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We consider Mach-Zehnder and Hong-Ou-Mandel interferometers with nonclassical states of light as input,
and study the effect that dispersion inside the interferometer has on the sensitivity of phase measurements. We
study in detail a number of different one- and two-photon input states, including Fock, dual Fock, maximally
path-entangled �N ,0�+ �0,N� �“N00N”� states, and photon pairs from parametric down-conversion. Assuming
there is a phase shift �0 in one arm of the interferometer, we compute the probabilities of measurement
outcomes as a function of �0, and then compute the Shannon mutual information between �0 and the mea-
surements. This provides a means of quantitatively comparing the utility of various input states for determining
the phase in the presence of dispersion. In addition, we consider a simplified model of parametric down-
conversion for which probabilities can be explicitly computed analytically, and which serves as a limiting case
of the more realistic down-conversion model.
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I. INTRODUCTION

Interferometry is both an important tool for practical mea-
surements and a useful testing ground for fundamental physi-
cal principles. As a result, the search for methods to improve
the resolution of interferometers forms an active area of
study. It has been shown by a number of authors ��1–4�� that
nonclassical states, in particular those with high degrees of
entanglement, when used as input to an interferometer can
lead to resolutions that approach the Heisenberg limit, the
fundamental physical limit imposed by the uncertainty prin-
ciple. Most of this previous work has dealt with idealized
interferometers, with no dispersion or photon losses. Before
quantum interferometry may become a useful practical tool
the question must be asked as to how well the conclusions of
these previous studies hold up in more realistic and less ide-
alized situations. In this paper, we will attempt to take the
next step along this road by adding dispersion to the appara-
tus and examining what effect this has on the phase sensitiv-
ity of interferometry with nonclassical input. The motivation
for this work is the desire to ultimately construct quantum
sensors that can measure the values of external fields by
measuring the phases shifts they produce in an interferom-
eter.

In particular, the nonclassical input states we will consider
are �i� Fock states �N ,0� which have a fixed number of pho-
tons incident on one input port, �ii� dual or twin Fock states
�N ,N� which have the same number of photons incident on
each input port, and �iii� �1 /�2� ��N ,0�+ �0,N�� �N00N
states�. Here, �Na ,Nb� denotes a state with numbers Na and
Nb of photons entering each of the two interferometer input
ports.

There has been a great deal of recent work on the produc-
tion of nonclassical states of light with large �N�2� numbers
of photons by means of postselection �for example, �5–8��;
however, at present the utility of these postselection schemes
for application to practical situations is not clear. Although

this work is useful for clarifying the scientific issues in-
volved, it is not technologically feasible at present to use
these methods to produce the desired states on demand.
Rather, postselection produces states statistically, at random
times, and therefore cannot be relied upon to produce states
on demand for a quantum sensor. In addition, for large pho-
ton number, great care must be taken to distinguish between
states of N photons and those of N−1 photons, making it
difficult to prevent mixed states from appearing, which
would change the physics involved. In contrast, two-photon
entangled states with well-defined properties can be easily
produced by parametric down-conversion or other methods.

Due to the current practical difficulties of producing on
demand entangled photon states with large, well-defined N,
we save the large-N case for later study and restrict ourselves
in this current paper to situations which are both simpler and
of more immediate practical interest, namely the cases of one
or two photons. Furthermore, for the two-photon case, we
consider two possibilities: �i� the photons may be uncorre-
lated in frequency, or �ii� the pair may be produced through
spontaneous parametric down-conversion �SPDC�, resulting
in anticorrelation between the two frequencies.

Our goal is to compare the usefulness of each of these
cases for making phase measurements in the presence of dis-
persion, so we will need a means of quantifying the sensitiv-
ity of the interferometer with respect to these measurements.
Consider a single shot consisting of a nonclassical state of
light with a fixed number of photons being injected into the
input ports of the interferometer. Suppose some phase-
dependent observable M��� is measured during this shot.
The usual way to define the phase sensitivity of the measure-
ment is by computing

�� = 	dM

d�
	−1

�M . �1�

However, this is correct only if the probability distribution of
the phases has a single peak and is approximately Gaussian
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in shape. A more general strategy is to take an information-
theoretical approach and to define the quantum fidelity by
means of the Shannon mutual information �9�

H��:M� =
1

2�


m
�

−�

�

d� P�m���log2� 2�P�m���

�
−�

�

P�m����d�� .

�2�

Here, m and � are the measured values of the random vari-
ables M and �, while P�m ��� is the conditional probability
of obtaining measurement m given the phase � on a particu-
lar shot. In this formula, we have also assumed maximum
ignorance of the phase, i.e., we have assumed a uniform
distribution for �, p���=1 /2�. Suppose that the detectors
have a characteristic time scale TD. Then in this context, a
single shot will consist of a well-defined number of photons
entering the apparatus simultaneously �i.e., within a temporal
window much smaller than TD� and separated in time from
any other entering photons by a time �TD. The mutual in-
formation is a measure of the information gained per shot
about the phase � from a measurement of the observable M.
In our case, the role of M will be played by the number of
photons detected at each of the output ports. For N input
photons, output detector C will count l photons, detector D
will detect the remaining N− l photons, and the sum in Eq.
�2� will become a sum over l, where l=0,1 , . . . ,N. Through-
out this paper we will use the quantum fidelity as our mea-
sure of phase sensitivity. Besides being of very general ap-
plicability and giving a precise, calculable measure for the
utility of a measurement, the introduction of the mutual in-
formation provides a link to the theory of quantum informa-
tion processing. Bahder and Lopata �9� have computed the
quantum fidelity as a function of N for idealized lossless and
dispersionless interferometers with Fock and N00N state in-
puts. In the following sections, we will see how their results
change for the cases of N=1 and 2 when dispersion is
present.

Although not the principal focus of this paper, it should be
noted that the existence of multiple peaks in the output prob-
ability distributions invalidate the assumptions used to derive
the Heisenberg bound from the Cramer-Rao lower bound,
which makes input states with multimodal distributions es-
pecially interesting from the point of view of the study of
phase sensitivity. Note that violations of the Heisenberg limit
have recently been shown to exist in another context, distinct
from the situation examined in this paper, namely, in the
context of nonlinear interferometry �10–12�.

We will assume that one branch of the interferometer has
a dispersive element which gives the photon wave number k
a frequency dependence of the form

k��� = k0 + 	�� − �0� + 
�� − �0�2, �3�

ignoring the possibility of higher-order terms. The other in-
terferometer arm will be assumed to be of negligible disper-
sion. Here, 	 is the inverse of the group velocity, and 
 is the
group delay dispersion per unit length.

In addition to the Mach-Zehnder interferometer, we will
examine the fidelity of an alternate setup used in �6�, in

which N00N states are incident on a single beam splitter
used as a Hong-Ou-Mandel �HOM� interferometer. We will
then be in a position to compare the possible input states and
interferometer setups, with a view to gaining insight into
their relative usefulness in practical measurements. In the
two-photon cases, we must distinguish between situations in
which the photon energies �or frequencies� are correlated and
those in which they are independent. Thus, after we examine
the case of energy-uncorrelated photons, we look at photon
pairs anticorrelated in energy. We further consider two sub-
cases of the latter: �i� a simple model which can be solved
analytically and which amounts to a simplified version of
spontaneous down-conversion, and �ii� a more realistic but
less analytically tractable version of down-conversion.

The plan of this paper is as follows. In Sec. II we consider
the setup for the dispersive Mach-Zehnder interferometer
and define the input states we will use in more detail. In Sec.
III, we apply the possible one-photon inputs to the interfer-
ometer and compute the probabilities for the various possible
outcomes. In Secs. IV and V, respectively, we do the same
for the Mach-Zehnder interferometer with several different
two-photon inputs and for the HOM interferometer with N
=2 N00N state input. In Sec. VI we compute and plot the
mutual information for each of the preceding cases as func-
tions of bandwidth and dispersion levels; we then compare
and discuss the results for the various cases. Finally, in Sec.
VII we repeat the same calculation for input consisting of a
photon pair produced via spontaneous parametric down-
conversion before arriving at final conclusions in Sec. VIII.

For ease of reference later, Table I summarizes the spe-
cific cases we will examine over the following sections.

II. THE DISPERSIVE MACH-ZEHNDER
INTERFEROMETER

Consider the Mach-Zehnder interferometer of Fig. 1, with
50:50 beam splitters. Assume for the moment that there is no

dispersion in the apparatus. Let â� and b̂� be operators that
annihilate photon states in the two input ports A and B. They
obey the usual canonical commutation relations with the cor-

responding creation operators â�
† and b̂�

† :

�â�, â��
† � = �b̂�, b̂��

† � = ��� − ��� , �4�

with all other commutators vanishing. For independent pho-
tons, the input states to the interferometer can be described in
terms of the number of photons entering the two ports:

�Na,Nb;�1, . . . ,�Na
;�1�, . . . ,�Nb

� �

=
1

�Na!Nb!
â�1

†
¯ â�Na

† b̂
�1�
†

¯ b̂
�Nb
�

† �0� , �5�

where Na and Nb are the number of photons in ports A and B,
respectively, and �0� is the vacuum state with no photons.

Similarly, Nc, Nd, ĉ�, and d̂� will represent the photon num-
bers and annihilation operators at output ports C and D.

The effect of the Mach-Zehnder �MZ� interferometer on a
given input state may be described in terms of the scattering
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matrix S���. The initial and final annihilation operators are
related by a scattering matrix S���:

� ĉ����

d̂����
� = S����â�

b̂�

� , �6�

where � is the relative phase difference experienced by pho-
tons in the two arms. In the absence of photon losses in the
system, the scattering matrix will be unitary. Then, for an
ideal Mach-Zehnder interferometer, the scattering matrix is
given by

S��� =
1

2
�ei�eikL1 − eikL2��z −

i

2
�ei�eikL1 + eikL2��x

= − ieikL1ei�/2�− sin
�

2
cos

�

2

cos
�

2
sin

�

2
 , �7�

where the Pauli matrices are

�x = �0 1

1 0
� and �z = �1 0

0 − 1
� . �8�

In this scattering matrix we have assumed �as we will assume
henceforth� that the lengths of the two interferometer arms
are equal, L1=L2. Using this matrix in Eq. �6�, we can invert
the equation and take adjoints to arrive at the following re-
sult:

â�
† = i�ĉ�

† sin
�

2
− d̂�

† cos
�

2
�ei�/2, �9�

b̂�
† = − i�ĉ�

† cos
�

2
+ d̂�

† sin
�

2
�ei�/2. �10�

We assume that the frequency distribution for each in-
coming photon is Gaussian and that each Gaussian has the
same width and central frequency, of the form e−��� − �0�2/2.
Input and output states will either be states of definite photon
number in the sense that they are eigenstates of number op-

erators of the form N̂j =�d� a�
�j�†a�

�j� �where a�
�j� is the anni-

hilation operator for photons at the jth port�, or else super-
positions of such states.

We introduce dispersion to the upper branch of the inter-
ferometer by giving the wave number k a frequency depen-
dence of the form in Eq. �3�. We assume that the dispersion
in the other branch of the interferometer is negligible, i.e.,
that k���=k0 in that branch. The length of the portion of the
upper arm for which k��� differs from k0 will be denoted L,
where 0LL1. In addition to any phase difference result-
ing from the asymmetric dispersion, we also assume that
photons traveling through the upper branch of the interfer-
ometer gain an additional phase difference �0 relative to the
lower branch. �0 is any phase difference of nondispersive
origin that may be present in the setup; this may be due to a
difference in path length, or an interaction of one arm of the
interferometer with an external field. Note that for our setup,
the assumption of a balanced interferometer entails no loss of
generality; to account for an unbalanced interferometer, it

TABLE I. Summary of the special cases examined in the later sections of this paper.

Case
no.

No. of
photons

Interferometer
type

Input
state

Frequency
correlation

A 1 MZ Fock Not applicable

B 1 MZ N00N Not applicable

C 2 MZ Fock None

D 2 MZ Dual Fock None

E 2 MZ N00N None

F 2 MZ Fock Anticorrelated

G 2 MZ N00N Anticorrelated

H 2 MZ Dual Fock Anticorrelated

I 1 HOM N00N None

J 2 HOM N00N None

K 2 HOM N00N Anticorrelated

L 2 MZ SPDC Fock Anticorrelated

FIG. 1. Mach-Zehnder interferometer with dispersion in one
arm. There is also a phase shift �0 of nondispersive origin in the
same arm.
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suffices to simply include a term of the form k0�L1−L2� in-
side the phase factor �0.

In the presence of the dispersion, the scattering matrix
will now be of the form

S��0� =
1

2
eik0L1� ei���� − 1 − i�ei���� + 1�

− i�ei���� + 1� − �ei���� − 1�
�

= − ieik0L1ei����/2�− sin
����

2
cos

����
2

cos
����

2
sin

����
2
 ,

�11�

where for future convenience we have shifted the frequency
dependence into a new phase angle by defining

���� = �0 + 	L�� − �0� + 
L�� − �0�2. �12�

Consider N photons entering the interferometer and as-
sume for now that their frequencies are independent vari-
ables. The Fock, dual Fock, and N00N input states are of the
form

�N,0�� =
1

�N!
��

�
�N/4� d�1 ¯ d�N exp�−

�

2 

j=1

N

�� j − �0�2�
� â�1

†
¯ â�N

† �0� �13�

�N,N�� =
1

N!
��

�
�N/2� d�1 ¯ d�2N exp�−

�

2 

j=1

2N

�� j − �0�2�
� â�1

†
¯ â�N

† b̂�N+1

†
¯ b̂�2N

† �0� �14�

and

1
�2

��N,0� + �0,N���

=
1

�N!

1
�2

��

�
�N/4� d�1 ¯ d�N

�exp�−
�

2 

j=1

N

�� j − �0�2�
� �â�1

†
¯ â�N

† + b̂�1

†
¯ b̂�N

† ��0� , �15�

where the bandwidth of the incident beams is given by ��
��−1/2. If the photons are produced by SPDC, then the fre-
quencies must occur in pairs with the photons in each pair
being equal distances above or below the pump frequency;
we will consider this situation in simplified form in Sec.
IV B and in a more realistic form in Sec. VII.

Suppose that one of the N-photon or 2N-photon states
described above is input to the interferometer. Write this in-
put state as ��in�. Then, assuming that the frequencies of the
final photons are not measured, we want the joint probabili-
ties to find Nc photons at detector C and Nd photons at de-

tector D �with Nc+Nd=Na+Nb� for a given nondispersive
phase shift �0 in the upper interferometer arm. These prob-
abilities can be expressed in the form

P�Nc,Nd��0� = ��in��̂�Nc,Nd;�0���in� , �16�

where the projective operator �̂�Nc ,Nd ;�0� is defined as

�̂�Nc,Nd,�0� =� d��Nc,Nd;�,�0��Nc,Nd;�,�0� , �17�

with

�Nc,Nd;�,�0� =
1

�Nc!Nd!
ĉ�1

†
¯ ĉ�Nc

† d̂
�1�
†

¯ d̂
�Nd

�
† �0� .

�18�

Here we have suppressed the �0 dependence of the ĉ� and

d̂�� operators for notational simplicity, and have represented
the collection of output frequencies ��1 , . . . ,�Nc

,
�1� , . . . ,�Nd

� � by the single symbol �. Similarly, d� is being
used as shorthand for the full frequency integration measure
d�1¯d�Nc

d�1�¯d�Nd
� . These probabilities may also be

expressed in the form

P�Nc,Nd��0� =� d���Nc,Nd;�,�0��in��2. �19�

From Eq. �2� the mutual information between the phase �
and the output photon numbers M is then

H��:M� =
1

2�



Nc,Nd

�
−�

�

d�0P�Nc,Nd��0�

�log2� 2�P�Nc,Nd��0�
�−�

� d�0P�Nc,Nd��0�
� . �20�

We note that the probabilities P�Nc ,Nd , ��0� are also condi-
tional upon the values of 	, 
, and �, although we do not
explicitly include these parameters in the notation for the
probabilities for the sake of notational simplicity. We now
restrict ourselves to the cases N=1 and 2, and proceed in the
following sections to compute the mutual information H for
a number of different possible input states.

III. MZ INTERFEROMETRY WITH ONE-PHOTON INPUT

In this section, we begin with the cases in which there is
only one photon in the initial state.

Case A: One-photon Fock state. We introduce the normal-
ized input state

��in�� = �10�� =�4 �

�
� d� e−��/2��� − �0�2

â�
† �0� , �21�

representing a single photon incident on port A. Using rela-
tions �9� and �10�, this is equivalent to

�10�� =
1

2
�4 �

�
� d� e−��/2��� − �0�2

� �ĉ�
† �ei���� − 1� − id̂�

† �ei���� + 1���0� . �22�
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The photon may leave the interferometer via either port C
or port D. We assume that the detectors count the number of
photons leaving the apparatus but do not measure their fre-
quencies. Therefore, we must integrate over the final fre-
quencies. The output state is then measured using the projec-
tive operators

�̂�1,0� =� d� ĉ�
† �0��0�ĉ�, �23�

�̂�0,1� =� d� d̂�
† �0��0�d̂�. �24�

Expectation values of these operators give the probabili-
ties of measurement outcomes:

P�1,0��0� =
1

2
�1 −

e−�	2L2/4r1
2��

�r1

cos��0 +
�1

2
−

	2
L3

4r1
2�2 �� ,

�25�

P�0,1��0� =
1

2
�1 +

e−�	2L2/4r1
2��

�r1

cos��0 +
�1

2
−

	2
L3

4r1
2�2 �� .

�26�

In the previous two lines, we have introduced some notation
that will be convenient for simplifying the results of this and
the following sections. The parameters r1, r2, �1, and �2 are
defined by

r1
2 = 1 + �
L

�
�2

, tan �1 =

L

�
, �27�

r2
2 = 1 + �
L

2�
�2

, tan �2 =

L

2�
�28�

�see Fig. 2�. Note that these parameters depend on the
second-order dispersion coefficient 
, but not on 	, and that
when 
 vanishes we then have r1=r2=1 and �1=�2=0.

Case B: One-photon N00N state. The input state is

1
�2

��10� + �01��� =
1
�2
�4 �

�
� d� e−��/2��� − �0�2

�â�
† + b̂�

† ��0� ,

�29�

where

1
�2

�â�
† + b̂�

† � =
i

2�2
�ĉ�

† ��i − 1� − �i + 1�ei�����

+ d̂�
† �ei�����i − 1� − �i + 1��� . �30�

The resulting output probabilities in this case turn out to be

P�1,0��0� =
1

2
�1 −

e−�	2
L3/4r1
2��

�r1

sin��0 +
�1

2
−

	2
L3

4r1
2�2 �� ,

�31�

P�0,1��0� =
1

2
�1 +

e−�	2
L3/4r1
2��

�r1

sin��0 +
�1

2
−

	2
L3

4r1
2�2 �� .

�32�

IV. MZ INTERFEROMETRY WITH TWO-PHOTON
INPUT

We now consider input states with two photons distrib-
uted in assorted ways among the input ports. However, now
we must make a distinction as to whether the two photon
frequencies are independent or correlated in some manner.
We treat the uncorrelated version first. Then we will examine
one particular case of frequency-correlated photons which is
of special interest for experiment: that of photon pairs cre-
ated through spontaneous parametric down-conversion. In
this section we treat only a simplified version of SPDC
which will allow us to obtain simple exact expressions for
the probabilities of all of the output states. In a later section
we will compare this simplified SPDC to a more realistic
version for which only numerical results are available.

A. Two-photon input with uncorrelated energies

Case C: Energy-uncorrelated two-photon Fock state.
Sending a two-particle Fock state into input A,

�2,0�� =� �

2�
� d�1d�2e−��/2����1 − �0�2+��2 − �0�2�â�1

† â�2

† �0� ,

�33�

where we use Eqs. �9� and �10� to write each â† factor in

terms of the output operators ĉ† and d̂†. After a straightfor-
ward calculation, this leads to the following output probabili-
ties:

P�2,0��0� =
1

4
�1 −

e−�	2L2/4r1
2��

�r1

cos��0 +
�1

2
−

	2
L3

4r1
2�2 ��2

,

�34�

P�0,2��0� =
1

4
�1 +

e−�	2L2/4r1
2��

�r1

cos��0 +
�1

2
−

	2
L3

4r1
2�2 ��2

,

�35�

P�1,1��0� =
1

2
�1 −

e−�	2L2/2r1
2��

r1
cos2��0 +

�1

2
−

	2
L3

4r1
2�2 �� .

�36�

FIG. 2. Definitions of r1, r2, �1, and �2.
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Case D: Energy-uncorrelated two-photon dual Fock in-
put. The normalized input state is

�1,1�� =��

�
� d�1�2e−��/2����1 − �0�2+��2 − �0�2�â�1

† â�2

† �0�

�37�

=
1

4
��

�
� d�1�2e−��/2����1 − �0�2+��2 − �0�2�

� �− iĉ�1

† ĉ�2

† �ei���1� − 1��ei���2� + 1�

+ id̂�1

† d̂�2

† �ei���2� − 1��ei���1� + 1�

+ ĉ�1

† d̂�2

† �ei���1� − 1��ei���2� − 1�

− ĉ�2

† d̂�1

† �ei���1� + 1��ei���2� + 1���0� , �38�

which gives the results

P�2,0� = P�0,2�

=
1

4
�1 −

e−�	2L2/2r1
2��

r1
cos�2�0 + �1 −

	2
L3

2r1
2�2 �� ,

�39�

P�1,1� =
1

2
�1 +

e−�	2L2/2r1
2��

r1
cos�2�0 + �1 −

	2
L3

2r1
2�2 �� .

�40�

Case E: Energy-uncorrelated two-photon N00N state. For
the input state

�20�� + �02�� =� �

2�
� d�1d�2e−��/2����1 − �0�2+��2 − �0�2�

�
1
�2

�â�1

† â�2

† + b̂�1

† b̂�2

† ��0� , �41�

the output probabilities are

P�2,0��0� = P�0,2��0� =
1

4
�1 +

1

r1
e−�	2L2/2r1

2��� , �42�

P�1,1��0� =
1

2
�1 −

1

r1
e−�	2L2/2r1

2��� . �43�

In the absence of dispersion �	=
=0� or in the narrow-
bandwidth limit ��→��, we see that the coincidence rate
P�1,1 ��0� vanishes, while the other two probabilities are
both equal to 1 /2.

Note that there is no dependence on �0. We will see later
that this fact manifests itself in a vanishing mutual informa-
tion.

B. Two-photon input with anticorrelated energies: simplified
SPDC model

Case F: Simplified SPDC Fock states. We now examine a
case with two photons incident on the same input port and

anticorrelated in energy. We do this in the context of a sim-
plified model of spontaneous parametric down-conversion.
Energy conservation requires that the two down-converted
photons have frequencies ��=�0��, where 2�0 is the
pump frequency. We again assume a Gaussian distribution of
frequencies, centered around �0, of the form e−���� − �0�2/2

=e−��/2��2
. We follow essentially the same calculational pro-

cedure as before, except now we enforce the requirement that
the incoming photon frequencies satisfy �1+�2=2�0. In this
section we impose this condition in a manner that will allow
us to obtain analytic solutions for the output probabilities.
This will serve us as a simplified version of SPDC, and we
will see in Sec. VII that this model seems to give an upper
bound to the mutual information obtained from a more real-
istic model of SPDC. The input state in this model is taken to
be of the form

�20�� =�4 2�

�
�

−�

�

d��
−�

�

d� e−��2
f���a�+

† a�−

† �0� , �44�

where now �+=�0+� and �−=�0−�+�. We can choose
f��� to be any function sharply peaked at zero with normal-
ized integral �unit area under its graph�. We then compute the
output probabilities according to

P�Nc,Nd��0� =� d�1d�2��Nc,Nd��in��2, �45�

or equivalently, by applying the projection operators

�̂�Nc,Nd� =� d�1d�2�Nc,Nd��Nc,Nd� . �46�

The auxiliary function f���� is necessary in this model in
order to impose the constraint �1+�2=2�0 without causing
squares of � functions to arise in the probability calculations.
A more correct treatment of SPDC will follow in Sec. VII.

The measurement outcomes, integrated over final fre-
quency, are then given by

P�2,0��0� =
1

8�2 + e−�	2L2/2�� +
1

�r1

cos�2�0 +
�1

2
�

−
4

�r2

e−�	2L2/8r2
2�� cos��0 +

�2

2
−

	2
L3

16r2
2�2�� ,

�47�

P�0,2��0� =
1

8�2 + e−�	2L2/2�� +
1

�r1

cos�2�0 +
�1

2
�

+
4

�r2

e−�	2L2/8r2
2�� cos��0 +

�2

2
−

	2
L3

16r2
2�2�� ,

�48�
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P�1,1��0� =
1

4�2 − e−�	2L2/2�� −
1

�r1

cos�2�0 +
�1

2
�� .

�49�

As 
 increases, r1 and r2 increase, leading to decreased vis-
ibility of all of the oscillating terms.

Note also that in the case of zero dispersion �	=
=0� the
exact expressions for energy-uncorrelated �case C, Sec.
IV A� and energy-anticorrelated �down-converted� Fock
states �case F� are identical to each other. However, the prob-
abilities begin to diverge when dispersion is turned on. The
same effect will be seen to occur for the uncorrelated and
anticorrelated N00N states in the HOM interferometer �cases
J and K, below�.

Case G: Simplified SPDC N00N states. Now the input
state is taken to be a N00N state, �1 /�2���20��,�+ �02��,��.
We find the measurement outcomes to be

P�2,0��0� = P�2,0��0� =
1

4
�1 + e−�	2L2/2��� , �50�

P�1,1��0� =
1

2
�1 − e−�	2L2/2��� . �51�

As in the uncorrelated case, the probabilities show no depen-
dence on �0, and so have vanishing mutual information. In
this case we also see that there is no dependence on the
second-order dispersion coefficient 
.

It is interesting to note what happens if we shift the phase
of the photons in one input port by � /2 before they hit the
first beam splitter. The input to the interferometer is now
proportional to �2,0�− �0,2�. In this case, the interference in
�0 reemerges, and the result is independent of 	 instead of 
.
In fact, the counting probabilities turn out to be very similar
to those of the N00N state incident on a HOM interferometer
presented in the next section �case K�. Moreover, these two
cases have identical values for the mutual information.

Case H: Simplified SPDC dual Fock state

The frequency-anticorrelated dual Fock input state

�1,1�� =�4 �

2�
� d�� d� e−��2

f���â�+

† b̂�−

† �0� �52�

gives the results

P�2,0��0� = P�0,2��0� =
1

4�1 −
1

�r1

cos�2�0 +
�1

2
�� ,

�53�

P�1,1��0� =
1

2�1 +
1

�r1

cos�2�0 +
�1

2
�� . �54�

V. DISPERSIVE HONG-OU-MANDEL INTERFEROMETER
WITH N00N INPUT

An alternative setup has been proposed to improve phase
resolution �6�. In this section we examine this alternate ver-
sion and compare it to the previous results.

In this version, it is assumed that the N00N state is cre-
ated inside the interferometer, rather than at the input ports.
Effectively, we need to remove the first beam splitter from
the interferometer and use the N00N state as input to the
remaining beamsplitter, which now acts as a Hong-Ou-
Mandel interferometer �13�. The setup is shown in Fig. 3. We
again assume dispersion and phase-shift �0 along one of the
lines entering the beam splitter, neglecting absorption. Ignor-
ing an overall constant phase of eik0L, the scattering matrix
now has the form

S��0� =
1
�2

� ei���� i

iei���� + 1
� , �55�

where ���� is again given by Eq. �12�. Thus,

ĉ� =
1
�2

�ei����â� + ib̂�� , �56�

d̂� =
1
�2

�iei����â� + b̂�� . �57�

Case I: Single-photon N00N state in HOM interferometer.
By the same methods as before, we can compute the count-
ing rates for a given N00N state input. The one-photon
N00N input state is

��� = C� d� e−��/2��� − �0�2
�a�

† + b�
† ��0� , �58�

for which we find

P�1,0��0� =
1

2
�1 +

e−�	2L2/4r1
2��

�r1

sin��0 +
�1

2
−

	2
L3

4r1
2�2 �� ,

�59�

FIG. 3. Hong-Ou-Mandel interferometer with dispersion and
nondispersive phase shift �0 in one arm.
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P�0,1��0� =
1

2
�1 −

e−�	2L2/4r1
2��

�r1

sin��0 +
�1

2
−

	2
L3

4r1
2�2 �� .

�60�

Finally, assuming two-photons, with no correlation or
with anticorrelation, we arrive at two additional cases �J and
K�.

Case J: Energy-uncorrelated two-photon N00N state in
HOM interferometer. The input state is

��� = C� d�1d�2e−��/2����1 − �0�2+��2 − �0�2�

��a�1

† a�2

† + b�1

† b�2

† ��0� . �61�

From this state, we arrive at the results

P�2,0��0� = P�0,2��0�

=
1

4
�1 −

e−�	2L2/2r1
2��

r1
cos�2�0 + �1 −

	2
L3

2r1
2�2 �� ,

�62�

P�1,1��0� =
1

2
�1 +

e−�	2L2/2r1
2��

r1
cos�2�0 + �1 −

	2
L3

2r1
2�2 �� .

�63�

Case K: Simplified SPDC two-photon N00N state in HOM
interferometer. For the input

��� = C� d� e−��2
�a�+

† a�−

† + b�+

† b�−

† ��0� , �64�

we compute

P�2,0��0� = P�0,2��0� =
1

4�1 −
1

�r1

cos�2�0 +
�1

2
�� ,

�65�

P�1,1��0� =
1

2�1 +
1

�r1

cos�2�0 +
�1

2
�� . �66�

In this last case, the results turn out to be independent of the
first order dispersion coefficient, 	.

VI. COMPARISON AND DISCUSSION OF CASES A TO K

The detection probabilities of the previous sections can
now be combined with Eq. �2� to compute the mutual infor-
mation for each of the experimental setups and input states.
Plotting the results as functions of 	, 
, and �, we find the
results in Figs. 4–6 for single-photon input and Figs. 7–9 for
two photons. 	L is given in units of �0

−1, while 
L and � are
in units of �0

−2. In the dispersionless limit, 	 ,
→0, we find
Shannon mutual information values that agree with those
previously calculated in �9�.

Only positive values of 
 were graphed. However, the
formulas of the previous sections work equally in the anoma-
lous dispersion �negative 
� region.

Note also that the four parameters 	 ,
 ,� ,L appear in all
equations only through the dimensionless quantities

�1 =
�


L
and �2 =

�

	2L2 . �67�

Thus, other parameter ranges can easily be obtained from
those graphed here via appropriate rescaling of variables
with the dimensionless ratios held fixed.

A few conclusions are immediately clear from these
graphs and from the equations of the previous sections. �i�
First, the dual Fock states entering the Mach-Zehnder inter-
ferometer give identical results as the N00N states entering
the Hong-Ou Mandel interferometer �compare Eqs. �53� and
�54� to �65� and �66�, or compare Eqs. �39� and �40� to �62�
and �63��. This is to be expected, since for N=2 the two
cases are equivalent: the first beam splitter in the Mach-
Zehnder interferometer turns a dual Fock input state into a
N00N output state, which then strikes the second beam split-
ter. The second beam splitter can then be viewed as a HOM
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FIG. 4. �Color online� Mutual information versus 	 for single-
photon cases �cases A, B, and I�, plotted for the values 
=0, �=1.
The mutual information is the same for all three cases. �	, 
, and �
are in units of L−1�0

−1, L−1�0
−2, and �0

−2, respectively.�
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FIG. 5. �Color online� Mutual information versus 
 for single-
photon cases �cases A, B, and I�, for the values 	=0.5, �=1. �	, 
,
and � are in units of L−1�0

−1, L−1�0
−2, and �0

−2, respectively.�
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interferometer. Thus cases J and D are equivalent, as are
cases H and K. �This equivalence will not hold for N�2.�
�ii� Second, the single-photon cases �cases A, B, and I� all
give identical curves for the mutual information as functions
of 	, 
, and �. The explanation for this is clear if the action
of the first beam splitter on the input is examined. Cases B
and I are equivalent for the same reason mentioned in the
previous point: they both lead to a one-particle N00N state in
the portion of the interferometer before the dispersive ele-
ment is reached, and so give the same output. Meanwhile, in
case A, the output of the first beam splitter is the state
�1 /�2���01�+ i�10��; this is similar to a N00N state, except
one term is shifted in phase by � /2 relative to the other. This
converts the sines in the probabilities of cases B and I into
the cosines of case A �Eqs. �25� and �26��, but has no other
effect. Since the mutual information involves integrals from
−� to �, interchanging sines and cosines inside the integrals
has no effect on the mutual information. Unsurprisingly, the
single photon cases generally result in lower mutual informa-

tion than the two-photon cases. �iii� We see from the graphs
for the two-photon states that the energy-uncorrelated and
energy-anticorrelated version of each input give identical re-
sults for zero dispersion or zero bandwidth ��=��; however,
the uncorrelated versions all drop off rapidly to zero fidelity
as the dispersion increases, whereas the anticorrelated
�downconverted� input leads to a much slower drop. �iv�
Two-photon N00N states incident on the MZ interferometer
�cases E and G� have zero mutual information as anticipated
earlier. �v� For fixed bandwidth and fixed quadratic disper-
sion coefficient 
, the two-photon downconverted N00N
state in the HOM interferometer �case K� is independent of
the linear coefficient 	. However, it decays rapidly with in-
creasing 
. �vi� Overall, the simplified SPDC-generated Fock
states �case F� seem to hold up best in the presence of dis-
persion. This case starts off with a higher value of H at zero
dispersion and decays more slowly as 	 and 
 increase. The
only exception to this statement is when 
 is small, in which
case the anticorrelated HOM N00N state �case K� works bet-
ter at large 	.
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FIG. 6. �Color online� Mutual information versus squared in-
verse bandwidth � for single-photon cases �cases A, B, and I�, for
the values 	=1, 
=0.1. �	, 
, and � are in units of L−1�0

−1, L−1�0
−2,

and �0
−2, respectively.�
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FIG. 7. �Color online�. Mutual information versus 	 for two-
photon cases, for the values �=1, 
=0. Cases E and G vanish
identically. Cases J and D are identical, as are cases H and K. �	, 
,
and � are in units of L−1�0

−1, L−1�0
−2, and �0

−2, respectively.�
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FIG. 8. �Color online� Mutual information versus 
 for two-
photon cases, for the values �=1, 	=0.5. �	, 
, and � are in units
of L−1�0

−1, L−1�0
−2, and �0

−2, respectively.�
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FIG. 9. �Color online� Mutual information versus squared in-
verse bandwidth � for two-photon cases, for the values 	=1, 

=0.1. �	, 
, and � are in units of L−1�0

−1, L−1�0
−2, and �0

−2,
respectively.�
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A bit of insight into some of the properties of the
2-photon results may be obtained by considering the expo-
nential decay factor

� � e−�	2L2/4r1
2�� = e−��2/4r1

2� = e−��2/4�1+�1
−2��. �68�

�1 and �2 are the dimensionless quantities defined in Eq.
�67�. In frequency-uncorrelated cases such as cases C and D,
all of the �0-dependent terms are multiplied by a factor of �
which arises from interference between ei���1� and ei���2�

terms, where �1 and �2 are the frequencies of the photons
entering the input ports. The relevant term is of the form
ei����1�+���2��. As 	→� or �→0, we find that �2→0 and
�→0, so that only constant ��0-independent� terms survive
in the limit. Thus, for large 	 or small �, the dependence of
the probability distributions on �0 decays exponentially,
causing the mutual information to also decay rapidly.

In contrast, for the frequency-anticorrelated cases, such as
F and H, the term ei����1�+���2�� becomes

ei����+�+���−�� = ei�2�0+2
�2�, �69�

with the 	 dependence canceling. As a result, �0-dependent
terms occur without the exponentially decaying � factor, al-
lowing much slower decay of H at large 	 �or even no decay
at all, as in case H�. The slower decay at large dispersion is
therefore a direct consequence of the quantum-mechanical
correlations present in the initial state.

As for the 
 dependence, we see that as 
 becomes large,
both � and r1 become 
 independent, with �→e−��2/4� and
r1→1; thus all the curves approach constant values at large

, with slopes dH /d
 of comparable order of magnitude.

We turn now to one additional case, that of more realistic
SPDC photon pairs, which we then proceed to compare with
the simplified SPDC model already examined.

VII. CASE L: SPDC

Now we present results for the mutual information using a
more realistic model for the parametric downconversion pro-
cess. Numerically, the results turn out qualitatively �and for
some parameter ranges quantitatively as well� to be very
similar to those of the simplified SPDC model in the previ-
ous section; however we no longer will be able to present
explicit analytic expressions for the measurement outcomes.

There are many possible cases that could be considered,
but we restrict ourselves here to the single case of collinear
type-II SPDC in a nonlinear crystal, with both of the outgo-
ing photons entering port A of the dispersive Mach-Zehnder
interferometer. We now have to consider the parameters of
both the interferometer and the crystal. We allow the pump
frequency to vary around central frequency 2�0, with the
deviation from the center of the distribution represented by
2�p; in other words, the pump frequency is represented as

�p = 2��0 + �p� .

We once again assume a Gaussian distribution of frequen-
cies, in this case represented by a weighting factor

e−��/2���p − 2�0�2
=e−2��p

2
. The signal and idler frequencies are

then

�s =
�p

2
+ � = �0 + �p + � , �70�

�i =
�p

2
− � = �0 + �p − � , �71�

with �s+�i=�p. Suppose that the crystal is cut so that exact
phase matching occurs at the central frequency

kp�2�0� = ks��0� + ki��0� . �72�

Then, assuming that terms quadratic and higher in the fre-
quencies are small, the phase matching condition for the
crystal gives us a condition on the wave vectors of the form
�14�

�k � kp��p� − ks��s� − ki��i� = �p�p + �� , �73�

where �p=2kp��2�0�−ks���0�−ki���0� and �=ki���0�−ks���0�.
The wave function for the biphoton state entering the in-

terferometer is now

��in� =� d� d�p���p,��â�0+�p+�
† â�0+�p−�

† �0� , �74�

where

���p,�� = Ne−2��p
2� sin

�kLc

2

�kLc

2
e−i�kLc/2, �75�

with normalization constant N. Here, Lc is the length of the
nonlinear crystal. Using this wave function, we can compute
output probabilities as before. Denoting the frequencies at
the detectors by � and ��, we have

P�2,0��0� =� d� d��	��� − ��

2
,�0 −

� + ��

2
�

+ ��−
� − ��

2
,�0 −

� + ��

2
�	2

� �1 + ei�����+������ − ei���� − ei������2,

�76�

P�1,1��0� =� d� d��	��� − ��

2
,�0 −

� + ��

2
�

��1 − ei�����+������ − ei���� + ei������

+ ��� − ��

2
,�0 −

� + ��

2
�

��1 − ei�����+������ + ei���� − ei������	2

,

�77�
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P�0,2��0� =� d� d��	��� − ��

2
,�0 −

� + ��

2
�

+ ��−
� − ��

2
,�0 −

� + ��

2
�	2

� �1 + ei�����+������ + ei���� + ei������2,

�78�

where ���� is as defined in Eq. �12�. Note that �(��
−��� /2,�0− ��+��� /2) depends only on the crystal proper-
ties, while ���� depends only on the properties of the inter-
ferometer. The integrands of P�0,2 ��0� and P�2,0 ��0� fac-
tor in their dependence on these two sets of parameters; that
of P�1,1 ��0� does not, indicating the entangled nature of the
�11� state.

Given these output probabilities, the mutual information
can once again be computed. In contrast to the previous sec-
tions, the analytic forms of the probabilities are too compli-
cated to be enlightening, so we proceed to numerical calcu-

lations. Some examples are graphed in Figs. 10–14. The
plots are expressed in terms of the new parameters b=�pLc
and �=� /�p.

Examples of the dependence of H on the parameters of
the pump beam ���, interferometer �	, 
�, and nonlinear
crystal ��, b� are given in Figs. 10–14. We see that, although
H decays overall with increasing values of the dispersion
parameters in the interferometer, 	 and 
, there are oscilla-
tions superimposed on the decay, which are especially no-
ticeable at low values of 	 and 
. This effect was in fact also
present in the simplified SPDC model of the previous sec-
tions, but in the latter case the oscillations were too weak to
be visible on the graphs. We see also that as either b or �
increases �or equivalently, as � or �p increases�, the plots
approach those of the simplified SPDC model. Since � and b
are proportional to the crystal length, this means that the
simplified SPDC model is an increasingly better approxima-
tion to real SPDC for longer crystals. It also appears from the
numerical simulations that for a given set of parameter val-
ues 	, 
, L, and �, the simplified SPDC model provides an
upper bound to H for the real SPDC cases with the same
parameter values. The maximum information content clearly
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FIG. 10. �Color online� Mutual information versus squared in-
verse bandwidth � for SPDC. �	, 
, and � are in units of L−1�0

−1,
L−1�0

−2, and �0
−2, respectively. b is in units of �0

−2, while � is
dimensionless.�
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FIG. 11. �Color online� Mutual information versus 	 for SPDC
with �=1, 
=0.1. �	, 
, and � are in units of L−1�0
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−2, and
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FIG. 12. �Color online� Mutual information versus 
 for SPDC
with �=1, 	=0.3. �	, 
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FIG. 13. �Color online� Mutual information versus �=� /�p for
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occurs for low dispersion in the interferometer, long nonlin-
ear crystals, and large mismatch at �0 between signal and
idler inverse group velocities in the crystal �large ��.

VIII. CONCLUSIONS

In this paper, we have examined the effect of dispersion
on the mutual information that interferometric photon-
detection measurements carry about phase shifts. We have
looked at a number of different situations involving two in-
terferometer setups and several different types of nonclassi-
cal input states. Comparing the results, we now have a pre-
cise and quantitative means to measure the relative merits of

different input states for various input-parameter ranges. As a
by-product, we have shown that in some circumstances,
parametric downconversion can be approximated by a much
simpler model that is amenable to exact analytical analysis.

Returning to the original question of which input state
yields the most information about the phase shift, the graphs
of the previous sections yield fairly clear results. Restricting
discussion to MZ interferometers for simplicity, we can see
that for quantum interferometry in the presence of dispersion
the entangled photon pair produced by down-conversion has
a clear advantage over other cases when input to a single port
�Fock state input�. This advantage does not exist in the case
of an dispersionless interferometer, in which case the pres-
ence or absence of frequency correlations becomes irrelevant
for the information content. The only situation we have
found in which another input is superior to the frequency-
anticorrelated Fock input is when 	 is large but 
 small, in
which case the anticorrelated dual Fock input is superior.
These conclusions all hold when the simplified down-
conversion model of Sec. IV B is a good approximation; the
results of Sec VII imply that such conclusions weaken as the
crystal becomes shorter.
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