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Abstract

In this Letter we discuss how the classical coherence matrix can be generalized to describe the quantum properties of broadband two-photon
entangled states. Procedures for experimental evaluation of two-photon matrix elements have been outlined. We illustrate how this formalism can
be used for characterization of multi-parameter optical entanglement and discuss its possible applications in quantum optical measurement and
quantum coherent control.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum entanglement has become a valuable resource in many areas of quantum optics and quantum information process-
ing. In particular, polarization entanglement has contributed to the success of quantum cryptography [1] and enabled some initial
demonstrations of elements of quantum information processing such as quantum gates, entanglement swapping, and quantum tele-
portation [2–4].

Frequency entanglement has manifested itself in the quantum dispersion cancellation effect [5,6] that has been demonstrated
with frequency-anticorrelated states, and has found several applications in the area of precise optical measurement [7,8]. The use
of frequency-entangled states also promises enhancing the accuracy of clock synchronization and positioning with respect to their
classical counterparts [9,10].

Traditionally, states entangled in polarization and frequency have been produced using the nonlinear process of spontaneous
parametric down-conversion (SPDC). The physical nature of phase matching during the parametric interaction in birefringent
nonlinear crystals leads to a unique interconnection between polarization, frequency, and direction (k-vector) parameters of the
electromagnetic field. This results in generation of quantum states that are simultaneously entangled in all of those quantum vari-
ables. In many cases, the multi-parameter entangled nature of two-photon states from SPDC has been considered as an unnecessary
complication. Very often, researchers constrain the direction of propagation with small pinholes and limit the frequencies of light
with narrowband spectral filters in order to encode quantum information on the polarization degree of freedom. However, it has
been recognized recently [11,12] that the complexity of multi-parameter polarization-frequency and k-vector entanglement carries
significant potential for augmenting resources of quantum information processing.
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The polarization state tomography technique, leading to polarization density matrix reconstruction, has been developed by Kwiat
and co-workers in order to provide quantitative characterization of polarization entanglement created in the SPDC [13]. The con-
ventional Stokes parameters formalism of polarization optics has also been extended to cover the domain of two-photon polarization
entangled states [14]. In the field of ellipsometry, the reconstruction of the polarization state of light, after reflection from a material,
can provide an information about the surface geometry and the chemical composition of the system under investigation. A quantum
analog of ellipsometry that makes use of polarization-entangled states has been developed recently [15,16] that provides higher
measurement accuracy in the low-power regime [17]. In quantum ellipsometry the retrieval of the two-photon polarization density
matrix by using polarization state tomography can provide more accurate characterization of the sample properties even when the
source emits polarization entangled light in a mixed state [18].

However, the monochromatic (single-frequency) ellipsometry cannot provide enough information to completely characterize the
sample in many challenging applications. This becomes particularly clear when dealing with complex surface geometries, or with
layers of materials that have similar refractive indices at the particular probing wavelength. To address this problem, a technique
known as spectroscopic ellipsometry has been developed based on polarization properties of spectrally broadband light. Classical
spectroscopic ellipsometry is currently used in several areas of nanotechnological metrology [19].

Traditionally, the polarization state of broadband light has been described in terms of the spectral coherence matrix and spectral
Stokes parameters [20,21]. In this Letter we introduce the two-photon spectral coherence matrix and the spectral two-photon Stokes
parameters along with procedures for evaluating their components in experiment. These tools will be crucial for characterizing
multi-parameter entanglement and for developing a quantum version of spectroscopic ellipsometry that is built around spectral and
polarization entanglement.

This formalism could also be useful in the description of general nonlinear optical interactions that do not necessarily involve
states of fixed polarization. For example, a spectral polarization engineering technique has found an important application in the
field of optical attosecond physics. The polarization-gating of spectral components of the original laser pulse allows researchers
implementing an efficient control of high-order harmonic generation in order to obtain a single attosecond laser pulse [22–24].

Characterization and control of spectral polarization [25–27] is also important in nonlinear spectroscopy, in photochemistry
and in quantum control where ultrashort pulses with carefully designed spectral polarization are employed to drive specific tasks
(chemical reactions, molecular alignment, etc.). It was recognized recently that the down-conversion light, even if not coherent, can
behave like ultrashort pulses due to its inherent correlation between signal and idler photons. For example, two-photon absorption
using down-converted light with spectrally-engineered entangled photons has been demonstrated recently [28]. Our formalism
could help in extending these results into areas where spectral polarization is important.

We first briefly review the concepts of spectral coherence matrix and spectral Stokes parameters in classical optics. We then intro-
duce a two-photon spectral coherence matrix and spectral two-photon Stokes parameters for entangled-photon states. In conclusion
we outline experimental procedures for evaluation of matrix elements and discuss several special cases.

2. Classical coherence matrix

Classical partially polarized light can be described by the coherence matrix [29]:

(1)J (τ) =
[ 〈E∗

H (t)EH (t + τ)〉 〈E∗
H (t)EV (t + τ)〉

〈E∗
V (t)EH (t + τ)〉 〈E∗

V (t)EV (t + τ)〉
]

where:

(2)
〈
E∗

i (t)Ej (t + τ)
〉 =

∫
E∗

i (t)Ej (t + τ) dt

or by the spectral coherence matrix [30,31]:

(3)R(ω) =
[

RHH (ω) RHV (ω)

RV H (ω) RV V (ω)

]

where:

(4)Rij (ω) =
+∞∫

−∞
Jij (τ )ejωτ dτ.

Since the spectral coherence matrix is Hermitian we can express it in terms of Pauli matrices σi , so that:

(5)R(ω) = 1

2

3∑
i=0

Si(ω)σi
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where the Sj (ω) are called the spectral Stokes parameters:

(6)Sj (ω) = Tr
[
σjR(ω)

]
.

The spectral coherence matrix can be written as:

(7)R(ω) = 1

2

[
S0(ω) + S1(ω) S2(ω) + iS3(ω)

S2(ω) − iS3(ω) S0(ω) − S1(ω)

]
.

The trace of the spectral coherence matrix equals the spectral intensity:

(8)Tr
[
R(ω)

] = RHH (ω) + RV V (ω) = S0(ω) = I (ω).

If we consider, for example, light described by the Jones vector:

(9)

[
EH (t)

EV (t)

]

where:

(10)Ei(t) =
+∞∫

−∞
εi(ω)e−jωt dω,

the elements of the spectral coherence matrix are:

(11)Rij (ω) =
+∞∫

−∞

〈
Ei(t)E

∗
j (t + τ)

〉
ejωτ dω

(12)= εi(ω)ε∗
j (ω).

Therefore:

(13)R(ω) =
[ |εH (ω)|2 ε∗

H (ω)εV (ω)

εH (ω)ε∗
V (ω) |εV (ω)|2

]
.

Stokes parameters cannot be generally defined for the coherence matrix since it is Hermitian only for τ = 0:

(14)J †(τ ) = J (−τ).

3. Two-photon case

Consider the setup in Fig. 1. The two separate spatial modes are projected by two identical tomography devices and coincidence
events between the two arms are detected. Each tomography device consists of a polarization tomography part followed by a
Michelson interferometer in collinear configuration. It is preferable to use an interferometric configuration for evaluation of spectral
properties with respect to one based on a monochromator. In Fourier-transform interferometry spectral resolution can be made
arbitrarily high by increasing the measurement interval, and, due to multiplex advantage [32], a higher signal-to-noise ratio is
attainable in the case of the additive noise, that is common in single-photon measurements [33].

The polarization tomography device [13] converts the information regarding the polarization state into the amplitude of a linear
polarized state. It consists of a quarter-wave plate (at angle q with respect to the vertical direction), a half-wave plate (at angle h)
and a vertical linear polarizer, described by the Jones matrix:

T (h, q) = TPOL(θ = 0)Tλ/2(h)Tλ/4(q) = 1

2
√

2

[
0 0

0 1

][
cos 2h sin 2h

sin 2h − cos 2h

][
i − cos 2q sin 2q

sin 2q i + cos 2q

]

=
[

0 0

ζ1(h, q) ζ2(h, q)

]
.

In the collinear Michelson interferometer the input vertically polarized light is first rotated by 45 degrees thus providing equal
horizontal and vertical projections. Then delay τ between the horizontally-polarized component and the vertically-polarized one
is introduced through a birefringent delay-line, comprising two sliding quartz wedges. Finally, both polarization components are
recombined again by means of a half-wave plate and a polarizer.

The quantized fields at the detectors are:

(15)E(+)
n (tn) =

1∑
ζn,γ

∫
dω

(
1 + ejωτn

)
ân,γ (ω)e−jωtn
γ=0
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Fig. 1. Schematic of experimental apparatus to measure the two-photon spectral coherence matrix (HWP = half-wave plate, QWP = quarter-wave plate, POL =
polarizer). In each of the two separate photon paths there is a tomography device comprising a polarization tomography part and a collinear Michelson interferometer.
Scanning 16 independent polarization settings and the two delay-lines one can retrieve the two-photon spectral coherence matrix elements.

with:

(16)ζn,0(hn, qn) = 1√
2

{
sin(2hn) − i sin

[
2(hn − qn)

]}

and:

(17)ζn,1(hn, qn) = − 1√
2

{
cos(2hn) + i cos

[
2(hn − qn)

]}
.

3.1. Interferograms

For a two-photon system considering the frequency and polarization degrees of freedom, the density matrix can be written as:

(18)ρ =
1∑

i,j,k,l=0

∫
dΩ

∫
dΩ ′

∫
dΩ ′′

∫
dΩ ′′′ ρ(2i+j),(2k+l)(Ω,Ω ′,Ω ′′,Ω ′′′)

∣∣(Ω, i)1; (Ω ′, j)2
〉〈
(Ω ′′, k)1; (Ω ′′′, l)2

∣∣.
The coincidence count rate, integrating over time due to the slow detectors, can be calculated:

G(τA, τB) =
∫

dt1

∫
dt2 Tr

[
ρE

(−)
1 (t1)E

(−)
2 (t2)E

(+)
2 (t2)E

(+)
1 (t1)

]

(19)=
1∑

λ,μ,γ,δ=0

∫
dω

∫
dω′ (1 + cosωτA)(1 + cosω′τB)ζγ ζδζ

∗
λ ζ ∗

μρ(2γ+δ),(2λ+μ)(ω,ω′;ω,ω′).

Replacing the four one-photon polarization indices (γ, δ, λ,μ = H,V ) with two two-photon polarization indices:

(20)k = 2γ + δ, l = 2λ + μ, k, l = 0, . . . ,3 (HH, HV, V H, V V )

and:

(21)Bk = ζγ ζδ, Bl = ζλζμ.

So, going back to the coincidence count rate:

(22)G(τA, τB) =
3∑

k,l=0

BkB
∗
l Gk,l(τA, τB)

where:

(23)Gk,l(τA, τB) =
∫

dω

∫
dω′ ρk,l(ω,ω′)

[
1 + cos(ωτA)

][
1 + cos(ωτB)

]
.
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The interferograms depend on:

(24)R
(2)
ij (Ω,Ω ′) = ρij (Ω,Ω ′,Ω ′′,Ω ′′′)|Ω ′′=Ω,Ω ′′′=Ω ′

which we define as the elements of the two-photon spectral coherence matrix.
Since there are 16 unknown functions R

(2)
ij , 16 different polarization measurements (described by the index ν = 1, . . . ,16) are

needed, with 16 independent values for (h1, q1;h2, q2). Let us indicate the measured interferograms with:

(25)G(ν)(τA, τB) =
3∑

k,l=0

B
(ν)∗
l B

(ν)
k Gkl(τA, τB).

3.2. Two-photon spectral coherence matrix

Let us now introduce the 2D Fourier transform of the interferograms. The calculations are identical to the ones performed for
the single-photon case:

G(ν)(Ω,Ω ′) =
∫ ∫

G(ν)(τA, τB)e−jΩτAe−jΩ ′τB dτA dτB

(26)

= 2
3∑

k,l=0

B
(ν)∗
l B

(ν)
k

∫
dτA

∫
dτB

∫
dω

∫
dω′ ρkl(ω,ω′;ω,ω′)(1 + cosωτA)(1 + cosω′τB)e−jΩτAe−jΩ ′τB .

This time the physically significant function (Ω � 0, Ω ′ � 0) will be repeated in reversed form in the other three quadrants of
the (Ω,Ω ′) plane. Switching from positive variables to variables defined on the whole real range, and selecting Ω > 0, Ω ′ > 0 we
obtain:

(27)G(ν)(Ω,Ω ′) =
3∑

k,l=0

B
(ν)∗
l B

(ν)
k R

(2)
kl (Ω,Ω ′).

Introducing the new index: μ = 4k + l, μ = 0, . . . ,15, we can then build the 4-by-4 matrix:

(28)Γνμ = B
(ν)∗
l B

(ν)
k .

We have:

(29)G(ν)(Ω,Ω ′) =
15∑

μ=0

Γν,μR̃(2)
μ (Ω,Ω ′).

In matrix form:

(30)G(Ω,Ω ′) = Γ R̃(2)(Ω,Ω ′).

If the tomography apparatus settings have been chosen so that detΓ �= 0:

(31)R̃(2)(Ω,Ω ′) = Γ −1G(Ω,Ω ′).

The spectral coherence matrix can be obtained with a simple rearrangement of the elements of the vector R̃(2)(Ω,Ω ′):

(32)R̃(2)
kl = R(2)

4k+l .

3.3. Two-photon spectral Stokes parameters

As in the case of monochromatic twin-photon states, we can now formally express R(2)(ω,ω′) in terms of the two-photon Pauli
matrices σij = σi ⊗ σj , so that:

(33)R(2)(ω,ω′) = 1

4

3∑
i,j=0

Sij (ω,ω′)σij (ω).

The Sij (ω,ω′) are the spectral two-photon Stokes parameters, generalization of the two-photon Stokes parameters defined by
Abouraddy et al. [14]:

(34)Sij (ω,ω′) = Tr
[
R(2)(ω,ω′)σij

]
.
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4. Examples

4.1. Pure state with general frequency correlation

Consider the state:

(35)|ψ〉 =
∫

dω

∫
dω′ Φ(ω,ω′)

[
â

†
1H (ω)â

†
2V (ω′) + â

†
1V (ω′)â†

2H (ω)
]|0〉

where the function Φ(ω,ω′) also contains information about the correlations between the frequencies of the two photons. An
example could be Gaussian anticorrelation, like:

(36)Φ(ω,ω′) = e−(ω+ω′−Ωp)2/σ 2
sinc(�ω).

The two-photon wavefunction is given by:

A(t1, t2) = 〈0|Ê(+)
2 (t2)Ê

(+)
1 (t1)|ψ〉

(37)= 1

4

∫
dω

∫
dω′ (1 + ejωτA

)(
1 + ejωτB

)
e−jωt1e−jω′t2{ζ1H ζ2V Φ(ω,ω′) + ζ1V ζ2V Φ(ω′,ω)

}

which gives the following bidimensional interferogram:

G(τA, τB) =
∫

dt1

∫
dt2

∣∣A(t1, t2)
∣∣2

= 1

4

∫
dω

∫
dω′ (1 + cosωτA)(1 + cosωτB)

{|ζ1H |2|ζ2V |2∣∣Φ(ω,ω′)
∣∣2 + |ζ1V |2|ζ2V |2∣∣Φ(ω′,ω)

∣∣2

(38)+ ζ ∗
1H ζ ∗

2V ζ1V ζ2H Φ∗(ω,ω′)Φ(ω′,ω) + ζ ∗
1V ζ ∗

2H ζ1H ζ2V Φ∗(ω′,ω)Φ(ω,ω′)
}
.

From this we can extract the matrix:

(39)R(2)(ω,ω′) =

⎡
⎢⎢⎢⎣

0 0 0 0

0 |Φ(ω,ω′)|2 Φ∗(ω,ω′)Φ(ω′,ω) 0

0 Φ∗(ω′,ω)Φ(ω′,ω) |Φ(ω,ω′)|2 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

4.2. Frequency-anticorrelated states

States produced by spontaneous parametric down-conversion exhibit frequency anticorrelation as a consequence of energy con-
servation in the nonlinear process which leads to pair emission. In this specific case, one photon is at frequency ω and the other at
frequency ωp − ω. The general density matrix is, therefore:

(40)

ρ =
1∑

i,j,k,l=0

∫
dΩ

∫
dΩ ′ ρ(2i+j),(2k+l)(Ω,Ωp − Ω,Ω ′,Ωp − Ω ′)

∣∣(Ω, i)1; (Ωp − Ω,j)2
〉〈
(Ω ′, k)1; (Ωp − Ω ′, l)2

∣∣.

Due to presence of correlations between the two photons, only one interferometer is needed, so that we have the interferogram:

(41)G(τA,0) = 4
1∑

λ,μ,γ,δ=0

∫
dω (1 + cosωτA)ζγ ζδζ

∗
λ ζ ∗

μρ(2γ+δ),(2λ+μ)(ω,Ωp − ω′;ω,Ωp − ω).

As in the general case, we need 16 independent experimental interferograms:

(42)G(ν)(τA) = 2
3∑

k,l=0

B
(ν)∗
l B

(ν)
k

{
Gkl + ρkl(τa)

}

with:

(43)ρk,l(τA) =
∫

dωρk,l(ω,Ωp − ω) cos(ωτA).

By using a one-dimensional Fourier transform and performing the same kind of matrix calculations we did for the general case we
can recover the matrix we need.
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For example, if we consider a polarization-entangled frequency-anticorrelated |ψ(+)〉 Bell state:

(44)|ψ〉 =
+∞∫

−∞
Φ(ω)

{
â

†
1H (Ω0 + ω)â

†
2V (Ω0 − ω) + â

†
1V (Ω0 − ω)â

†
2H (Ω0 + ω)

}|0〉

which can also be rewritten as:

(45)|ψ〉 =
+∞∫

−∞

{
Φ(ω)â

†
1H (Ω0 + ω)â

†
2V (Ω0 − ω) + Φ(−ω)â

†
1V (Ω0 + ω)â

†
2H (Ω0 − ω)

}|0〉.

The two-photon spectral coherence matrix is:

(46)R(2)(ω) = ∣∣ψ(ω)
〉〈
ψ(ω′)

∣∣∣∣
ω=ω′ =

⎡
⎢⎢⎢⎣

0 0 0 0

0 |Φ(ω)|2 Φ(ω)Φ∗(−ω) 0

0 Φ∗(ω)Φ(ω) |Φ(−ω)|2 0

0 0 0 0

⎤
⎥⎥⎥⎦ .

Note that this state exhibit dispersion cancellation, as it appears in the expression Φ∗(ω)Φ(−ω).

5. Discussion

We introduced a general approach for detailed characterization of the broadband polarization-entangled quantum optical state
based on the spectral coherence matrix technique. Several results for single-parameter entangled states described in the literature
can be obtained from our general consideration as special cases.

For example, our protocol produces the polarization quantum tomography approach introduced by Kwiat and co-workers [13]
when a monochromatic two-photon state at frequency Ω0 is considered:

(47)ρ(2i+j),(2k+l)(Ω,Ω ′,Ω ′′,Ω ′′′) = ρ̃(2i+j),(2k+l)δ(Ω − Ω0)δ(Ω
′ − Ω0)δ(Ω

′′ − Ω0)δ(Ω
′′′ − Ω0)

when the relation between the measured interferograms and the spectral coherence matrix is:

(48)G(ν)(Ω,Ω ′) =
15∑

μ=0

Γν,μρ̃μδ(Ω − Ω0)δ(Ω
′ − Ω0).

The delta-function frequency dependence can be factorized and dropped, thus producing a matrix equation based only on polar-
ization.

In case of a single photon, on the other hand, our approach produces known classical spectral coherence matrix. In particular,
the density matrix of a broadband single-photon wavepacket, can be expressed as:

(49)ρ =
1∑

k,l=0

∫
dΩ

∫
dΩ ′ ρkl(Ω,Ω ′)|Ω,k〉〈Ω ′, l|.

Having just one input spatial mode in such a case, we will need only one tomography device and one detector. The counting rate
after integration over time, to account for slow detectors, is therefore:

(50)G(τ) =
∫

dt Tr
[
ρE(−)(t)E(+)(t)

] = 2
1∑

k,l=0

ζ ∗
l ζk

{
Gkl + ρkl(τ )

}

where:

(51)Gkl =
∫

dωρkl(ω,ω)

and:

(52)ρkl(τ ) =
∫

dωρkl(ω,ω) cosωτ.

The interferograms depend on the elements:

(53)R
(1)
ij (Ω) = ρij (Ω,Ω ′)|Ω ′=Ω
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which are the elements of the quantum spectral coherence matrix for the single-photon case. By reducing the dimensionality of the
process we defined for the two-photon case we can retrieve the matrix elements R

(1)
ij (Ω) from the interferograms.

For example, considering a source emitting the single-photon wavepacket:

(54)|ψ〉 =
∫

dω
[
εH (ω)â

†
H (ω) + εV (ω)â

†
V (ω)

]|0〉
we can retrieve the following matrix:

(55)R(1)(ω) = ρ(ω,ω) =
[ |εH (ω)|2 ε∗

H (ω)εV (ω)

εH (ω)ε∗
V (ω) |εV (ω)|2

]

which corresponds to the classical case (Eq. (13)).
In classical optics, the polarization properties of an optical device can be described by means of a 2-by-2 complex Jones matrix

L(ν). The input and output spectral density matrices R0(ν) and R(ν) are related by the transformation:

(56)R(ν) = L†(ν)R0(ν)L(ν).

In the same way a similar 4-by-4 complex matrix T (ν) can be defined for the two-photon polarization-entangled case:

(57)R(2)(ν) = T †(ν)R
(2)
0 (ν)T (ν)

and can be used to characterize devices or materials that act on the two entangled-photon wavepackets.
However, the more general and informative way to characterize the polarization properties of the material is the Mueller matrix.

This is a real 4-by-4 matrix which, for classical light, relates four Stokes parameters of the input beam to the four Stokes parameters
of the output beam:

(58)

⎡
⎢⎢⎢⎣

S0(ν)

S1(ν)

S2(ν)

S3(ν)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

S
(0)
0 (ν)

S
(0)
1 (ν)

S
(0)
2 (ν)

S
(0)
3 (ν)

⎤
⎥⎥⎥⎥⎦ .

In the quantum two-photon case the 16 spectral Stokes parameters for the output light will be related to the Stokes parameters
of the two-photon input light by means of a 16-by-16 Mueller matrix:

(59)

⎡
⎢⎢⎢⎣

S0(ν)

S1(ν)

· · ·
S15(ν)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M0,0 M0,1 · · · M0,15

M1,0 M1,1 · · · M1,15

· · · · · · · · · · · ·
M15,0 M15,1 · · · M15,15

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

S
(0)
0 (ν)

S
(0)
1 (ν)

· · ·
S

(0)
15 (ν)

⎤
⎥⎥⎥⎦ .

6. Conclusions

We have shown that all the quantities normally used to characterize the polarimetric properties of materials and devices in el-
lipsometry will have a counterpart for two-photon light. One major difference is a significant increase in dimensionality in the
quantum case. This increase in dimensionality could be exploited in the field of optical measurement, providing more subtle infor-
mation about the material system under investigation.

Several approaches have been available in the literature for independent evaluation and characterization of polarization states
entangled either in polarization or in frequency. Here we developed a generalized approach providing tools for a detailed charac-
terization of a quantum-optical state that is entangled both in spectrum and in polarization. We accomplished this by generalizing
the classical definition of the spectral coherence matrix in order to introduce the two-photon coherence matrix for a broadband
two-photon entangled state. We then outlined the experimental procedure for the measurement of its elements and illustrated how
it can be used to quantify properties of frequency-polarization entangled states. Moreover, we discussed that such a technique can
be used to characterize properties of devices and materials through which such a two-photon entangled state has propagated. We
believe that the increased system dimensionality in the quantum case will find applications for optical measurement techniques,
particularly in the field of quantum ellipsometry.
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