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Abstract
Quantum key distribution (QKD) has long been a promising area for the
application of quantum effects in solving real-world problems. However, two
major obstacles have stood in the way of its widespread application: low secure
key generation rates and short achievable operating distances. In this paper, a
new physical mechanism for dealing with the first of these problems is proposed:
the interplay between different degrees of freedom in a hyperentangled system
(parametric down-conversion) is used to increase the Hilbert space dimension
available for key generation while maintaining security. Polarization-based Bell
tests provide security checking, while orbital angular momentum (OAM) and
total angular momentum (TAM) provide a higher key generation rate. Whether
to measure TAM or OAM is decided randomly in each trial. The concurrent
noncommutativity of TAM with OAM and polarization provides the physical
basis for quantum security. TAM measurements link polarization to OAM, so
that if the legitimate participants measure OAM while the eavesdropper mea-
sures TAM (or vice-versa), then polarization entanglement is lost, revealing the
eavesdropper. In contrast to other OAM-based QKD methods, complex active
switching between OAM bases is not required; instead, passive switching by
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beam splitters combined with much simpler active switching between polar-
ization bases makes implementation at high OAM more practical.

Keywords: quantum optics, quantum key distribution, optical orbital angular
momentum

1. Introduction

1.1. Quantum key distribution

In quantum key distribution (QKD) two experimenters (Alice and Bob) generate a shared
cryptographic key, using quantum mechanics to guarantee that an eavesdropper (Eve) cannot
obtain significant information about the key without being revealed. Commonly, for optical
QKD schemes, key bits are derived from photon polarization. This can be done by having Alice
prepare for Bob a single photon in a randomly chosen polarization state known only to her
(BB84 protocol [1]), or by Alice and Bob each receiving from a common source half of an
entangled photon pair (Ekert protocol [2]). Either way, polarization measurements by Eve
produce detectable disturbances. Each photon is prepared in one of two non-orthogonal,
mutually unbiased bases. Eve, intercepting a photon traveling to Bob, must guess which basis to
measure in; if she measures in the same basis as the two legitimate participants, she acquires full
information without detection. However, half the time she guesses the wrong basis, ensuring
that her outcome is uncorrelated with Aliceʼs; she then obtains no useful information and
simultaneously exposes herself to detection by randomizing Bobʼs results. This occurs because
the polarization operators in the two non-orthogonal bases are not mutually commuting.
Exchanging results for a subset of measurements, Alice and Bob see the decrease in correlation
between their polarizations, revealing Eveʼs actions. For fiber systems, phase is often used
instead of polarization, but the principle remains the same.

There have been two principal obstacles to widespread application of QKD outside of
research labs. First, most methods have been limited in the distances over which they can
operate; the simplest single-photon or weak coherent state approaches, for example, are
generally limited to tens of kilometers before photon losses introduce unacceptable levels of
error.

Second, most approaches to QKD with optical systems have used polarization or phase as
the variables from which cryptographic key segments are generated. However, polarization can
normally only encode one qubit per photon, unless substantial extra complications to the
apparatus are added to allow for qutrit or ququart exploitation. Similarly, it is difficult at a
practical level to increase the number of dimensions of the states encoded by phase beyond two,
or at most, four. It would therefore be desirable to find a more practical means of encoding high-
dimensional states into a photon. This would increase the rate of key generation by allowing
more than one bit of cryptographic key to be shared between the legitimate users of the system
per exchanged photon.

As a means of increasing the key rate, there has been much interest (see [3–6] and
references therein) in using the photonʼs orbital angular momentum (OAM) instead of
polarization. The range of applications of states with OAM, such as Laguerre–Gauss states, to
both classical and quantum communication has been rapidly expanding; see for example [7, 8].
OAM is quantized, = L lz z , with integer topological charge lz. There is no fundamental upper
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limit to the value of lz, so the alphabet size or effective Hilbert space dimension, N, is in
principle unbounded. Using a range of lz values from −l0 to +l0, each photon can generate up to

= +( )N llog log 2 1
2 2 0 bits of cryptographic key. OAM was first successfully used [3] to

generate a quantum key by means of the three-dimensional qutrit space spanned by = ±l 0, 1z .
However, switching between unbiased, noncommuting bases in a higher-dimensional OAM
space is now needed. This basis switching is much more difficult for OAM than for polarization
and the difficulty grows with increasing basis size. Therefore the apparatus complexity and
experimental difficulty increase rapidly with growing N.

In this paper, we wish to propose a means of increasing the number of secret key bits
generated per transmitted photon, while avoiding the increasingly difficult basis modulations
required by other schemes when going to higher Hilbert space dimensions. In the next section,
we introduce a new physical mechanism for key generation that will allow a simpler
experimental route to this goal. The approach we propose makes use of OAM for increased
Hilbert space dimension, but here the OAM is employed in a fundamentally different manner
than in all previous methods. In particular, we will make use of its joint entanglement with
polarization, arranging the setup in such a way that the polarization is able to serve as a signal of
attempts at eavesdropping on the OAM. Conceptually, rather than switching between two
nonorthogonal bases in the space of orbital angular momentum, we switch between two
nonorthogonal bases in the larger space of total angular momentum. This is much easier to
accomplish because only the measurement basis of the photon polarization needs to be actively
modulated.

1.2. Quantum nondemolition measurements

The idea of using OAM to generate a secret key while only performing security-enforcing basis
modulations in polarization seems to reveal an immediate problem. The two variables commute,
so that one may be measured without disturbing the other. For example, the OAM eigenvalue,
lz, may be obtained by performing an ideal quantum nondemolition (QND) measurement
[9–12]. This in principal causes no disturbance to the polarization or spin.

In practice, the situation is a little more complicated. Practical execution of QND requires
nonlinear optical processes such as Kerr nonlinearity; however, it has been shown that the
physics of nonlinear interaction ensure that QND measurement of OAM will cause some
disturbance to the signalʼs polarization state [13]. This both reveals Eveʼs presence and destroys
the information she was attempting to obtain, since it prevents Alice and Bob from agreeing
reliably on a shifted key. Furthermore, the low amplitudes of nonlinear processes guarantee low
efficiency at the single photon level; only a small fraction of the photons will participate in the
interaction, allowing Eve to determine only a small fraction of the OAM values.

But these considerations are specific to the case of QND measurements via Kerr
nonlinearities. It may be possible that Eve has an advanced technology that allows her to make
QND measurements of lz by some other, as yet unknown, means. There is no fundamental
principal, to our knowledge, that guarantees that other such QND technologies must cause a
similar disturbance to polarization when applied to OAM. Thus, we wish to avoid this problem
by arranging a fundamental linkage between the polarization and OAM that will cause QND
measurements of one variable to disturb the other, independent of the physical mechanism used
to make the measurement. We propose a means of accomplishing this in the following sections.
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1.3. Hyperentangled QKD

We propose a high-dimensional OAM-based QKD scheme that requires no random switching
between OAM bases. For full security, it is necessary to treat both variables, polarization and
OAM, in a fully quantum manner. The goal is to do this in such a way that active basis
modulations are only needed in polarization, not in OAM. This is achieved by adding a third

variable, the total angular momentum (TAM) Ĵ about the propagation axis, and then allowing a

random choice between measuring ˆ = ˆ + ˆJ L Sz z z or measuring L̂z. Ĵ provides a linkage between

the spin Ŝ (which determines the circular polarization state) and the OAM L̂, that allows the
desired goal to be achieved.

The principal idea is to separate key generation and security into different degrees of
freedom; however, these variables must be closely linked in such a way that unauthorized
measurements of one variable produce detectable signatures in the other. We will use OAM and
TAM in tandem for key generation (due to their high dimensionality and subsequent high key-
generation capacity), while employing polarization for security checks (due to the ease of
alternating between polarization bases). This is possible because spontaneous parametric down-
conversion (SPDC) supplies photon pairs hyperentangled [14–19] in polarization and OAM
(among other variables). Hyperentanglement in SPDC has found applications in recent years
ranging from quantum interferometry [15] and quantum imaging [20] to quantum cryptography
and dense coding [21, 22]. Polarization-OAM hyperentangled states have also been used for
ultra-sensitive angular measurements [23].

Previous uses of OAM in conjunction with polarization for QKD applications [21, 22]
make use of the two variables in a sort of parallel, non-overlapping manner: the measurement of
one variable has no effect on the other. The components of the two variables are simply
appended to each other to form a vector with more components, thereby expanding the relevant
state space to a higher dimension. A complicated procedure of basis switching must still be
carried out in this higher-dimensional space in order to ensure security. In contrast, in the
current paper hyperentanglement is used in a more intrinsic manner; the pair of entangled
variables are partially overlapping in the sense that they can be either independent or perfectly
correlated with each other, depending on whether or not a third variable has also been
measured. In this way, measurements by the eavesdropper on one variable become apparent
through loss of entanglement in a second variable due to the pairwise noncommutativity of the
first two variables with the third. The enforcement of security measures is then greatly
simplified at high dimensions, since passive switching between the two measurement variables
is technically much simpler than active switching between large basis sets for a single variable.

In addition to the technical simplification of QKD at high dimensions, the proposed

procedure is interesting for several other reasons. Use of the noncommutativity of Ĵ with L̂ and

Ŝ for quantum communication applications seems to be largely unexplored, as is the use in
QKD of pairs of different vector operators in the place of pairs of different components of the
same vector operator. Furthermore, the use of angular momentum erasure (see section (2)) to
maintain polarization entanglement has not previously been proposed and may be interesting in
its own right as the basis for angular momentum-based analogs of quantum eraser and delayed
choice experiments.

The proposed approach relies on the fact that although OAM and polarization commute

with each other, neither of them commutes with the TAM. To be explicit, the commutators of L̂
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and Ŝ among themselves are given by:

∑ϵˆ ˆ =⎡⎣ ⎤⎦ L L i L, (1)i j
k

ijk k

∑ϵˆ ˆ =⎡⎣ ⎤⎦ S S i S, (2)i j
k

ijk k

ˆ ˆ =⎡⎣ ⎤⎦L S, 0, (3)i j

so that:

ð4Þ

∑ϵ= i L (5)
k

ijk k

ð6Þ

∑ϵ= i S . (7)
k

ijk k

This lack of commutativity means that TAM measurements provide an indirect linkage between

L̂ and Ŝ; we make use of this linkage in the following.
The specific procedure to be proposed in the next section allows Alice and Bob a random

choice between measuring the eigenvalues of either the OAM (L̂z) or the TAM (Ĵz). Only trials
in which Alice and Bob both measure the same variable are kept; on these, the photon spin
(polarization) state remains entangled. If Eve measures a variable differently to Alice and Bob,
the spin wavefunction collapses into a definite polarization state, which will be detectable by a

Bell-type test on polarization. This occurs because once the values of L̂z and Ĵz have both been

measured, the value of ˆ = ˆ − ˆS J Lz z z can be determined as well. Subsequent measurements of the
photonʼs linear polarization in the −x y plane will then be affected by this sequence of
measurements.

The higher dimension of the OAM state space increases the number of key bits generated
per photon; this is done without any additional active modulation beyond what is needed in the
usual polarization-based protocols. There is no upper limit to the number of bits possible in
principle, although there are of course practical limits. N can potentially be scaled up to a very
large size with little additional effort as long as sources with high values of entangled angular
momenta and OAM sorters that work over a large enough range are both available. The range of
achievable l values for entangled photons has rapidly grown in recent years [24, 25]. Measures
must be taken to guarantee that the range being used for the alphabet has a flat spectrum;
otherwise Eve can use the differing probabilities to gain information about the key. This
equalization, however, can be easily achieved, for example by using extra OAM sorters
followed by filters with different transmission rates. The span of values that can be sorted by a
single sorter has also grown, though more slowly [26–32].
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2. Setup and procedure

2.1. Setup

Figure 1 shows the proposed setup in schematic form, with a more detailed view of portions of
it in figures 2 and 4. We will assume that the down-conversion source uses a pump beam with
zero OAM. The signal and idler polarizations are perfectly correlated for type I down-
conversion or perfectly anticorrelated for type II; either way, the OAM is perfectly
anticorrelated. For specificity, we henceforth assume type II down-conversion. The particular
case drawn in figures 2 and 4 assumes alphabet size N = 3 ( = ±l 0, 1; i.e. =l 10 ), so an array of
three detectors is required following each sorter. Larger alphabets require more detectors,
sorters and erasure stages, but no further changes are needed; the setup complexity therefore
grows much more slowly with alphabet size than in other approaches; a change of OAM bases
in the approach of [3], for example, requires the alignment and coordination of rapidly
increasing numbers of moving stages as the dimension grows. (Note that even though the
alphabet being used is − +{ 1, 0, 1}, the sorters will need to be capable of sorting values up to
±2 to carry out the erasure procedure in figure 2.)

Alice and Bob can readily measure either OAM eigenvalue lz or spin eigenvalue sz (circular

polarization), or both. In the paraxial case, Ŝ and L̂ are well defined and commute, so their
components can be simultaneously measured, as verified experimentally in [33]. This fully
determines j

z
. In contrast, the TAM j

z
about the propagation axis can be measured

interferometrically in such a way [33] that it leaves the separate values of both spin and
OAM undetermined. So suppose that Alice and Bob each have a beam splitter randomly

sending incoming photons either to an apparatus that measures L̂z or to one measuring Ĵz (the

Figure 1. Each participant randomly measures either L̂z or Ĵz via nondestructive sorting.
After sorting is done for one of these variables, the information about the other variable
is erased (see figure 2). Regardless of which variable is sorted and which is erased, the
polarization is undisturbed and available for measurement.
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Figure 2. The procedures for erasing L̂z information (top) following a Ĵz measurement,

or erasing Ĵz information (bottom) after an L̂z measurement. In the top case, the value of

Ĵz can still be determined from which of an array of detectors fires at the end (see

figure 4), and similarly for L̂z in the bottom case. The figure is drawn for an incoming
value of l or j equal to 1, but the process works the same way for other values. In each
case, the undesired values are sorted, shifted to zero, then recombined so that there is no
way to determine what the original value was. The shifting is further illustrated in
figure 3.

Figure 3. The effect of the l and s shifters of figure 2. (a) The shifting of l in the top part
of figure 2 can be accomplished with a computer-generated hologram or a spiral phase
plate. The incoming waves of positive or negative OAM are converted into plane waves
with =l 0z . (b) The shift of s in the bottom part of figure 2 may be carried out with
birefringent phase plates. Left- and right-circularly polarized waves are interchanged.
Although this will alter the value of s, it will leave the spin or polarization entanglement
undisturbed in trials where both participants measure Ĵz, since they will both carry out
similar spin flips in opposite directions.
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sorters in figure 1). After the sorting is done on one variable, information about the other
variable is erased by an arrangement of beam splitters, waveplates and holograms (see figures 2,
3 and 4). The sorting by lz and j

z
values is nondestructive, so the spin or polarization can still be

measured afterwards.

2.2. Erasing unmeasured variables

The erasure of the unmeasured variable, as illustrated in figure 2, is necessary because otherwise
there will be no interference between polarization states. To see this, imagine Alice and Bob
place linear polarizers at respective angles θA and θB from the horizontal. The states passed by

the polarizers will be denoted θA and θB . After passing through the polarizers, the probability

of joint detection in both labs is proportional to θ θ ψA B

2
. Provided the angles are not

multiples π
2
, both H and V will have nonzero projections onto the θ states, so that cross-

terms between the H and V pieces will survive in the probability. These cross-terms will be
dependent on θA and θB, giving rise to the desired Bell interference. However, if the polarization
is entangled with another variable (OAM for example), a state such as

±l H l V l V l H, , , ,
A B A B1 2 2 1 will produce no interference, since the L̂z eigenstates l1

Figure 4. A more detailed view of Aliceʼs lab; Bobʼs lab has a similar arrangement.
After sorting in one variable (either j

z
or lz), information about the other variable then

needs to be erased (figure 2) before polarization interference is measured. The outgoing
arrows lead to systems for polarization measurement. For the top three outputs in the
figure, which particular detector fires at the end will tell Alice the value of j

z
but will

give no information about lz; the opposite is true in the bottom three outputs. Thus Alice
will know the value of only one of these two variables.
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and l2 will still be orthogonal after the polarizer, causing the cross-terms to vanish; there are

no intermediate states to bridge the two orthogonal OAM states in the way that the θ states did
for polarization. This can be seen in detail in the example given below (section 2.4).

When j
z
has been measured, information about lz can be erased (top part of figure 2) by

sorting different lz values into different paths, inserting appropriate holograms or spiral
phase plates to shift the OAM in each path to zero, then recombining the paths. In this
manner, the initial OAM values are erased (shifted to zero) so that there is no way of
determining which path was taken and what the initial OAM value was. The different
incoming OAM states are now indistinguishable, while the polarization states are left
entangled. Similarly, when lz is measured information about j

z
can be erased (bottom part of

figure 2) by sorting j
z
values, shifting the values of sz appropriately with phase plates

(converting one circular polarization into the other), and recombining. Although this
changes the value of s for each photon, it leaves the entanglement undisturbed in the trials
where both Alice and Bob measure j

z
, since they both carry out similar shifts: an incoming

entangled spin state of the form = = − ± = − =s s s s1 1 1 1z A z B z A z B
is shifted to

= − =+ ± =+ = −s s s s1 1 1 1z A z B z A z B
, which is still entangled and in fact proportional

to the original state.

2.3. Procedure

Consider now the setup described in the previous section with a two-photon input state
generated from type II parametric down-conversion. The pump beam is assumed to have no
OAM, =l 0pump . Alice and Bob each receive one photon from the state, on which to make

measurements. Consider several possibilities:

• Suppose Alice and Bob both measure lz. Using the fact that their values should be perfectly
anticorrelated, they can use the resulting OAM quantum number on Aliceʼs side (or,

equally, on Bobʼs) to define a key. Since the L̂ and Ŝ measurements donʼt affect each other,
the spin eigenvalues along each axis remain undetermined and the polarization state
remains entangled.

• Alternatively, if both measure j
z
, the key can then be defined by the resulting TAM

quantum number on Aliceʼs side. The spin components are again undetermined, and the
polarization state remains entangled.

• But if one measures j
z
and the other measures lz, this completely fixes the spin along the

axis: = −s j lz z z. The spin wavefunction collapses from an entangled state to a separable

one. These trials are discarded.

In the first two cases, the spin states remain entangled after sorting, so tests on the linear
polarization should yield a Bell violation. In the third case, when Alice and Bob measure
different variables, such a test should yield no violation, the spin having been reduced to a

classical quantity. The measurement of one variable (Ĵz or L̂z) reduces the original space of
states for each particle to a two-dimensional subspace, while the measurement of the second
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variable further reduces each particle to one unique state. Consequently, the two-photon pair
goes from an entangled to a separable state.

If Eve attempts QND measurements to determine j
z
or lz, then on half the retained trials she

will measure the wrong variable (the one not measured by Alice and Bob), thus fixing s and
causing a detectable loss of the Bell violation.

In this scheme, the beam splitterʼs random choice between causing either a Ĵz measurement

or an L̂z measurement replaces the usual random modulation between two measurement bases
for components of a single variable. All variables act in a completely quantum manner, with the

‘quantumness’ coming from the fact that although L̂ and Ŝ commute with each other, neither

commutes with Ĵ; if j
z
and lz are both measured, whether by the legitimate participants or by

eavesdroppers, polarization entanglement is destroyed.
Another equivalent way to view the situation, that makes the analogy to the Ekert case

clearer, is that measurements can be made along a basis in angular momentum space aligned

with the Ĵz axis or one aligned with the L̂z axis; these are mutually unbiased on each two-
dimensional subspace defined by a fixed j

z
value or a fixed lz value, but are also incomplete in

the sense that neither measurement fully determines the state. However, making both
measurements does uniquely determine the state, completely fixing j

z
, lz and sz values.

Note that the key-generating capacity grows with increasing dimension, as is the case for
all OAM-based QKD methods. However, unlike in other OAM-based schemes, the security
checking remains essentially two-dimensional so that the level of security grows more slowly
with increasing dimension. This is the price that is paid for reducing the complexity of
generating practical high-dimensional keys. The secure key rate and mutual information
between participants will be examined in section 3 and the appendix.

2.4. Example

To be more concrete, consider an entangled two-photon input state of the form

ψ ψ ψ= (8)
oam spin

∑= − −
=−

( )l l H V V H
1

2
(9)

l l

l

z A z B A B A B

z 0

0

Such a state arises, for example, from type II down-conversion after filtering to equalize the
probabilities of various l values. The linear and circular polarization states are related by

= = + = − = +( )H s s R L
1

2
1 1

1

2
( ) (10)z z

= = − = − = −( )V
i

s s
i

R L
2

1 1
2

( ), (11)z z

where R and L correspond to spin = +s 1z and = −s 1z , respectively. So the two-particle state
ψ can be written in terms of joint OAM spin states l s, as
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∑ ∑ψ = − − − −
=− =−

l s l s
1

2
( 1) , , . (12)

s l l

l
s

z z A z z B
1

1
2

z z

z

0

0

If both experimenters measure the TAM with Alice obtaining the value j
z
, then Bob will obtain

the value −j
z
, reducing the state to

ψ = − − + − + −

− + − − − +

′ (
)

i
j j

j j

2
1, 1 1, 1

1, 1 1, 1 . (13)

z A z B

z A z B

The first entry in each ket is the lz value, the second is sz. Note that lz and sz remain indeterminate
after the j

z
measurement since multiple combinations of lz and sz can add up to the same j

z
. If lz is

not measured in either branch at any point, then information about it can be erased as in
figure 2, in order to arrive at a maximally entangled spin wavefunction,

ψ = − −( )i
R L L R

2
(14)

spin A B A B

= −( )H V V H
1

2
. (15)A B A B

Carrying out a Bell-type test on polarization after the j
z
sorting then yields a maximal quantum

mechanical Bell violation. However, if in addition to the j
z
sorting, the OAM on Bobʼs side is

also measured (by Bob or by Eve), the state of equation (13) collapses to either

− − + −i j j1, 1 1, 1 (16)
z A z B

(if Bob finds value = − +l j 1z z
), or else to

− + − − −i j j1, 1 1, 1 (17)
z A z B

(if Bobʼs value is = − −l j 1z z
). Placing quarter-wave plates at the output, to convert from

circular to linear polarization, the state becomes either

− − +i j H j V1, 1, (18)
z A z B

or

− + − −i j V j H1, 1, . (19)
z A z B

Either way, it is now a separable state (both before and after the lz erasure) with definite
polarization for each photon, so no Bell violation occurs. If Alice and Bob measure lz while Eve
measures j

z
, a similar result follows.

When Eve guesses whether to measure L̂z or Ĵz, half the time she guesses wrong and causes
collapse of the entangled polarization state into a separable state. This lowers the interference
patternʼs visibility to classical levels when Bell tests are performed, providing a clear signal of
her intervention.

To examine the interference visibility, define the rotated polarization states at Aliceʼs
location:
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θ θ θ= +H Vcos sin (20)A A A

θ θ θ= − +⊥ H Vsin cos , (21)
A

A A

with similar states ϕ B and ϕ⊥

B
defined at Bobʼs lab. θ and ϕ are the angles of linear

polarizers before Aliceʼs and Bobʼs detectors, respectively. In the absence of eavesdropping, it
is straightforward to verify that under ideal conditions (perfect detectors and no losses) the
coincidence rate is proportional to

ψ θ ϕ θ ϕ θ ϕ= − = − −⎡⎣ ⎤⎦1
2

sin ( )
1
2

1 cos ( ) (22)
spin

A
B

2 2 2

for the two-photon entangled spin state of equation (15). A Clauser–Horne–Shimony–Holt
(CHSH)-type interference experiment [34] will then exhibit oscillations with visibility  of

100%. On the other hand, if ψ
spin

is replaced by any separable state of the form

ψ γ γ= ⊥
sep A

B
(where γ is the polarization direction of the photon measured by Alice),

the corresponding inner product is ψ θ ϕ γ θ γ ϕ| = − −cos ( ) sin ( );sep
A

B

2
2 2 the depen-

dences on θ and ϕ now factor so that the visibility can never be greater than the classical limit of

≈ 71%1

2
. In general, if Eve is eavesdropping a fraction η of the time, the visibility will be

η⩽ − − ( )1 1 1

2
. A drop in visibility to below the value set by the Bell-CHSH inequality

signals the possible presence of eavesdropping.

3. Information and security considerations

Instead of testing Bell inequalities on the entangled polarization states, there is a second way to
check the security of the transmission, which will be more useful for arriving at quantitative
estimates of information and signaling rates. In the set of trials for which Alice and Bob
measure the same variable, they can choose a random subset of their measurement values (lz or
j
z
values) for comparison. Ideally, they should both find perfectly anticorrelated values, so that

the presence of discrepancies beyond the expected error rate due to the transmission method
then serves as a signal of an eavesdropperʼs presence. This method is more directly analogous to
that of the BB84 scheme, requiring no active modulation of the detector settings, as opposed to
the Bell inequality-based version of the Ekert scheme, which still requires modulation of the
settings for the polarization measurements. In this section, we take the BB84-like approach
when we look at security considerations, since it is relatively easy to compute the probabilities
of the output states and the key rate while taking Eveʼs actions into account.

If the allowed OAM values are − +{ }l l,..., 0 ,...,0 0 , then the possible j
z
values are

− − +{ }l l1 ,..., 0 ,..., 10 0 . It should be noted that unlike the case of the Ekert or BB84
protocols, where there is a finite number of possible outcomes (two polarizations) and they are
both used, in the current case we make use of a finite subset of a larger (in fact infinite) set of
possible output values for j

z
or lz. As a result, when Eve interferes it is possible to ‘run off the

end’ of the allowed set of values, and this possibility must be accounted for. Also, we note that
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there are +l2 30 values of j
z
but only +l2 10 values of lz. As a result of these complications

some further refinements to the method must be made. These are discussed in the appendix. The
appendix also then gives the resulting probability distributions for Aliceʼs and Bobʼs joint
outcomes. In this section, we make use of those distributions to investigate the quantum security
of the procedure against eavesdropping.

3.1. Error rates

If Eve intercepts a fraction ηof the transmissions, she has a 50% chance of measuring the correct

variable each time, obtaining the correct key value k (either from an L̂z or Ĵz measurement)
without introducing errors. On the other hand, during the 50% of the times in which she
measures the wrong variable, she only has a further 50% chance of sending the correct value to
Bob. Specifically, each time she measures the wrong variable her intervention has a 1

8

probability of causing Bob to measure the value −k 2 and an overall probability of 1

8
of causing

him to measure the value +k 2, with only a 1

2
probability of obtaining the correct key value, k

(see figure A1). So if the alphabet size were infinite, the eavesdropper-induced error rate would

be η= · · = η( ) ( )e .1

2

1

2 4
However, we must take into account the fact that Eveʼs actions can

cause values to move out of the range being used for the key; this will alter the error rate
slightly. Using the probability distribution PAB given in the appendix, it is then straightforward
to show that the true eavesdropper-induced error rate is

η=
+

+ − η

⎛
⎝⎜

⎞
⎠⎟( )

e
l

l8

4 1

2 1
. (23)0

0 8

Bobʼs error rate is shown in figure 5 for three different eavesdropping ratios, along with the
corresponding values for polarization-based BB84. It is seen that for small l0 the error rate is
slightly lower than the BB84 value, but it rapidly approaches that value as l0 increases.

After dropping the trials in which Alice and Bob measure different variables, the fraction f
of the remaining photons that are used to generate the key may also be easily computed from
PAB. It is found to be

Figure 5. Comparison of the error rate e for the scheme described in this paper (solid
curves) to the BB84 protocol (dashed lines). This is done for (from top to bottom)
eavesdropping ratios η = 1, η = 0.5 and η = 0.1. In each case, the error rate for the
current approach starts a little below the BB84 value for small l0, but approaches it
rapidly and asymptotically as l0 increases.
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η
=

+ −
+

f
l

l

4 2

4 3
. (24)0

0

This approaches 100% for → ∞l0 . For finite l0, it ranges between a low of = +
+f l

l

4 1

4 3
0

0
(for η = 1)

and a high of = +
+f l

l

4 2

4 3
0

0
(for η = 0). For the worst case ( =l 10 qutrits), this corresponds to a

range of 5

7
to 6

7
.

3.2. Mutual information and key rates

One may also compute the mutual information between the legitimate agents, I A B( ; ), and
information gain of the eavesdropper, =I I A E I B Emax { ( ; ), ( ; ) }E . From these, the secret key

rate, κ = −{ }max I I , 0AB E may be found. Recall that it is always possible to distill a secret key
using privacy amplification when κ > 0. Instead of the distribution PAB given in the appendix
(which includes all events, even those for which the values run off the edge of the alphabet and
so generate no key) in order to compute κ, we must use the probability distribution P A B( , )K for
the key-generating events only. This new distribution is obtained from PAB simply by dropping
its last row and column, then dividing by the key-generating fraction f in order to renormalize

Figure 6. Mutual information between Alice and Bob I A B( ; ) (dotted red curve) and
information gain by Eve IE (dashed black) for (b) =l 10 , (c) =l 30 , and (d) =l 50 . The
secret key rate κ(solid blue) is either the difference −I IAB AE, or zero, whichever is
larger. As long as κ > 0, a secret key can always be distilled. For comparison, the same
quantities are plotted for the polarization-based Ekert protocol (or equivalently, for the
BB84 protocol) in (a). (Note the change in scale on the vertical axes of the different
plots.)
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the total probability to unity. Straightforward calculation then gives the result that the mutual
information [35] between Alice and Bob as a function of parameters η and l0 is:

= + −

− − − + + − −

+ −

η
η η

η η η η

η η

+ −
+ −{ ( )( )

( ) ( ) ( ) ( )
}

( )
( )

I A B l

l

l

( ; ) 2 1 log

8 1 log 1 2 1 1 log 1

2 1 log . (25)

l

l2
4 2 0 2 2

4 2

2

8 2 8 0 4 2 4

4 0 2 8

0

0

Asymptotically (for → ∞l0 ) this approaches ( )llog 2
2 0 , independent of η; for finite l0 and no

eavesdropping (η = 0), it is equal to +( )llog 2 1
2 0 . Eve gains full information about the key

value on half of the measurements she makes and receives none on the other half, so the
information gained by Eve is simply η

2
times the information per photon. The results for the

information and the secret key rate are plotted in figure 6(b)–(d). The case of BB84 is shown for
comparison in figure 6(a). It is seen that κ is always greater than in the BB84 case, that it
remains positive for all values of η, and that for any fixed value of ηthe value of κ increases with
increasing l0. Thus, the amount of key generated per transmitted photon is significantly larger
than in the BB84 or Ekert schemes. Security can be further enhanced in various ways, such as
replacing the four-state polarization scheme with a six-state approach [36].

4. Conclusion

We have proposed a method for performing QKD using high-dimensional OAM and TAM
variables in a manner that does not require the complicated high-dimensional basis modulations
necessary in other approaches, and which allows an increase in the rate of secure key
distribution. The main ingredients are: (i) A hyperentangled system with different functions
segregated into different entangled degrees of freedom. (ii) Random switching between two
OAM bases is replaced by random switching between measurements of two distinct

noncommuting but related variables, L̂z and Ĵz. (iii) Measurement of any one variable does
not completely determine the state, while measurement of any two of the three relevant

variables does. Together, these ingredients allow the high capacity of Ĵz or L̂z eigenstates to be
used while modulating only the simpler polarization states. As a result, higher-dimensional
OAM spaces can be utilized and higher key-generation capacities can be achieved with only
relatively minimal increases in apparatus complexity.

Previous approaches to using polarization and OAM together simply used them to generate
larger keys from each photon by increasing the number of variables involved. In these past
approaches, the variables still remained separate, with no interplay between them. QND
measurements on one variable left no signature in the other, so that both must experience
independent basis modulations to maintain security. In contrast, the approach described here
makes a more fundamental use of the systemʼs hyperentanglement, constructing a chain of three
variables such that adjacent pairs in the chain do not commute. This noncommutativity provides
a linkage between the variables that enhances security, as well as increasing the number of key
bits per photon.

The approach of constructing chains of pairwise noncommuting operators has not been
previously used in QKD and is likely to be generalizable to other operators (aside from angular
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momentum), and to employment in other types of quantum protocols as well. The procedure
also makes use of an angular momentum erasure process that is of interest in its own right, since
it allows the possibility of conducting future quantum erasure or delayed choice experiments in
angular momentum space.

At high l0, the eavesdropper-induced error rate is lower than for other two-basis OAM-

based QKD schemes, where η= − =η
+ +( )e 1

l

l

l2

1

2 1 2 10

0

0
; in the current scheme e instead

remains near the two-dimensional BB84 error rate; this is because the eigenspaces of the two

measured operators (Ĵz and L̂z) are effectively unbiased only on a two-dimensional subspace,
due to the two-dimensional nature of the polarization. The dimension of the subspace on which
the variables are unbiased does not increase with l0. Because of this, the secret key rate κ will be
lower than for other OAM-based schemes at large l0. However, κ in this approach is always
higher than in BB84 or E91 protocols even for the least advantageous case ( =l 10 ), and it grows
logarithmically with increasing l0; similarly, the BB84-level eavesdropper-induced error rate
remains sufficient to detect eavesdropping regardless of dimension.

There are some technical difficulties that must be overcome for the method to become
practical. Probably the chief among these is that the most common method of measuring photon
OAM is to shift the input l-state to l = 0 and then to collect them in an optical fiber. This method
is of low efficiency, which greatly reduces the key transmission rate of all OAM-based schemes.
Further, the interferometers used to sort the OAM and TAM values [33] become progressively
more complex as the range of lz and j

z
values to be used increases.

However, when coupled to the much greater ease in this scheme of switching between Ĵz

and L̂z measurements compared to the difficult switching between measurements of different

components of L̂ in other protocols, the method presented here seems to hold strong promise as
a more practical way to reach higher key rates per photon while maintaining full quantum-level
security.
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Appendix A. Outcome probabilities

As mentioned in section 3, we must make adjustments to the protocol in order to equalize the
probabilities of the allowed key values, and must take into account that the values measured
may lie outside the range used for key generation. We deal with those complications here, and
give the resulting joint probability distributions.
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A.1. Undisturbed probability distributions

First, the key must have the same range of values regardless of which variable was measured.
So we assign no key value when = ± +( )j l 1

z 0 is measured; for the remaining j
z
values, we

assign key value j
z
. Then either type measurement leads to a range of values from −l0 to l0,

leading to alphabet size = +N l2 10 . Instances where j
z
equals −l 10 or +l 10 , though not used

for key generation, are not discarded; they are recorded for use in the security analysis. Second,
all key values must have equal probability. Initially, each lz value has the probability

= +( )P lL z l

1

2(2 1)0
(the 1

2
comes from the probability that lz was measured instead of j

z
), while each

j
z
used for key generation has the probability = +( )P jJ z l

1

2(2 2)0
. (The two values not used for key

generation each have probability
+l

1

4(2 3)0

.) To make =P k P k( ) ( )L J for each key value k, the

reflectance of the beam splitter may be adjusted away from 50%, so the reflection and

transmission probabilities are ϵ| | = −r 2 1

2
and ϵ| | = +t 2 1

2
, with ϵ = +( ).

l

1

2

1

4 30
Then each lz and

j
z
value has the probability

= =
+( )( )P l P j

l

1
4 3

, (A.1)L z J z
0

and each possible key value has the probability

= + =
+

P k P k P k
l

( ) ( ) ( )
2

4 3
, (A.2)L J

0

with the probability
+l

1

4 30

that no key is generated.

In Eveʼs absence, there is ideally perfect anticorrelation when Alice and Bob measure the
same variable. The distributions of key values k should be identical, =P k P k( ) ( ).A B Moreover,
their joint distribution should be uniform on the diagonal and vanishing elsewhere:

δ=
+

⎛
⎝⎜

⎞
⎠⎟( )P k k

l
,

2
4 3

. (A.3)A B k k0
0

A B

We therefore find entropies = = = + − + +( ) ( ) ( )H A H B H A B l l l( ) ( ) ( , ) log 4 3 4 2 / 4 3 ,
2 0 0 0

so the mutual information ≡ + −I A B H A H B H A B( ; ) ( ) ( ) ( , ) just equals the Shannon
information of each participant separately, = + − + +( ) ( ) ( )I l l llog 4 3 4 2 / 4 3 .

2 0 0 0

A.2. Probability distributions with eavesdropping

The effects of Eveʼs actions are shown in figure A1. (The figure assumes that Alice and Bob

measure L̂z; if they measure Ĵz, simply interchange lz and j
z
everywhere in the figure.) At each

splitting of branches, there is a 50% chance that each branch will be taken. Suppose Alice

measures L̂z and obtains the value −lA. If Eve intercepts the transmission, she may measure the
same variable, in which case both she and Bob will obtain the negative of Aliceʼs value: =+l lE A

for Eve and =+l lB A for Bob. But if Eve measures the other variable, Ĵz, then she has equal
likelihood of measuring the value above lA or the value below it: = +j l 1

E A or = −j l 1
E A .
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Similarly, Bob then has equal chances of measuring L̂z to have the eigenvalue one unit above or
below Eveʼs value: = ±l j 1B E

.
As a result, the entries of the matrix representing the undisturbed joint probability

distribution,

δ=
+

⎛
⎝⎜

⎞
⎠⎟( )P k k

l
,

2
4 3

(A.4)A B k k0
0

A B

are now smeared out by Eveʼs actions over multiple entries in Bobʼs direction.
Using the diagram of figure A1, the new Alice–Bob joint probability distribution in trials

where Eve intervenes may be determined. It is found to be

=
+ ⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

P
l

2
4 3

3
4

0
1
8

0 ... 0
1
8

0
3
4

0
1
8

1
8

1
8

0
3
4

0
1
8

0

0
1
8

0
3
4

1
8

... 0 0
1

16
0

7
16

, (A.5)1
0

where rows label Aliceʼs outcomes and columns label Bobʼs. The first +l2 10 rows and
columns label possible key values, while the last row and column correspond to Alice or Bob,
respectively, generating no key. For eavesdropping fraction η, the full joint outcome distribution
for all trials becomes

Figure A1. The possible outcomes when Eve intervenes, assuming Alice and Bob both
measure L̂z. (If they measure Ĵz instead, swap the variables l and j everywhere in the
figure.) At each splitting, each branch has equal probability. Circles containing the
letters A, B and E represent measurements by Alice, Bob and Eve, respectively.
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η η= − +P k P P( ) (1 ) , (A.6)AB 0 1

with marginal probabilities for the two participants obtained by summing rows and columns.
The eavesdropper-induced error rate, the mutual information shared by Alice and Bob, and

the secure key rate may all now be found using this distribution. These quantities are discussed
in section 3.
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