PHYSICAL REVIEW A VOLUME 59, NUMBER 3 MARCH 1999

Dispersion in femtosecond entangled two-photon interference
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We theoretically investigate the quantum interference of entangled two-photon states generated in a nonlin-
ear crystal pumped by femtosecond optical pulses. Interference patterns generated by the polarization analog of
the Hong-Ou-Mandel interferometer are studied. Attention is devoted to the effects of the pump-pulse profile
(pulse duration and chijmnd the second-order dispersion in both the nonlinear crystal and the interferometer’s
optical elements. Dispersion causes the interference pattern to have an asymmetric shape. Dispersion cancel-
lation occurs in some casg$1050-29479)03003-9

PACS numbdss): 42.50.Dv, 42.65.Ky

[. INTRODUCTION [17]. Dispersion cancellation, which has been extensively
studied in the case of cw pumpinfd8], is also predicted to
Significant consideration has recently been given to théccur under certain conditions for femtosecond down-
process of spontaneous parametric down-conversion in nogonverted pairs.
linear crystals pumped by cw lasdils—4|. The nonclassical
properties of entangled two-photon light generated by thisI SPONTANEOUS PARAMETRIC DOWN-CONVERSION
process have been used in many experimental schemes {d WITH AN ULTRASHORT PUMP PULSE
elucidate distinctions between the predictions of classical
and quantum physicks]. Coincidence-count measurements We consider a nonlinear crystal pumped by a strong
with entangled two-photon states have revealed violations ofoherent-state field. Nonlinear interaction then leads to the
Bell's inequalities[6], and have been considered for use inspontaneous generation of two down-converted figtts
nonclassical imagin§7] and quantum cryptograph¥]. signal and the idlgrwhich are mutually strongly correlated
A new frontier in these efforts is the generation of quan-[1]. Such a correlation can be conveniently described in
tum states with three correlated partic{@HZ state$[9,10,  terms of the two-photon amplitudé,, which is defined as a
which would be most useful for further tests of the predic-matrix element of the product of electric-field operators
tions of quantum mechanics. One way to create such statesgs+)(z, t,) and E{")(z,,t,) sandwiched between the en-
to make use of pairs of two-photon entangled states that ai@ngled two-photon stales®) (for details, see Appendix A
synchronized in time, i.e., generated within a sharp time winy 4 the vacuum stajead):
dow [11]. This can be achieved by using femtosecond pump
beams. Also, successful quantum teleportation has already
been observed using femtosecond pumpit@. A121,11,22,12)
For these reasons, the theoretical and experimental prop- _ o4 o4 2
erties of pulsed spontaneous parametric down-conversion =(vadE} " (z1,t)E; (22,12 | 92(OD). (V)
have been scrutinizefl3-14. It has been shown that ul-
trashort pumping leads to a loss of visibility of the The positive-frequency pak(*) of the electric-field opera-
coincidence-count interference pattern in type-Il parametrigor of thejth beam is defined as
down-conversiori13—15, and narrowband frequency filters
are required to restore the visibilifjt1,13,185.
This paper is devoted to a theoretical investigation of dis- EM(z t)=> e(k)fi(wy)ai(ki)
persion effects in femtosecond-pulsed spontaneous paramet- J i Kj R
ric down-conversion. Particular attention is given to the ef-
fects of pump-pulse chirp and second-order dispergion
both the pump and down-converted beams the visibility

and shape of the photon-coincidence pattern generated by )¢ \o1e 3 stands for the annihilation operator of the mode

olarization analog of the Hong-Ou-Mandel interferometer . ] . .
P 9 g with wave vectok; ,e;(k;) denotes the normalization ampli-

tude of the mode;, andfj(wkj) characterizes an external

*On leave from the Joint Laboratory of Optics of Palacky frequency filter placed in. thgh beam. The symbols; and
University and Institute of Physics of Academy of Sciences ofk; denote wave vectors in vacuum.
the Czech Republic, 17. listopadu 50, 772 07 Olomouc, At the termination of the nonlinear interaction in the crys-

><exp(ik]-’z]-—iwkjtj), =12, (2
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"Electronic address: teich@bu.edu evolution and thus the two-photon amplitudg, depends
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delay line BS A B FB

1 ) )
R()= ZfimthJloodtBLAlZ](tA=tB)_-A12,I(tB )3

e NI @
a)2 i
—> : where the two-photon amplitudd;,, is given in Eq.(3).
! A, ' The normalized coincidence-count rag, is then ex-
F, T pressed in the form
Ra(D=1=p(1), (6)

FIG. 1. Sketch of the system under consideration: a pump pulsevhere
at the frequencyn, generates down-converted photons at frequen-
ciesw; andw, in the nonlinear crystalNLC). These waves propa- 1 (= o N
gate through a delay line of lengttand are detected at the detectors p(h)= ﬁfﬁmthfﬂcdtB Re[ Asp)(ta ’tB)A12,I(tB ta)]
D, andDg; BS denotes a beamsplittek, and Ag are analyzers; 0 7
F, and Fg are frequency filters; an€ indicates a coincidence
device. and

converted beams propagate through a dispersive material of 1~ o 5
the lengthl, the entangled two-photon stag(®)) given in Ro=§f_wthf_wdtB|A12,|(tA,tB)| : 8
Eq. (A4) in Appendix A provides the expression faty,, :

The symbol Re denotes the real part of its argument.

0
«4121(7'117'2):CJ dz> X fa(w) > falwy,)
Lok ke K lll. SPECIFIC MODELS INCLUDING

% 5é+)(01wkp_ wg)eXp[i (kp_ ky—K,)Z] SECOND-ORDER DISPERSION
T Let us assume that the nonlinear crystal and the optical
X + — oy — o
exili(ky + ko)l Jo( o, = o~ o) material in the path of the down-converted photons are both
Xex —i o, m]exd —iwy ). 3) dispersive. We pr_oceec_i to generalize the models provide_:d in
1 2 Refs.[13-15 by including the effects of second-order dis-
The timesr; and 7, are given as follows: persion.
Tl 72 g The wave vectorskp(wkp), kl(wkl), and k2(“)k2) of the
—iwqu-j:ik}’zj—iwkj(tj—t), j=1,2. (4)  beams in the nonlinear crystal can be expressed in the fol-

lowing form, when the effects of material dispersion up to
The symboEff’(O,wkp—wg) denotes the positive-frequency the second order are includél:

part of the envelope of the pump-beam electric-field ampli- 1 D.
tude at the output plane of the crystal anfj stands for the kj(wkj)=k]°+ —_(wkj—w?)+ —J(wkj—wo)z, i=p,1,2.
central frequency of the pump beam; the wave vectors Yj

A !
cy of t _ _ 9
ko, ki, andk, (k; andk,) are appropriate for the nonlinear
crystal (dispersive material The symbol. means the length  The inverse of group velocity 4/ and the second-order dis-
of the crystal. The amplitudes, (k;) ande,(ky) from Eq.  persion coefficienD; are given by
(2) are absorbed into the constaht

A typical experimental setup for coincidence-count mea- 1 dk 10
surement is shown in Fig. 1. We consider type-Il parametric v_j_ m ' (10
down-conversion for this exposition. In this case two mutu- Hog=o;
ally perpendicularly polarized photons are provided at the
output plane of the crystal. They propagate through a bire- dzkj )
fringent material of a variable lengtrand then impinge on a D; :27Td—2 ,I=pl2 (11)
50/50 beamsplitter. Finally they are detected at the detectors @k, P

D, andDg. The coincidence-count raR, is measured by a !

coincidence_ devic&. The begms might be fiItered by the 1he symbolw?

frequency filterd-, andFg which can be placed in front of b
. wave vectork;

the detectors. Analyzers rotated by 45° with respect to the = ! ~ ~

ordinary and extraordinary axes of the nonlinear crystal en- Similarly, the wave vector,(wy) andky(wy,) of the

able quantum interference between two paths to be observedpwn-converted beams in a dispersive material outside the

either a photon from beam 1 is detected by the detddjpor crystal can be expressed as

and a photon from beam 2 by the deteddy, or vice versa. 1 q

Including the effects of the beamsplitter and analyzers> _T0, — ooy, Y _0y2 L
the coincidence-count raf®, can be determined as follows kJ(wki) kit g; (wkj o))+ 47r(wkj ©))% 1=12,
(13,14 (12

denotes the central frequency of bepriihe
is defined by the relatiok=k;(w}).



PRA 59 DISPERSION IN FEMTOSECOND ENTANGLED TWAQ .. 2361

where profile, and centered around the central frequenm’%and
w5, are incorporated:

g_j d(ukj s (13 (wkj_w?)z .
0y =] fi(wg)=ex 7 | =12, (19
i

. where; is the frequency width of thgh filter.
. =12, (14) ] 0 .
Assuming frequency- and Wave -vector phase matching
O = O] for the central frequenmesw@ w{+ ) and central wave
o vectors (< k°+k) respectively, the two-photon ampli-
andk{=k;(o}). tudeAlz](rl,rz) defined in Eq.(3) can be expressed in the
We further assume that frequency filters with a Gaussiafiorm

«412J(7'1,Tz):CAeXF(_iw(1)Tl)

.0 0 (+) 1 dyly| .,
Xexp—iwyTy) dz| dQpE,7(0,) [ dQyexg —| ——i,-|Q7
—L o 47

1 dal
de()zex - —2—| Q
03

o(Qp—Qy— QZ)eXF{I(v_p_v_l_v_zz

Dp 2 D1, D2, : | _ |
X ex Q 4779 EQZ z|exp —i Tl_i QO lexpg —i TZ_E QO,|. (16)
|
The frequencies);, Qj:wkj— w?, for j=1,2p have been o ) )
introduced in Eq(16); C 4 denotes a constant. J_wdﬂlf_mdﬂzexq_alﬂl_aZQZ_zalZQlQZ
We proceed to devote further attention to special cases. _ _
We first consider an ultrashort pump pulse with a Gaussian +iaQy—iaQ,]
profile: the envelop&(*(01t) of the pump pulse at the out- 5 5
put plane of the crystal then assumes the f§20] _ ™ exp{ At agagt2a18,8,
vaiay— a%z Aarap— “%2)
1+ia
5},*>(o,t)=§poexp( 0 t2], (17) (20
D

where{, is the amplitudesy, is the pulse duration, and the we arrive at the following expression for the two-photon am-
parameter describes the chirp of the pulse. plitude Ay, (71, 72):

The complex spectrume("(z,Q,) of the envelope
5(+)(z t) is defined by

gp D .0
1 (~ Ago)(11,7)= CA— exp(—iwy71)
5g+)(z,Qp)=Ef dte{ Mz hexpiQpt).  (18) 271+ a?
X exp(—i w375)Argy(T1,72), (21
For a pulse of the form given in Eql7) we obtain
EC(0,0,) =&, ——12 Apy(riire) = | dz——
bk = — — i — 7' ’T =
T el B SR
2 2 2
D c{Br+Cc5B11t2yc.C
xexp{ —( 1-ia)Q2|, (19 Xex;{— 12 2l _ 2 (22
4(1+a’) 4(B1B2—7?)

where §,= £, exd —i arctan@)/2].
Substituting Eq(19) into Eq.(16) and using the identity = The functionsg;(z), ¢j(z), andy(z) are defined as follows:
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+b 1 d_;De=b; j=12
B](Z) j ( Ia) I_ I 477_ Zl J_ 14y
Jf1 1 | _ (23
¢i(=(—DI V| —=—|z+ ——7, =12,
Up U] 9

_ ; Dp
’y(Z)—b(l—Ia)—IEZ.

The parameteb is a characteristic parameter of the pump

pulse:

2
D

=— 24)
4(1+a?) (

The quantitiep(l) andR, are then determined in accor-
dance with their definitions in Eq$7) and(8), respectively.
The quantityp(l) as a function of the lengthof the bire-
fringent material then takes the form{= w5 is assumed

72| C A2 £l% 7R
p(|)_— dz; | dzp—
e DG
25 120 .
2
« ex _C1,32+j2§1+_70102 25
4(B1B2—7?)

The functionsgj(zl,zz), a(zl,zz), and ;(zl,zz) are ex-
pressed as follows:

B; B R PP YO el
,3](21122)—0_—5 0'_5 IT [ z;
. Dp—D3j
+i p47_r 'zz, =12,
( 1) (1 1 (26)
Ci(21,22) o us Z; vy U2 3—j
1 1
+l ===, =12,
Jg1 02

_ D,
Y(21,25)=2b—i E(Zl_zz)-

Similarly, the normalization constamR, is given by the
expression

m?|C4l?l&l° D

0= f f dzy—
1+a? \/
e
C1B,+C3B1+2yC €y
Xexpg — ——— ,
4(B1B2— %)

(27)

where
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Dp— Dj ,
—+2b—| (z1—z7), =12,

J

,31(21122)

~ 1 1 )
Cj(Zl-Zz):(U—p_U_j (zj—=z3-p), =12, (28)

~ ob—i D,
21,29)=2b—17—(21 = 2).

It is convenient to consider the pump-pulse characteristics
at the output plane of the crystal, i.e., to use the parameters
7p anda. They can be expressed in terms of the parameters
7pi anda; appropriate for the input plane of the crystal:

-1
B TzDiai DyL 7'2D|
4(1+a?) A7 |\4a1+a?))
[1+a? (29
D= TDi —.
PPN 1422
In this case, the parametby
2
T .
b= (30)
4(1+a))

has the same value as the paramétdefined in Eq.(24).

Ignoring second-order dispersion in all modé3,ED,
=D,=0), Eq. (25 reduces to the following analytical ex-
pression for the quantity:

(Ar)= T 1 i
)= -
pRaT 2[AIL V1742
V2|A| V1+a?(DL
xeri{ D o 7—|AT||) y (31)
in which
B 1 1
_Ul 02,
1 1/1 1) (32
= —— = —+ —
vp 2\vy vy
and
AT|:T|_DL/2. (33)

The symbol erf denotes the error function. When deriving
Eq. (31), the conditionD>0 was assumed. In E@33), 7
denotes the relative time delay of the down-converted beams
in a birefringent material of length and is defined as fol-

lows:
1 1
ERET
g2 O

When second-order dispersion in the down-converted
fields is omitted, the interference pattern can be determined

(34
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for an arbitrary pump-pulse profile in terms of the autocor- Lo A

relation function of the pump pulse. For details, see Appen- 1

dix B. 0.8 A

0.6 -

IV. DISCUSSION N 1

We now proceed to examine the behavior of the normal- 04 1

ized coincidence-count rat®, on various parameters, from

both analytical and numerical points of view. 02 1

The profile of the interference dip in the coincidence- 1
count ratg 17] (described by as a function of), formed by 0.0 0 ' é ‘ 4‘1 ' é ' é 1‘0

the overlap of a pair of two-photon amplitudes, can be un- i,
derstood as follows. The expression in Eg) for p(l) can T (1077 )

be rewritten in the form N _
FIG. 2. Visibility V [V=p/(2—p)] as a function of the pump-

pulse durationrp; ;L=3 mm, o=% nm, anda;=0; values of the

1 (e o other parameters are zero. In Figs. 2—-8, the following parameters

p(l)= R, dtf dT[.Arlzj(t,T)Arm(t,— T) apply. Values of the inverse group velocities appropriate for the
0J = - BBO crystal with type-ll interaction at the pump wavelength
+Ai12](t,7').»4i12,(t,— - (35) =397.5 nm and at down-conversion wavelengths-\,=795 nm

are 1b,=57.05< 10" ** s/mm, 14,=56.2<10"** s/mm, and 1/,
=54.26< 10" 13 s/mm. We assume that the optical materials for the
interferometer are quartz, for whichgi/~=51.81x 10~ % s/mm and

where 1/g,=52.08< 10" 3 s/mm.
tatts Ammi[1+a? r
t= , 1=t 1g, (36) = _ _
r i 1+iai A 2
and A, =Rg A, ], Ay =Im[ Ay ]. The symbol Im de- Xexpg — ——| t+ o7 (37
notes the imaginary part of the argument. Hence, according TDi

to Eq. (35), the overlaps of the real and imaginary parts of

the two-photon amplituded;,(t,7) and. A, (t,— 7) deter-  The coefficientD and A are defined in Eq(32). Equation
mine the values of the interference tepm The amplitude (37) elucidates the role of pump-pulse parameters as dis-
Ajo(t,— 7) can be considered as a mirror image of the am-cussed below.
plitude A1) (t, 7) with respect to the plane=0. When only It is well known that for a cw-pump field the coincidence-
first-order dispersion in the optical material is taken into account rateR,(7;) forms a triangular dip of widttDL [1].
count, the shape of the two-photon amplitudg,(t,7) does  The visibility is 100%, indicating maximum interference. An
not depend on the length as| increases, the amplitude ultrashort pump pulse of duration,; leads to a loss of vis-
Ajiz)(t,7) moves only in thet-7 plane. The shift in ther  ibility (see Fig. 2 but the width of the dip remains un-
direction is important, because it changes the degree of ovechanged13]. This can be understood from the shape of the
lap of the amplitudes. This reveals the origin of the shape ofwo-photon amplituded;,;_o(t, 7) given in Eq.(37). In the
the dip. 7 direction the two-photon amplitude is confined to the re-
The overlap of the two-photon amplitudes can be intergion 0< <DL for either cw or an ultrashort pump pulse;
preted from the point of view of distinguishability of two this confinement is responsible for the width of the dip. The
paths leading to coincidence detectidr8]. When the over-  two-photon amplitude is confined in thedirection by the
lap is complete, the two paths cannot be distinguished anditrashort pump-pulse duratigsee Eq(37)]. The tilt [given
the interference pattern has maximum visibility. Incompleteby the ratioA/D, see Eq(37)] of the amplitude in the-r
overlap means that the paths can be “partially distin-plane leads to a loss of visibility since the overlap of the
guished” and thus the visibility is reduced. amplitudesA,(t,7) and A, (t,—7) for a given optimum
We consider, in turn, the role played by pump-pulse du~alue ofl cannot be complete for a nonzero tilt. The shorter
ration and chirp, second-order dispersion in the nonlineathe pump-pulse duration, the smaller the overlap, and the
down-converting medium, second-order dispersion in the optower the values of visibility that result. However, when val-
t@cal elements of the interferometer, and dispersion cancellases of the first-order dispersion parameters are chosen such
tion. that A=0, the tilt is zero[see Eq.(37)] and no loss of vis-
ibility occurs as the pump-pulse duration shortéfes de-
tails, seq 14]).
As indicated by Eq(37) for the amplitudeA;,,—q, pump-
In the absence of second-order dispersion and frequenqyulse chirp(characterized bw;) introduces a phase modula-
filters, a useful analytical expression for the two-photon am+ion of the two-photon amplitude in the direction. This
plitude Ay, _o(t,7) can be obtained: modulation decreases the overall overlap of the correspond-

A. Pump-pulse duration and chirp
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1.0
©
0.8
=
A Y
% 0.6
Q
S > 0.4
-~ < (a)
< U 1.0 +

FIG. 3. Absolute value of the two-photon amplitudé

=|A12-0(t,7)| for nonzero second-order dispersion of the pump 0.9 +
beam; the variables and = are in units of 10 s; rp;=1.55 1
X10 B's,L=3 mm, ¢=100 nm,D,=1x10" % &/mm, anda, ~F os |

=0; values of the other parameters are zero.

ing two-photon amplitudes, given as a sum of the overlaps of 0.7 -
their real and imaginary parts. Increasing values of the chirp
parameter; thus lead to a reduction of visibility. However,
the width of the dip does not change. In fact, it is the param-
eterb; given in Eq.(30), combining both the pulse duration 13
o; and the chirp parametex , that determines the visibility (b) ATy (107 s)
in case of a Gaussian pump pulse. To be more specific, the

parameterb; is determined by the bandwidthQ, [AQ, _ ; —0 & .
_ \/E\/miz/TDi see Eq(19)] of the pump pulse according of the second-ordfgﬁdlsper3|on paramddey. ?5,5—0 /mm (plain
| ' 5 -9 curve, D,=5X10"%* &/mm (*), D,=1x10 *s*mm (A), and
to the relationb;=1[2(AQ,)“]. Thus, more generally, it is D,=3x10%</mm (¢ ), a=0, and(b) for various values of the
the bandwidth of the pump pulse that determines the intefzniry parametera; :a,=0 (plain curve and a,=2 (*), D,=5
ference pattern. As a consequence, dispersion of the pump10-26 2/mm; 7, =1.55<10 13 s;L=3 mm; o=50 nm; values
beam between the pump-pulse source and the nonlinear Crystthe other parameters are zero.
tal does not influence the interference pattern because a pulse . . . o
propagating through dispersive material does not change i@Mmplitude in the region near=0 s has its origin near the
bandwidth. output plane of the crystal where the pump pulse is already
Examination of Eqs(B3) and(B4) in Appendix B shows b_roadehed as a result of its having propagated through the
that the dip remains symmetric since the functigihn) in  dispersive crystal. At the other edge, near6x 10 **s the
Eq. (B3) is an odd function ofA 7, for an arbitrary pump- down-converted light arises from the beginning of the crystal
pulse profile. where the pump pulse has not yet suffered dispersive broad-
Frequency filters inserted into the down-converted beamgning. The profile of the interference dip is modified as fol-
serve to broaden the two-photon amplitusig,(t,7) both in lows: An increase in the second-order dispersion parameter
thet and 7 direction. Broadening in the direction leads to Dp léads to an increase of visibility, but no change in the
wider dips, whereas that in thedirection smooths out the Width of the dip, as illustrated in Fig.(4). For appropriately
effect of tilt discussed above and thereby results in a higheghosen values oD, a small local peak emerges at the bot-
visibility. The narrower the spectrum of frequency filters, thetom of the dip[see Fig. 4a)]. Nonzero initial chirp &;) of
wider the dip, and the higher the observed visibility. Thethe pump beam can provide a higher central peak but, on the
effect of chirp is suppressed by the presence of frequencgther hand, it reduces the visibilifgee Fig. 4)]. The peak
filters, because they effectively make the complex pumpfemains, but is suppressed, in the presence of narrow fre-
pulse spectrum narrower and hence diminish relative phasguency filters.

changes across such a narrowed complex spectrum. Now we turn to second-order dispersion in tdewn-
converted beam@onzeroD,D;), which broadens the two-

photon amplituded,,(t, 7) in the 7 as well as in the direc-
tion. As demonstrated in Fig. 5, this leads to a broadening of
Second-order dispersion in theump beamcauses the dip, as well as asymmetry and oscillations at its borders.
changes in the pulse phagehirp) as the pulse propagates When values oD, increase, visibility decreases at first and
and this leads to broadening of the pulse. The effect of sucthen later increases. Nonzero chirp leads to a lower visibility,
pump-pulse broadening is transferred to the down-convertefdut tends to suppress oscillations at the borders of the dip.
beams, as is clearly shown by the behavior of the two-photofrequency filters, which behave as discussed above, suppress
amplitudeAy,,(t,7) illustrated in Fig. 3. In this figure, the asymmetry.

0.6 —— T T ] —r
-5 -3 -1 1 3 5

FIG. 4. Coincidence-count raf,(A7) (a) for various values

B. Second-order dispersion in the nonlinear crystal
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1. 1.0
0.9
1.0
0.8
o
09 - o
0.7
0.8 - 0.6
o 0-50""“"""“‘
s ’y ) j ] : 10 20 30
s 1 (mm)
Aty (1077 s)

FIG. 6. Coincidence-count rate,(l) for various values of the
FIG. 5. Coincidence-count rat,(A 7)) in the case of second- second-order dispersion parameter d,; —d, of an optical mate-
order dispersion in beam (plain curve,D,;=1x10"% &/mm,  rial; d=0 £/mm (plain curve, d=1x10"2° £/mm (*), d=5
D,=0 €/mm) and in beam 2 (*,D;=0 &/mm, D,=1X10"%  x10"% &¢/mm (A), and d=1x10"% &¢/mm (¢ ); m;=1.55
gimm); 75;=1.55<10" s, L=3 mm, ando;=0,=50 nm; val-  x10 ¥ s, L=3 mm, ando;=0,=50 nm; values of the other
ues of the other parameters are zero. parameters are zero.

When second-order dispersion occurs in all three mode
the two-photon amplitudé,,(t,7) is broadened for smaller . U .
values o?r (mainly%wing %l(disgersion in the pump beam effect of second-order dispersion is prescribed by the param-

as well as for greater values ef(mainly owing to dispersion eter d,—dy)l. [?lspe'rsmn cancellation is a result of com-
in the down-converted beamsAs a result, the interference PIetely destructive interference between the amplitudes
pattern comprises all of the features discussed above: a locAt2i(t,7) and Ay (t,—7) for which there is nonzero over-
peak may emerge at the bottom of the dip, the dip is broad@pP- This is demonstrated in Fig. 7 for=25 mm, i.e., for
ened and asymmetric, and oscillations occur at the borders ghich p=0.
the dip. When the pulse duration is sufficiently loq the cw

To observe the above-mentioned effects caused by dispefegime, dispersion cancellation occurs for arbitrary magni-
sion in a nonlinear crystal, relatively large values of the distudes of second-order dispersiggiven by d;I and d,l)
persion parameter®,, D,;, andD, are required. For ex- present in the paths of the down-converted photons. The
ample, our simulations make use of parameter values that agradual suppression of the asymmetry of the dip as the
approximately an order of magnitude higher than those of theump-pulse duration increases is shown in Fig. 8.
BBO crystals commonly used in type-ll down-conversion-  Dispersion cancellation has its origin in the entanglement

srhediately follows from Egs(25) and (26), in which the

based interferometric experiments. of the photons, i.e., in the fact that the permitted values of
the frequencyw; and the frequencw, are governed by the
C. Second-order dispersion in the interferometer’s relation §(w,— w1~ w;y), where w, lies within the pump-
optical elements pulse spectrum.

Second-order dispersion in an optical materid} ,@,)

through which down-converted photons propagate leads to A

asymmetry of the dip. The dip is particularly stretched to § 4"“‘

larger values of (see Fig. 6 as a consequence of the defor- A’ ‘ \\

mation and lengthening of the two-photon amplituslg, in ' ‘ \\\

a dispersive material. The higher the differedge- d, of the ~ M \\\

dispersion parameters, the higher the asymmetry and the N / \\

wider the dip; moreover, its minimum is shifted further to © l' \\\

smaller values of (see Fig. §. Asymmetry of the dip is also ’M ‘ “\\\\\

preserved when relatively narrow frequency filters are used M““ “ “‘“\\\\\

though the narrowest filters remove it. Chirp decreases vis- S “’““,‘,{v“ A“M““\\\\\\i\\\\

ibility but the shape of the dip remains unchanged. 5 ""“"""“&“WMM\
“,“;‘\»“‘é\‘é ‘\ Q,QQ

D. Dispersion cancellation

Asymmetry of the dip caused by second-order dispersion
in an optical material through which down-converted pho-
tons propagate can be suppressed in two cases. In the firstFig. 7. Absolute value of the two-photon amplitude
case, for a pump pulse of arbitrary duration, dispersion can- |A1,(t, )| for the same amount of second-order dispersion in the
cellation occurs when the magnitude of second-order dispeown-converted beamsi(=d,=1x 10"2° /mm) for | =25 mm;
sion in the path of the first photdgiven byd;|) equals that the variablest and = are in units of 103 s; 7p;=1.55x 10" s,
of the second photofgiven by d,l). This observation im- L=3 mm, ando=100 nm; values of the other parameters are zero.



2366 PEVFHNA, JR., SERGIENKO, JOST, SALEH, AND TEICH PRA 59

APPENDIX A: DETERMINATION OF AN ENTANGLED
TWO-PHOTON STATE

The interaction Hamiltonian of the process of spontane-
ous parametric down-conversion can be written in the form

(1]

0 ~ ~
Him(t)=f_Lde<2>E<p+>(z,t)E<1‘>(z,t)Eg‘>(z,t)+H.c.,
(A1)

100 10 ! =0 30 40 50 where y(?) is the second-order susceptibilitz!,"”) denotes
(mm) the positive-frequency part of the electric-field amplitude of

FIG. 8. Coincidence-count raf,(1) shows a gradual suppres- the pump field, ancE{ ) (ES”) is the negative-frequency

increaseszp; = 1.55< 10" 23 s (plain solid curvg, p;=5x 10 3s  (2). The nonlinear crystal extends frors —L to z=0. The

(*), and 75;=1x10"s (¢), d=d;—d,=5x10"2° &¥/mm; for ~ Symbol H.c. denotes Hermitian conjugate.
comparisonrpy;=1.55x10"1% 5, d=0 s¥/mm (dashed curve L Expanding the interacting fields into harmonic plane
=3 mm; o= 0,=50 nm; values of the other parameters are zeroyyaves, the interaction Hamiltoniaﬁim in Eq. (A1) can be
recast into the form
V. CONCLUSION

- 0

) -C. (2) e(+) _,0

We have developed a description of two-photon type-Il Hind(t) C,mf_LdzkEp kzl kEZ X 7€ (O'wkp @p)
spontaneous parametric down-conversion produced when ul-

trashort pulses from a femtosecond laser are used to pump an X é{(kl)ég(kz)exm (kp—ki—ky)z
appropriate nonlinear medium, as well as the associated two- )
photon interference effects. The model includes frequency _'(“’kp_“’kl_“’kz)t]+H'C" (A2)

modulation of the pump pulshirp) and dispersion in both

the nonlinear crystal and the interferometer’s optical elewhereC;, is a constant. The symba]f,”(o,wkp—wg) de-
ments. The influence of these features on the depth angotes the complex spectrum of the envelope of the pump-
asymmetry characteristics of a photon-coincidence interferbeam electric-field amplitude at the output plane of the crys-
ence dip have been established. tal; k, stands for the wave vector of a mode in the pump

We showed that the interference pattern is determined bigeam andwg stands for the central frequency of the pump

the bandwidth of the pump pulse; the larger the bandwidth
the lower the interference-pattern visibility. This implies that perator of the mode with wave vecté (k,) and fre-
dispersion of the pump beam before the nonlinear cryst uencywy (wkz) in the down-converted field @). We note

does not influence the interference pattern. Second—orderdﬁ_-‘at the phases of all three interacting fields in space are

persion of the pump beam in the nonlinear crystal can "eSUlhosen in such a way that they are zero at the output plane of
in the occurrence of a local peak at the bottom of the mter—t
dhe crystal.

ference dip. Second-order dispersion of the down-converte The wave function|#®(01t)) describing an entangled

photons_m the crystal can re_sult in oscillations at the borderﬁNo-photon state whose phases are set equal toz&-8tis
of the dip, whereas dispersion of the down-converted phogiven by

tons in the interferometer’s optical materiéésg., the delay

line) can produce an asymmetry in the dip. These effects can —i ot R

be used to measure the dispersion parameters of both a non- |2 (0t))= TJ dt'Hi(t")|vag, (A3)
linear crystal and an arbitrary optical material. Dispersion -

cancellation has been revealed for pump pulses of arbitrary )

duration when the amount of dispersion in the two down-Where|vag denotes a multimode vacuum state.
converted beams is identical and in general for sufficiently ~For timest sufficiently long so that the nonlinear interac-

long pump pulses. tion is complete, the entangled two-photon stak€(0.t))
can be obtained in the form

beam. The symboh!(k,) [al(k,)] represents the creation

0
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The susceptibilityy? is included in the constar€,. We  whereAr is defined in Eq.(33). The correlation function
note that for times during which the down-converted fieldsy,(z;,2,,X) of two pulsed fields at positions;, and z, is
are being created in the crystal, the appropriate wave funoaritten as

tion differs from that in Eq.(A4). However, detectors are

placed at a sufficiently large distance from the output plane

of the crystal to assure that such “partially evolved” states o (+)
cannot be detected. Yo(21,25,X)= 7oodt8pa' (21— L/2t)5 J(z,— LI2t+X).

(B4)
APPENDIX B: INTERFERENCE PATTERN FOR AN
ARBITRARY PUMP-PULSE PROFILE
The constanR, occurring in Eq.(B3) is expressed as fol-

We assume an arbitrary complex spectrum, .

Eg;’)(—L,Qp) for the envelope of the pump pulse at the
input plane of the crystal. We further take into account the
effect of second-order dispersion only in the pump beam and |CA|2\/_7TUI

L/2
assume frequency filters of the same width € o). Under

z
these conditions, the normalized coincidence-count Rate 2
in Eq. (6) can be expressed in terms of the autocorrelation L2
function of the pump field. xf d2,v,(21,25,A(21—2,))

Let us introduce the field {7)(z,t) according to the defi- L2
nition 2D

X exp{ -5 (- 2,)° (B5)
e [ (+) Dp(z*L)
Epo (Z,1)= f_wdﬂpé’p (—L,Qp)ex T p
) For a Gaussian pulse with the complex spectrum as given
xex;{ _ Q_g exp(—i0,1), (B1) in Eq. (19), the correlation functiony, becomes
g

whereo= \20,. The above expression describes the propa- Vi, |£,|2
gation of the pump beam through a dispersive material vo(Z1,22,A (21— 25)) = 5 —
(a multiplicative term describing first-order dispersion is not 2\1+af Vy(z1,2,)
explicitly included herg Equation(B1) also includes fre- A%(2,—2,)?
guency filtering having its origin in the filtering of the down- Xe ;{— —,
converted beams and their entanglement with the pump 44(2,,2))
beam.

The two-photon amplitudeAlz,Tl(Tl,rz) can then be de-
rived from the expression in E@16): W(24.,2,) =20+ ;—i 4_;(21_22), (B6)

C
At (11,72)= 5" eXB~i0)r))expl ~iw3ry) V7o

which, together with Egs(B3) and (B5), leads to expres-
J sz(”(z (r1t 7+ 712)2—A2) sions which agree with those derived from E¢85) and
(27). The parameteb; is defined in Eq(30).
o2 The experimental setup without frequency filters (
Xexr{ — —(m+7—m+Dz)?|, (B2) —x) is of particular interest. In this case, using the identity
16 Jmo exp(=o¥?4)— 2w 8(y) for c— o, Eqs.(B3) and(B5)

where the paramete and A are defined in Eq(32) and ~ Provide a useful expression for the functip(A 7,)

the relative time delayr, of the down-converted beams is
introduced in Eq(34).

) : . o /
The quantityp g|ven in Eq.(7) then has the fornagain it p(Ar)= f" 2 dzrec(z/L+1/2
is assumed thab{= »J) (0 0 0)'- Li2
|CA| y—— +2A7/(DL))y.(z,—2z—2A7/D,2z
p(Ar)=—F75—

+2A7-|/D)], (B7)
L2 |_/2
XRe{f le deVU(Zl,Zz,A(Zl_Zz))

5 O'
ex 8

D
An+ > =(z1+2,) (B3) 0<x<1 and rect)=0 otherwisg.

2“ where rectk) is the rectangular functiofirect(x)=1 for
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