this balanced double
coherent state propagates indefinitely without reflection.

The unidirectional propagation follows from the fact that
the amount of amplitude reflected backward along line 1 (for
example) contains equal contributions from the light that had
entered at ports 1 and 2, but these two amplitudes will reflect
out port 1 with opposite sign. Equivalently, the Grover four-
port selects out only the portion of the reflected state that is
antisymmetric under interchange of upper and lower lines, but
the input contains only a symmetric part.

Coherent-state amplitudes are inherently fluctuating ob-
jects, so arranging equal amplitudes in the two lines over
multiple steps may seem unlikely. It is therefore sensible
to look at what happens when the input coherent states are
unbalanced, with amplitude α in the upper line and amplitude
β in the lower line:

|ψin〉 = |α〉1|β〉2|0〉3|0〉4. (32)

Manipulations along the same lines as above lead, after one
step, through the Grover four-port to the output

|ψout〉 =
∣∣∣∣β − α

2

〉
1

∣∣∣∣α − β

2

〉
2

∣∣∣∣α + β

2

〉
3

∣∣∣∣α + β

2

〉
4

. (33)

There is now both rightward transmission and leftward re-
flection; however, note that the amplitudes on the two right-
moving lines are of equal amplitude again. Thus, any fluc-
tuations in the input amplitude on the left are automatically
evened out in the rightward-traveling transmitted amplitudes.
This is again due to the fact that the two rightward amplitudes
are each equal superpositions of the two input modes, so any
fluctuation in one input is equally shared between the two
outputs. If measurements are made at some point N steps to
the right of the input, the output arriving at a given time is
guaranteed to have equal amplitudes in both lines, regardless
of reflections or losses or of initially unequal inputs. A similar
conclusion will hold for output measured at some distance to
the left of the initial point.

VI. CONCLUSIONS

We have shown that two-particle quantum interference al-
lows two noninteracting, indistinguishable walkers to remain
clustered as they walk along a chain of directionally unbiased
Grover four-ports. The resulting state is a superposition of
two spatially localized two-photon clusters, one confined near
the origin and the other moving monotonically away. If the
particles are entangled, the pair moves as a single unit, with
undiminished entanglement. Whereas perfect state transport
has been demonstrated for single-photon states in various
systems [36–38], this system demonstrates the existence of
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perfect state transport for entangled multiparticle states as
well, with 50% arrival probability.

Potential applications are readily envisioned. Entangled
pairs can be delivered in a controllable manner to distant lo-
cations for standard applications like entanglement swapping
and quantum repeaters or to control the flow of entanglement
for two-photon interference effects in quantum networks [39].
Since the ballistic part moves at a constant speed, these
locations are addressable simply by waiting the appropriate
amount of time for the amplitude to arrive. Similarly, new
communication or quantum key distribution protocols can
be imagined requiring two spatially separated participants to
simultaneously share equal access to the amplitudes of both
photons in an entangled pair; the presence of two photons in
each spatially separated state (|ψt 〉 and |ψr〉) could be used for
error detection, for example.

One reason why utilizing the clustering effect can be useful
in such applications, rather than simply sending a photon
pair along a fiber or through free space, is that by adding
phase shifts in the lines between the multiports the flow of
the photon pairs can be controlled; they can be stopped at
a desired location (oscillating between two adjacent mul-
tiports) or their direction of motion can be reversed. This
sort of control is something that cannot be done with a
simple optical fiber, and here it can be done without dam-
aging any entanglement between the photons. The means
of such control is readily seen: inserting phase shifts of π

2
to an upper line and −π

2 to the corresponding lower line
converts the reflecting and transmitting states of Eqs. (13) and
(14) into each other, allowing the experimenter to control-
lably switch back and forth between ballistic and oscillating
behavior.

Furthermore, the fact that there are two spatially separated
two-photon amplitudes means that these amplitudes can be
brought back together and interfere with each other. This pro-
vides a means of probing the region that the ballistic portion
has traveled through, allowing new two-photon sensing meth-
ods. For example, if one photon is vertically polarized and one
horizontally polarized (the entangled |A12

+ 〉 state, for instance),
they may gain different polarization-dependent phase shifts
due to external magnetic fields; even very small relative phase
shifts will destroy the clustering effect, leading to a dip in the
two-photon interference (similar to the Hong-Ou-Mandel dip)
when the two halves of the superposition are brought back
together, allowing sensitive detection of external fields in the
relevant region.

In addition, the results in the previous section show that
this arrangement can be used to correct for differential losses
between pairs of coherent-state beams. This is a significant
benefit in coherent-state interference experiments.

Applications and further properties of this system will be
examined in detail elsewhere.

ACKNOWLEDGMENTS

This research was supported by National Science Foun-
dation EFRI-ACQUIRE Grant No. ECCS-1640968, AFOSR
Grant No. FA9550-18-1-0056, and the Northrop Grumman
NG Next.

APPENDIX A: CALCULATION OF OUTPUT
PROBABILITIES

Here, for reference, additional details of the calcula-
tions used in the text are filled in. We work in the basis
{|1〉, |2〉, |3〉, |4〉}, where |n〉 represents a photon in port n.
We suppress directional labels when the direction (ingoing
or outgoing from the multiport) is clear, as well as dropping
site labels when they are not needed. A single-photon state
entering or exiting a given multiport can be written as a
column matrix:

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ = a|1〉 + b|2〉 + c|3〉 + d|4〉. (A1)

The matrix U of Eq. (1) then acts on such column matrices.
For input state |1〉, transition matrix U then gives output

|1〉 → (
1
2

)
(−|1〉 + |2〉 + |3〉 + |4〉); (A2)

the actions on input states |2〉, |3〉, |4〉 are just cyclical permu-
tations of this.

The action on two-particle input states is obtained by tak-
ing products of two single-particle output states. For example,
given a two-photon input state |12〉 = |1〉|2〉, with one photon
entering port 1 and one photon entering port 2, the output is
of the form

|12〉 → 1
4 (−|1〉 + |2〉 + |3〉 + |4〉)

· (+|1〉 − |2〉 + |3〉 + |4〉) (A3)

= 1
4 (−|11〉 + |12〉 − |13〉 − |14〉
+ |21〉 − |22〉 + |23〉 + |24〉
+ |31〉 − |32〉 + |33〉 + |34〉
+ |41〉 − |42〉 + |43〉 + |44〉) (A4)

= 1
4 (−|11〉 + 2|12〉 − |22〉 + |33〉 + |44〉 + 2|34〉)

= 1
4 (−

√
2|2, 0, 0, 0〉 + 2|12〉 −

√
2|0, 2, 0, 0〉

+
√

2|0020〉 +
√

2|0002〉 + 2|34〉), (A5)

where, for example, |2, 0, 0, 0〉 represents the Fock state with
two photons in port 1 and zero photons in ports 2, 3, and 4.
The extra factors of

√
2 in the last line come from writing

the states with two photons in the same port in terms of the
two-particle Fock state in port n with standard normalization;
for example,

|11〉 = a†a†|0〉 =
√

2|2, 0, 0, 0〉. (A6)

The transition amplitudes from initial input state

|ψ0〉 = |12〉 (A7)

to all possible output states are then easy to tabulate and are
shown in the table in Fig. 8.

Exit probabilities can be found by adding the amplitudes
for indistinguishable outcomes and squaring. For example, the
probability for the photons to exit at ports 3 and 4 is given by
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FIG. 8. Amplitudes for all the two-particle paths through a single
four-port.

the squared sum of two amplitudes (Fig. 9):

P(|ψ0〉 → |34〉) = 1

2

(
1

2
√

2
+ 1

2
√

2

)2

= 1

4
.

Table I lists the amplitudes for all possible output states of the
Grover coin four-port, assuming input state |ψ0〉.

The probabilities of both photons exiting left, both exiting
right, or one exiting in each direction are then found by simply
adding the probabilities from the table,

P(ψ0 → LL) = 1

8
+ 1

4
+ 1

8
= 1

2
, (A8)

P(ψ0 → RR) = 1

8
+ 1

4
+ 1

8
= 1

2
, (A9)

P(ψ0 → LR) = 0, (A10)

as reported in the text [Eqs. (6)–(10)].

APPENDIX B: ACTION OF A GROVER COIN
ON ENTANGLED STATES

First, recall the standard maximally entangled Bell states,

|�±〉 = 1√
2

(|1H〉|2V 〉 ± |1V 〉|2H〉), (B1)

|�±〉 = 1√
2

(|1H〉|2H〉 ± |1V 〉|2V 〉), (B2)

where, for example, | jH〉 represents a horizontally polarized
photon in port j.

31

2

1

2 4

3

4
+

FIG. 9. Amplitudes of indistinguishable outcomes must be
added; shown here are the amplitudes for exit at ports 3 and 4 (the
two cells in the top-right corner of Fig. 8), which add and then square
to give the probability P(|ψ0〉 → |34〉) in Table I.

TABLE I. Two-photon exit probabilities for input |ψ0〉.

Transition Probability Exit direction

|ψ0〉 → |11〉 P = ( − 1
2
√

2

)2 = 1
8 LL

|ψ0〉 → |12〉 P = (
1
4 + 1

4

)2 = 1
4 LL

|ψ0〉 → |13〉 P = (
1
4 − 1

4

)2 = 0 LR

|ψ0〉 → |14〉 P = (
1
4 − 1

4

)2 = 0 LR

|ψ0〉 → |22〉 P = ( − 1
2
√

2

)2 = 1
8 LL

|ψ0〉 → |23〉 P = (
1
4 − 1

4

)2 = 0 LR

|ψ0〉 → |24〉 P = (
1
4 − 1

4

)2 = 0 LR

|ψ0〉 → |33〉 P = ( + 1
2
√

2

)2 = 1
8 RR

|ψ0〉 → |34〉 P = (
1
4 + 1

4

)2 = 1
4 RR

|ψ0〉 → |44〉 P = ( + 1
2
√

2

)2 = 1
8 RR

Then define an additional set of states:

|Ai j
±〉 = 1√

2
(|iH〉| jV 〉 ± |iV 〉| jH〉), (B3)

|Bi j
±〉 = 1√

2
(|iH〉|iV 〉 ± | jV 〉| jH〉), (B4)

|Ci j
±〉 = 1√

2
(|iH〉| jH〉 ± |iV 〉| jV 〉). (B5)

These have the following properties:
(a) If i = j, |Aj j

+ 〉 = |B j j
+ 〉, and |Aj j

− 〉 = |B j j
− 〉 = 0.

(b) For i �= j, |C12
± 〉 = |�±〉 and |A12

± 〉 = |�±〉 are maxi-
mally entangled Bell states.

(c) |C11
± 〉 and |C11

± 〉 can be seen as N00N states with N = 2
polarized photons.

We now examine how these states behave under the action
of the Grover four-port and see for which initial states two-
photon clustering occurs.

(I) The A12
+ state is studied in Sec. IV. We know that at

the first step it splits into a sum of reflecting and transmitting
states:

|A12
+ 〉 → |ψt 〉 + |ψr〉. (B6)

The two photons in the reflecting and transmitting states then
continue to cluster in all subsequent steps.

(II) In a similar manner, B12
+ splits into a difference of

reflecting and transmitting states:

|B12
+ 〉 → |ψt 〉 − |ψr〉, (B7)

again leading to photon clustering.
(III) The product state A11

+ = √
2|1H〉|1V 〉 transforms un-

der the Grover coin at the first step as

|A11
+ 〉 → 1

2
√

2
[|1H〉|1V 〉 + |2H〉|2V 〉 + |3H〉|3V 〉

+ |4H〉|4V 〉 − (|1H〉|2V 〉 + |2H〉|1V 〉)

− (|1H〉|3V 〉 + |3H〉|1V 〉) − (|1H〉|4V 〉
+ |4H〉|1V 〉) + (|2H〉|3V 〉 + |3H〉|2V 〉)

+ (|2H〉|4V 〉 + |4H〉|2V 〉)

+ (|3H〉|4V 〉 + |4H〉|3V 〉)]. (B8)
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Since cross terms occur that mix left-moving (1 and 2) exit
states with right-moving (3 and 4) states, no clustering occurs.
|A22

+ 〉 behaves similarly.
(IV) A12

− input leads to output at the first step of the form:

|A12
− 〉 → 1

2
√

2
[(|1V 〉|4H〉 − |1H〉|4V 〉)

+ (|1V 〉|3H〉 − |1H〉|3V 〉)
+ (|2H〉|3V 〉 − |3H〉|2V 〉)
+ (|2H〉|4V 〉 − |2V 〉|4H〉)]. (B9)

Not only does clustering not occur, but the two photons always
go in opposite directions at this first step. (This repulsion
of course does not continue in subsequent steps, since the
interference no longer occurs once the photons are separated.)

(V) The C±
11 states transform at the first step as follows:

|C11
± 〉 → 1

4
√

2
(|1H〉|1H〉 + |2H〉|2H〉

+ |3H〉|3H〉 + |4H〉|4H〉)

+ 1

2
√

2
[(|2H〉|3H〉 + |2H〉|4H〉 + |3H〉|4H〉)

− (|1H〉|2H〉 + |1H〉|3H〉 + |1H〉|4H〉)]

± same with H → V. (B10)

This does not cluster because of the crossed terms mixing 1
and 2 with 3 and 4 in the second line. C±

22 behaves in a similar
manner.

(VI) C12
± becomes a linear combination of all of the C states

under the action of the four-port:

|C12
± 〉 → 1

4 (−|C11
∓ 〉 − |C22

∓ 〉 + |C33
± 〉 + |C44

± 〉)

+ 1
4 (|C12

± 〉 + |C34
± 〉). (B11)

In subsequent steps, this state then declusters because the C j j
±

states in the first parentheses decluster, as shown in paragraph
IV above.

So, summarizing, the A12
+ and B12

+ states will always cluster,
while the remainder of the A, B, and C states will not.

[1] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044
(1987).

[2] J. Kempe, Contemp. Phys. 44, 307 (2003).
[3] A. Ambainis, Int. J. Quantum Info. 1, 507 (2003).
[4] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[5] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon,

Phys. Rev. A. 81, 042330 (2010).
[6] R. Portugal, Quantum Walks and Search Algorithms (Springer,

Berlin, 2013).
[7] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J.

Watrous, in Proceedings of the Thirty-third Annual ACM Sym-
posium on Theory of Computing (STOC ’01) (Association for
Computing Machinery, New York, 2001), p. 37.

[8] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, 22–24 May 1996 (Association for Computing
Machinery, New York, 1996), pp. 212–219.

[9] N. Shenvi, J. Kempe, and R. B. Whaley, A quantum random
walk search algorithm, Phys. Rev. A 67, 052307 (2003).
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