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We report two-photon correlation experiments using spontaneous parametric down-conversion under a se-
vere manipulation of the input pump field. Considering the case of passing the laser beam through a focusing
lens before the down-conversion crystal, theoretical calculations and a series of imaging experiments demon-
strate two-photon geometric optics effects. In particular, the imaging in coincidence counts of an aperture
placed in one of the down-conversion beams is found to be the analog of a simple spherical mirror system,
which displays a ‘‘vacuum dispersion’’ effect in that the object and image distances are wavelength weighted.

PACS number~s!: 42.50.Dv, 03.65.Bz

I. INTRODUCTION

When a laser pump beam is incident on a noncentrosym-
metric crystal, the nonlinear process of spontaneous paramet-
ric down-conversion~SPDC! of pump photons into pairs of
correlated photons may occur@1#. Recently, the inherently
quantum mechanical two-photon states produced in SPDC
have been used in a number of interesting experiments. The
well known correlations@2–4# between thesignal and idler
photons constituting a down-converted pair have been clev-
erly used in a variety of situations ranging from the very
practical matter of absolute calibration of single-photon de-
tectors@5–9#, to the intuition-challenging studies of photon
tunneling time@10# and interaction-free measurement@11#.
Furthermore, a variety of two-photon entangled states have
been produced by taking advantage of the polarization cor-
relations of the signal and idler photons, as well as the fre-
quency and momentum correlations expressed through the
well known phase-matching conditions@1,12#. These en-
tangled states have proved to be an extremely useful experi-
mental source for investigating the concepts of reality and
locality found in the Einstein-Podolsky-Rosen~EPR!
gedankenexperiment@13#. The convenience of SPDC has led
to many experiments~see, for example,@14–22#! concerning
tests of Bell’s inequalities@23# and has no doubt influenced
the thinking in recent proposals and theoretical papers con-
cerning some of the foundations of quantum mechanics.

There have been numerous other observations of nonclas-
sical states@24–26# and two-photon interference~see, for
example,@27–52#! and SPDC has even been proposed and
used in the relatively new field of quantum cryptography
@53–55#. SPDC has also been found useful in the character-
ization of optical materials@56#, and various communication
schemes@57#.

In general, most of the above experiments have used pin-
holes or other means to subselect certain transverse spatial
modes of the down-conversion spectrum. Very roughly
speaking, in these configurations the SPDC process has been
thought of as an intense plane-wave pump input into a

simple ‘‘black box’’ source whose output is two correlated
photons in well defined directions. The interesting physics in
these setups occurs ‘‘down stream,’’ so to speak, where the
photons are manipulated with polarizers, interferometers, de-
tectors, etc. to see the desired effects.

Recently, however, there have been several good studies
@58–60# of the spatial distributions of the down-converted
photons, and their correlations, with respect to several pa-
rameters affecting the interactioninside the crystal. In other
words, still considering a plane-wave pump input, it is useful
to examine the rigorous validity of the phase-matching con-
ditions for various pump spectral widths, crystal lengths, etc.
In fact, the transverse spatial coherence properties of the
down-converted radiation have been used to observe two-
photon physical optics by means of interference and diffrac-
tion in the coincidence counting rate when slits are intro-
duced into the down-converted beams@61–63#.

Therefore one of the remaining considerations concerning
SPDC is what will happen to the correlations of the signal
and idler photons if there is a controlled manipulationof the
pump beam. In this paper, we pass the pump through a fo-
cusing lens so that the wave fronts entering the crystal can no
longer be taken as plane-wave approximations. Rather, the
wave-vector distribution allows the pump to be more accu-
rately thought of as having spherical wave fronts. What we
find, through a theoretical model and a series of imaging
experiments, is a dramatic restructuring of the momentum
correlations that can be interpreted through a simple model
based on geometric optics. In particular, we observe two-
photon effects that are analogous to standard imaging with a
spherical mirror.

The basic idea of the imaging experiment is shown in Fig.
1, which is a topologically equivalent cartoon of the actual
experimental setup. The plane wave fronts of the pump beam
are weakly focused through the crystal, producing pairs of
diverging signal and idler photons. The signal beam travels a
distanceZ1 and encounters a detailed aperture in front of a
large detector,D1 . Because it is spatially insensitive, there is
no image or shadow of the aperture recorded byD1 . The
idler beam travels a distanceZ2 and is met by a very tiny
detectorD2 , which is scanned around in the transverse
plane. Therefore, by recordingcoincidence countsas a func-
tion of the transverse spatial coordinates ofD2 , we see an
image of the aperture placed in the signal beam, even though

* Permanent address: Quantum Radiophysics Division, Depart-
ment of Physics, Moscow State University, Moscow 119899, Rus-
sia.

PHYSICAL REVIEW A APRIL 1996VOLUME 53, NUMBER 4

531050-2947/96/53~4!/2804~12!/$10.00 2804 © 1996 The American Physical Society



both detectors’ single event counting rates remain constant.
What is most fascinating here is that this imaging process

critically depends on the use and placement of the lens. In an
earlier paper@64# a similar experiment was performed using
a standard plane-wave pump, and a lens placed in the signal
beam between the crystal andD1 . The most interesting fea-
ture of that experiment was that in order to see a sharp image
in coincidence counts, the various distances between the de-
tectors, the crystal, and the lens had to satisfy a two-photon
Gaussian thin lens equation. In particular, the quantum na-
ture of the two-photon state was highlighted by the fact that
the placement ofD2 was dictated by the distance of a ray
drawn backwards through the lens, reflecting off of the crys-
tal and then forward toD2 . This effect presented a dramatic
example of the original EPR argument in the sense that the
momentum entanglement of the two-photon state resulted in
a point-by-point transverse plane position correlation to pro-
duce a sharp image.

In the present paper, the use of the lensbefore the crystal
provides a completely new situation~the idea of this experi-
ment was first discussed in Ref.@65#!. In this arrangement,
the distances between the detectors and the crystal satisfy a
two-photon spherical mirror equation, rather than a Gaussian
thin lens equation. Of additional interest is that these pre-
scribed distances are dependent on the wavelengths of the
down-converted photons. To demonstrate this dependence,
we therefore perform experiments using both the case when
the signal and idler wavelengths are equal~the degenerate
case! and the case when they are unequal~the nondegenerate
case!.

II. THE EXPERIMENT

A schematic of the experimental setup is shown in Fig. 2.
A roughly 2 mm diameter pump beam, obtained from the

351.1 nm line of an argon-ion laser, passes through a plano-
convex lens whose focal length is 700 mm. The focused
pump wave fronts are then used for the SPDC process in a 3
mm thick nonlinear BBO (b-BaB2O4) crystal which is
placed 100 mm behind the lens. The BBO crystal is cut for a
type-II phase matching situation which produces pairs of or-
thogonally polarized signal~e-ray plane of the BBO! and
idler ~o-ray plane of the BBO!. Specifically, the optic axis
makes an anglec549.2° with the center pump direction~the
z direction! which is normal to the input face of the crystal,
and the degenerate 702.2 nm wavelength photons of the
down-converted pairs emerge collinearly in thez direction.
However, the crystal is mounted on a tilting stage which
allows c to be changed. As will be seen, this allows us to
demonstrate very interesting quantum effects by creating
situations where nondegenerate wavelength photons of a pair
emerge from the crystal in the collinear direction.

The UV pump beam is separated from the down-
conversion radiation by a fused silica dispersion prism and
sent into a beam stop. The remaining signal and idler beams
enter a polarizing Glan-Thomson prism which splits each
down-conversion pair by reflecting the e-ray-polarized signal
photons while transmitting the o-ray-polarized idlers. The
reflected signal photons travel a variable distance and pass
through a narrow band filter,F1 , before encountering detec-
tor packageD1 . The total optical distance from the crystal to
D1 is calledZ1 . Meanwhile, the transmitted idler photons
travel a variable distance before passing through filterF2 and
hitting detector packageD2 , a distanceZ2 away from the
crystal. In actuality, packageD1 is a 2 cmdiameter strong
collection lens~focal length of 22 mm! which focuses all of
the incoming light onto a 0.8 mm diameter dry-ice-cooled
avalanche photodiode operating in the Geiger mode. There-
fore detector packageD1 can essentially be thought of as a
large faced ~i.e., 2 cm diameter! single-photon detector
which will henceforth be called ‘‘D1 .’’ The aperture to be
imaged is placed on the front face ofD1 . Conversely, pack-
ageD2 consists of a 0.5 mm diameter multimode fiber whose
output is mated with another dry-ice-cooled avalanche pho-
todiode. The input tip of the fiber is scanned in thex-y trans-
verse plane by two independent encoder drivers each capable
of submillimeter steps. Therefore the input tip of the fiber
can simply be thought of as a small mobile 0.5 mm diameter
detector which will be referred to as ‘‘D2 .’’ The output of

FIG. 1. A topologically equivalent cartoon of the experimental
setup. Correlated pairs of signal and idler photons are produced by
the SPDC process when an approximately plane-wave pump is fo-
cused through a down-conversion crystal. An aperture is placed in
front of a large, spatially insensitive detector,D1 , in the signal
beam while a tiny detector,D2 , is scanned in the transverse plane
of the idler beam. By mapping the coincidence counts as a function
of thex-y coordinates ofD2 , an image of the aperture can be seen.
Suprisingly, in order to see a sharp image the detector distances
Z1 andZ2 in the down-conversion beamscannot be arbitrarily cho-
sen, but must obey a two-photon geometric optics relation which is
highly dependent on the placement of the lensin front of the crystal.

FIG. 2. A schematic of the experimental setup.
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each of the detectors is sent into a coincidence counting cir-
cuit with a 1.8 ns acceptance window. In each of the experi-
ments, detector distancesZ1 andZ2 will be specified, as will
the central frequencies of filtersF1 andF2 .

For any given run of the experiment, the aperture to be
imaged in coincidence counts is placed on the front face of
detector packageD1 . The shape of the aperture was chosen
to be a simple ‘‘unsymmetric cross’’ consisting of two per-
pendicular equal size bars~roughly 4.531 mm2) that inter-
sect slightly away from their centers. This particular aperture
was chosen because it is a very recognizable shape that is
easily imaged, while still providing information about its ori-
entation.

III. THEORY OF THE EXPERIMENT

In general, the experiments presented in this paper pro-
duce an image of the aperture placed in the signal beam by
mapping the coincidence counting rate as the small detector
D2 is scanned around in the transverse plane of the idler
beam. Therefore the aim of this section is to calculate the
coincidence counting rate as a function of the transverse spa-
tial parameters involved. We shall see that minimizing this
function to obtain the sharpest image results in an equation
which dictates the distances between the detectors and the
crystal, or, in some sense, a two-photon focal plane location.

A. Spherical wave fronts of the pump field inside the crystal

The first step of our analysis is to calculate the classical
pump field inside the down-conversion crystal. We assume a
standard normal-plane Gaussian intensity distribution of the
laser pump beam with a beam waistv0 located some dis-
tance on the order of 1 in front of the focusing lens. It is easy
to show by the propagation laws of Gaussian beams through
thin lenses@66# that the field at the front face of the crystal is

Ep~rW'!5Epe
rW'
2 /2sp

2
, ~1!

wheresp
2' c/vp (d2 f2 i (lp/pv0

2) f 2). Here f is the focal
length of the lens~700 mm! andd is the distance between
the lens and the front face of the crystal~100 mm!.

So inside the crystal the pump field is

Ep~rW' ,z,t !5E d2k'e
2 ivpte2 i ~kpz

z1kW'•r
W
'!Ẽp~kW'!, ~2!

where kpz is the z component of the pump field, and

Ẽp(kW') is just the Fourier transform of the pump field at the
front face of the crystal:

Ẽp~kW'!5Ep8e
2 ikW'

2sp
2/2. ~3!

To simplify the integration, we need to extract out the
kW' dependence inkpz and introduce a new pump field quan-

tity Kp , which is defined in Appendix A as the magnitude of
the pumpk vector if it were exactly parallel to thez direc-
tion. As is shown in detail in Appendix A, after making the
‘‘thin crystal approximation,’’ the pump field inside the crys-
tal is given by

Ep~rW' ,z,t !5Ep8e
2 i ~vpt2Kpz!E d2k'e

2 i ~kW'•r
W
'1kW'

2sp
2/2!. ~4!

Therefore, upon completing the square in the exponent of
the integrand and carrying out the Gaussian integration, we
find

Ep~rW' ,z,t !5Ep9e
2 i ~vpt2Kpz!eir

W
'
2 /2sp

2
. ~5!

We see that Eq.~5! has the form of a spherical wave,
rather than the usual plane-wave model considered in most
treatments of SPDC. It is important to note that it is this key
difference which will lead to all of the interesting effects in
this paper.

B. The interaction Hamiltonian and two-photon state

Having a description of the pump field, we may now cal-
culate the interaction Hamiltonian for the type-II SPDC pro-
cess occurring inside the crystal. The standard form of the
Hamiltonian is@67#

H I5eoE
V
d3rWxEp

~1 !Eo
~2 !Ee

~2 !1H.c., ~6!

whereV is the volume of the crystal covered by the classical
pump beamEp

(1) , which is given by Eq.~5!, andx is an
electric susceptibility tensor which describes the crystal’s
nonlinearity. The quantized down-conversion field operators
inside the crystal are given by

Ej
~2 !5E

V
d3kW jEjakW j

†
e2 i ~kj z

z1kW' j
•rW'2v j t !, ~7!

where j5o,e and akW j
† is the creation operator for the

j -polarized mode of wave vectorkW j . Therefore the Hamil-
tonian is

H I5A1E d3kWeE d3kWoE
V
d3rWakWo

†
akWe
†

3ei ~ve1vo2vp!tei ~kp2kez
2koz

!ze2 i ~kWe'
1kWo'

!•rW'ei /2sp
2urW'u2

1H.c., ~8!

where H.c. is the Hermitian conjugate and all unimportant
constants have been lumped into the factor ‘‘A1 .’’ We do the
volume integration as an area integral times an integral over
the crystal lengthL, and note that in our experiment the
cross sectional area of the crystal is much larger than that of
the pump beam. Thus the*d2r' integration is essentially a
simple Gaussian over an infinite range, and we obtain

H I5A2E d3kWeE d3kWoakWo
†
akWe
†
ei ~ve1vo2vp!t

3E
0

L

dzei ~kp2kez
2koz

!zesp
2/2 ~kWe'

1kWo'
!21H.c. ~9!

We can now use the standard technique of first order per-
turbation theory to describe the output state of the crystal@1#:
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uc&5u0&2
i

\E2`

`

dtH I u0&. ~10!

Since we are interested in coincidence counts we can ig-
nore the first term~the vacuum state!, and the Hermitian
conjugate part which will itself only contribute vacuum. The
two-photon part of the output state is thus

uc&5A2E d3kWeE d3kWod~ve1vo2vp!

3E
0

L

dzei ~kp2kez
2koz

!zesp
2/2 ~kWe'

1kWo'
!2akWo

†
akWe
† u0&. ~11!

State ~11! looks very similar to the usual SPDC two-
photon state which results from plane-wave pump input. We
see that the time integration has given ad function in fre-
quency which, as usual, leads to the so-called ‘‘frequency
phase-matching condition.’’ However, we see that in that part
of the state which would usually lead to the momentum (k
vector! phase-matching condition we have a spherical-like

term, esp
2/2 (kWe'

1kWo'
)2. It is interesting that, by simply ma-

nipulating the pump field by passing it through a lens before
the down-conversion crystal, we have redefined the exiting
directions that the down-converted photons will follow. As
will be seen in the results of the experiments, it is exactly
this restructuring of the ordinary momentum phase-matching
condition that leads to the interesting effects.

C. Coincidence counting rate and two-photon amplitude

In order to determine the optimal conditions of our imag-
ing experiment, we need to calculate the coincidence count-
ing rate of the two-photon state~11!, subject to a setup simi-
lar to that shown in Fig. 2. The average coincidence counting
rate is given by the usual Glauber formulation@68,69#:

Rc5 lim
T→`

1

TE0
T

dT1E
0

T

dT2^cuE1
~2 !E2

~2 !E2
~1 !E1

~1 !uc&

3S~T12T2!, ~12!

where the subscripts 1 and 2, respectively, indicate detectors
1 and 2, andS(T12T2) is the square pulse coincidence time
window function which we take equal to one within a pre-
defined value ofT12T2 ~usually about 2 ns!.

Recall from Fig. 2 that the orthogonally polarized photons
of each down-converted pair travel nearly collinearly to a
polarizing beam splitter which reflects the e-ray signals to
D1 and transmits theo-ray idlers toD2 . Thus the free-space
field operator atD1 is

E1
~1 !5E d3kWe8E1e

2 ivet1ei @kez8 Z11kWe'
8 •rWe'

#akW
e8
, ~13!

whereakW
e8
is the annihilation operator of modekWe8 .

Making the paraxial approximation in free space@see ap-
pendix A, Eq.~A3!# we have

E1
~1 !5E d3kWe8E1e

2 iveT1eik
W
e'
8 •rWe'e2 i ~ ukWe'

8 u2/2ve! cZ1akW
e8
,

~14!

whereT1[t12 Z1/c . Likewise, the field operator atD2 is

E2
~1 !5E d3kWo8E2e

2 ivoT2eik
W
o'
8 •rWo'e2 i ~ ukWo'

8 u2/2vo! cZ2akW
o8
.

~15!

Since we have the usual commutation relations for the
normalized creation and annihilation operators:

@akW j ,akW i8
†

#5d j idkWkW8, ~16!

it is easy to see that with the two-photon state~11! and op-
erators~14! and ~15! ,

^cuE1
~2 !E2

~2 !E2
~1 !E1

~1 !uc&5 z^0uE2
~1 !E1

~1 !uc& z2

[uA~T1 ,T2!u2. ~17!

uA(T1 ,T2)u2 is simply the square of the two-photon prob-
ability amplitude. Very interesting physics is manifest in the
evaluation of uA(T1 ,T2)u2, but the mathematics becomes
rather complicated. The calculations are shown in full detail
in Appendix B. The end result of the integration in Eq.~17!
is

uA~T1 ,T2!u25uA4u2P~T12!e
2 1/uXu2 @Re~Y!Im~X!2Im~Y!Re~X!#

~18!

whereA4 is an unimportant constant, andP(T12) is a rect-
angular function whose value is one when the difference in
detector firing times,T12T2 , is less than a certain value
~typically on the order of 100 fs; see@56# for details! related
to the length of the crystal, and zero otherwise. This rectan-
gular function describes the time dependence of the two-
photon probability amplitude. Of key importance to our
analysis, however, are the quantitiesX and Y, which are
functions of the detectors’ spatial distances from the crystal:

X[Z1
c

Ve
Z2

c

Vo
1sp

2FZ1 c

Ve
1Z2

c

Vo
G ,

Y[~rWe'2rWo'
!2sp

21urWe'u2Z2
c

Vo
1urWo'

u2Z1
c

Ve
, ~19!

whereVo5 (2p/lo) c andVe5 (2p/le) c are the central
frequencies of the filters in front ofD1 andD2 , respectively.

For any givenT1 andT2 , Eq. ~18! gives us an explicit
expression of the square of the two-photon probability am-
plitude as a function of the transverse plane coordinates of
the detectors,rWo'

and rWe'. In other words, given some tiny

spot in the aperture described byrWe', it essentially describes

the regions in space described byrWo'
where we can obtain a

coincidence count. Since we are interested in obtaining the
clearest image~in coincidence counts! of the aperture placed
in the signal beam, we want the value of this function to be
as small as possible. From Eq.~18! it is clear to see that we
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have a minimum in the coincident counting rate ‘‘spot size’’
when uXu2 is a minimum. This gives@see Appendix B, Eq.
~B14!#

lp

Z1le
1

lp

Z2lo
5

1

f2d
. ~20!

Note that this technique is analogous to that used in the
standard derivations of simple geometric optics relations, for
example, the Gaussian thin lens equation, where minimizing
the single beam spot size results in an equation which dic-
tates a focal plane location and various magnification param-
eters. What we will see from Eq.~20! is that by minimizing
the coincidence count rate ‘‘spot size’’ we have derived what
can be thought of as a simple ‘‘two-photon’’ spherical mirror
geometric optics equation. In other words, given values of
le andlo , Eq. ~20! requires the detectors to be located at
specific distancesZ1 andZ2 in order to have a sharp magni-
fied image.

IV. EXPERIMENTAL RESULTS

Equation~20! expresses the key ideas of this paper. Its
physical interpretation leaves one with a remarkable impres-
sion concerning the quantum nature of the signal and idler
photons produced in SPDC. Tests of the predictions of Eq.
~20! in two different cases clearly demonstrate what can be
called ‘‘two-photon geometric optics.’’ In the first case, the
BBO crystal is oriented so that the signal and idler photons
which travel through our setup~e.g., in the near collinear
direction! have the same wavelength,le5lo . In the second
case, the nondegenerate case is used,leÞlo .

A. The degenerate case

In this case, the crystal is tilted so that its optic axis makes
an anglec549.2o with the central pump direction~the z
direction!. In this arrangement, one way the ordinary phase-
matching conditions@1,12#

vp5ve1vo , kW p5kWe1kWo ~21!

can be satisfied is when the signal and idler photons travel
collinearly with the degenerate wavelength of 702.2 nm. This
can be seen in the ‘‘tuning curve’’@1# shown in Fig. 3 , which
is a plot of the signal~e-ray! and idler~o-ray! wavelengths as
a function of the crystal output angles. For a given pump
wavelength and anglec the tuning curves can be easily de-
rived from the square of the momentum phase-matching con-
dition of Eqs.~21! and Snell’s law upon exiting the crystal.
The tuning curve shown in Fig. 3 is for the planar case,
where the optic axis,z direction, andkW p all lie in the same
plane. For the degenerate case experiment, we therefore used
identical filtersF1 andF2 centered at 702.2 nm with band-
widths of about 83 nm, primarily used to cut off the scattered
pump radiation. In practice, the size of the pinholes and the
aperture itself define the accepted angular spectrum, which is
much less than this range, as can be seen from Fig. 3.

Therefore, given thatlp5 351.1 nm, andle5lo5 702.2
nm, we see that Eq.~20!, which dictates the clearest image in
coincidence counts, reduces to

1

Z1
1

1

Z2
5
2

R
, ~22!

whereR[ f2d5600 mm is the approximate radius of cur-
vature of the focused pump wave fronts inside the crystal.
Immediately one is struck by the fact that Eq.~22! is the
exact analog of the simple spherical mirror equation in or-
dinary geometric optics.For a givenZ1 ~i.e., object distance!
andR, Eq. ~22! predicts that a sharp image will be found at
Z2 , and it will be magnified by a factorZ2/Z1 .

With the unsymmetric cross aperture placed on the face of
D1 , we tested this prediction by movingD1 to a distance
Z1 5 450 mm. A sharp image of the aperture was found in
coincidence counts whenD2 was scanned in the transverse
plane located at a distanceZ2 5 900 mm, the distance at
which Eq.~22! is satisfied. The result, shown in Fig. 4, is a
density plot of the number of coincidence counts per 20 sec
as a function of the idler beam transverse plane coordinates.
The data shown are raw data, with each square correspond-
ing to one resting collection location of the 0.5 mm diameter
fiber tip of scanning detectorD2 . In other words, it simulates
a 15 mm2 array of 900 equal sized pixels. The gray-scale
shades indicate the number of counts in each location, with
the lightest shade corresponding to the maximum number of
counts~about 300!, while the darker and darker shades cor-
respond to fewer and fewer counts. The darkest shade indi-
cates the background noise of about 40 counts.

The sharp image of the aperture is clearly seen in Fig. 4.
Furthermore, note that the length of each of the bars forming
the unsymmetric cross is roughly 9 mm, which is the pre-
dicted double magnification of the 4.5 mm lengths in the
original aperture.

Considering that in this case the idler beam travels twice
as far from the crystal as the signal beam, one might be
tempted to think that this effect has no dependence on the
focusing lens, and is simply a result of the natural linear
expansion of the down-converted beams as they propagate
away from the crystal. To show that this is not true, we
simply remove the lens from our setup and repeat the data
collection scan under otherwise identical experimental con-
ditions. The result is shown in Fig. 5. In this completely

FIG. 3. Tuning curve for type-II SPDC, when the pump beam
direction lies along thez axis, normal to the input face of the crys-
tal. In all of the experiments, the signal and idler wavelengths of
interest are those traveling in the nearly collinear direction~e.g.,
output angle'0°). For thecase whenc 5 49.2°, this is the de-
generate casele 5 lo 5 702.2 nm.

2808 53T. B. PITTMAN et al.



‘‘blurred-out’’ image, the shape of the unsymmetric cross is
almost unrecognizable, even though the maximum number
of counts is still close to 300. This clearly indicates that the
use of a lens in the pump beam imposes a focal planelike
condition on the correlations of the down-converted photons.

Although this blurriness in the coincidence count rate im-
age can be predicted by rigorous calculations similar to those

above, it is instructive to consider an intuitive picture of the
down-conversion processes and their dependence on the
lens. We consider the noncollinear topological equivalent of
our collinear-beam-and-beam-splitter setup, as discussed in
Fig. 1, and indicate the signal and idler photon detection
amplitudes by rays pointing in the mode directions. In this
nonrigorous model, shown in Fig. 6, the pump beam, dis-
tances, and angles are all exaggerated to simply demonstrate
the effects.

Since our collinear pinholes and narrow-band detector fil-
ters limit the signal and idler wavelengths to a very small
range around 702.2 nm, the signal photon and idler photon of
any given down-conversion pair emerge from the crystal at
equal and opposite angles with respect to the pump direction.
This can be seen from the linearity of the tuning curves in
Fig. 3 in the region close to 702.2 nm. It can also be seen
from the transverse componentof the k-vector phase-
matching condition@see Eq.~21!# taken in conjuction with
Snell’s law upon exiting the crystal:

ukWeusinae5ukWousinao⇒vesinbe5vosinbo , ~23!

where anglesa are inside the crystal and anglesb are the
exiting angles. From Eq.~23!, we see that whenvo've then
bo'be .

FIG. 4. A map of the coincidence counts as a function of the
transverse plane coordinates ofD2 . Each square represents one
resting collection location of the 0.5 mm diameter tip of detector
D2 , with the lighter shades corresponding to higher numbers of
counts. The size of the bars making up the unsymmetric cross are
seen to be about 9 mm, which is the expected magnification factor
of 2 predicted from Eq.~22! for the caseR5600 mm,Z1 5 450
mm, andZ2 5 900 mm. As expected, the orientation of the image
was ‘‘flipped’’ from that of the aperture.

FIG. 5. A repeat of the scan shown in Fig. 4, but with the lens
removed from the system.

FIG. 6. A cartoon explanation of why a lens before the down-
converting crystal results in a sharp image in coincidence counts:
~a! without the lens in place, the pump is approximated by plane-
wave fronts entering the crystal and for any given pointP in the
signal beam, there is a large range in the idler beam which can give
coincidence counts.~b! However, when the lens is inserted, the
plane pump wave fronts are approximated as spherical, causing a
focusing effect to arise in the coincidence counting rate.
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In Fig. 6~a! we examine the case where the lens is re-
moved from the system, and consider the pump to have ap-
proximated plane-wave fronts entering the very thin crystal.

In this arrangement,kW p is always in thez direction. Due to
the rather large cross sectional area of the pump beam, we
see that there are many locations in the transverse plane of
the crystal where the down-conversion pair could be ‘‘cre-
ated.’’ From each of these possible creation points~only
three are shown! there is a signal probability amplitude ray
which could result in a detection at pointP. The correspond-
ing idler amplitude ray is seen to propagate from the same
creation point at the expected equal and opposite angle with

respect tokW p at that point; thekW p are indicated by the heavy
black arrows. As can be clearly seen, to every pointP in the
signal beam there corresponds a large range in the idler
beam. Thus in coincidence counts the ‘‘image’’ of pointP is
a very large spot, and the ‘‘image’’ of any aperture made up
of many such points would be completely blurred out, just
like Fig. 5. Although this oversimplified cartoon considers
only a very thin crystal, this type of problem becomes even
worse when a crystal of any appreciable thickness is used, as
has been discussed in several papers@59,60#.

However, when a lens is added to the system before the
crystal, the approximated plane pump wave fronts which
pass through the lens are focused into roughly spherical
wave fronts whose radius of curvature is determined by their
distance from the focal point of the lens@point C in of Fig.
6~b!#. Considering the same three possible creation points,
we see that the pump wave vectors always point toward the
center of curvature, pointC. Again each creation point pro-
duces a signal probability amplitude ray which reaches point
P, and the corresponding idler rays exit at an equal and
opposite angle with respect tokW p at that creation point. Now,
however, these idler rays are seen tocross at a single point
P8, rather than diverging as before. The result is a very clear
image of pointP in coincidences when the scanning idler
beam detector is located at a specific distance from the crys-
tal.

It should be noted that in this ideal scenario it may appear
that, in principle, the equal and opposite exit angle require-
ment of Eq.~23! should not hold. This is due to the fact that
the pump wave vectors on the extreme sides of the focused
beam no longer make an anglec549.2° with the optic axis,
and the phase-matching conditions must therefore change.
Although this is rigorously true, we emphasize that in prac-
tical situations this effect is negligible. Considering the mild
focusing of the pump, this change inc is not larger than
several mrad, a range for which the tuning curve shown in
Fig. 3 does not appreciably change. The end result is that
with resolution limited to the order of millimeters by the
diameter ofD2 , Fig. 6 provides a somewhat realistic analy-
sis.

In summary this analysis, as well as the rigorous treat-
ment culminating in Eq.~20!, indicate that with the lens in
place, we establish what can be thought of as a ‘‘two-photon
focal plane.’’ The results shown in Figs. 4–6 depict a purely
quantum mechanical two-photon phenomenon very reminis-
cent of ordinary geometric optics. Considering the cartoon
topological equivalent of our experiment shown in Fig. 6~b!
we see that the imaging behavior in the coincidence counting

rate is exactly the same as one would see if a screen were
placed atZ2 and the avalanche photodiode inD1 were re-
placed by a classical pointlike light source, and the down-
conversion crystal by a reflecting spherical mirror. For this
reason, we refer to Eq.~20! as the ‘‘two-photon spherical
mirror equation.’’

Whereas ordinary simple geometric optics phenomena are
conventionally observed on a screen or with asingledetec-
tor, the two-photon geometric optics behavior is observed in
coincidence counts, revealing its inherently quantum nature.
This is yet another example of why the two-photon state
produced in SPDC cannot be thought of as simply the prod-
uct of two individual separated light quanta.

B. Nondegenerate case

Further interesting tests of the ‘‘two-photon spherical mir-
ror equation’’ can be performed when the signal and idler
wavelengths are not equal. In this case, Eq.~20! does not
reduce to the simple form of Eq.~22!, but

1

Z1F l1

2lp
G 1

1

Z2F l2

2lp
G 5

2

R
, ~24!

wherel i ( i51,2) corresponds to the wavelength of the ra-
diation reaching detectorDi .

In this equation the prescribed object~aperture! and image
distances are ‘‘wavelength weighted,’’ and it is clear that the
magnification factor is no longer a simple ratio ofZ2 and
Z1 , but the weighted ratioM5@(Z2/Z1)(l2/l1)#.

To test this unusual effect, we moved detectorD2 towards
the crystal so thatZ15Z25 450 mm. So that Eq.~24! was
satisfied, we moved the lens further back from the crystal so
that f2d[R 5 450 mm. As expected, using the degenerate
wavelength case to test the system resulted in a sharp un-
magnified image. We now imposed the more interesting non-
degenerate case by tilting the top of the crystal towards the
beam splitter so thatc, the angle between the optic axis and
the central pump direction, equaled 45.8°. The tuning curve
for this pump angle is displayed in Fig. 7~a!. It shows that
the phase-matching conditions will be satisfied in the collin-
ear direction~i.e., output angle equal to 0! when the signal
wavelength isle 5 788 nm and the idler wavelength islo 5
632 nm.

We therefore placed a narrow wavelength bandpass filter
centered at 788 nm in the signal beam in front ofD1 , and
one centered at 632 nm in the idler beam in front ofD2 . The
bandpass width of these filters was approximately 2 nm. In
this arrangement Eq.~24! is satisfied, and we expect a sharp
image with magnificationM[ l2/l15 lo/le50.8. The re-
sult of this data collection scan is shown in Fig. 8. For these
data the step size of the scan was reduced from 0.5 mm to
0.25 mm in order to increase the quality of the smaller im-
age. Since the step size was less than the diameter of the
fiber tip of D2 , we can actually attribute some of the per-
ceived blurriness of the image to the overlap~lack of reso-
lution! of the squares in Fig. 8. Nonetheless, we clearly rec-
ognize the shape of the unsymmetric cross and observe that
the bar length is about 3.6 mm, which is indeed a magnifi-
cation of 0.8 of the original aperture length.
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Because we choseZ15Z2 , this l-weighted behavior can
be dramatically observed by simply switching the filters in
front of the detectors so that the magnification will change
from l2/l15

632
788 to l2/l15

788
632. Since we are using a polar-

izing beam splitter to increase the coincidence counting rate,
we had to change the phase-matching conditions so that the
e-ray signal which reachesD1 has wavelength 632 nm while
the o-ray idlers reachingD2 have wavelength 788 nm. As
can be seen in the tuning curve shown in Fig. 7~b!, this is
accomplished by tilting the crystal in the opposite direction,
past the degenerate case configuration, untilc552.7°. The
result of the scan under these conditions is shown in Fig. 9.
Again a sharp image is seen, with the bar length roughly
equal to 5.6 mm. As expected, this is a magnification factor
M5 l2/l151.25 of the original aperture’s value.

It is very interesting that by simply switching the wave-
lengths of the down-conversion photons traveling through
our system we can dramatically alter the resulting coinci-
dence counting rate image. If one tries to imagine this non-
degenerate case in terms of the simple thought model of a
spherical reflecting mirror a very curious feature arises: for a
given incidence angle of a ray traveling into the mirror from
the aperture, the reflected angle is wavelength weighted. Be-
cause the optical distances between the detectors and the
effective ‘‘spherical mirror’’ are wavelength weighted, one
can imagine that the setup experiences some type of
‘‘vacuum dispersion.’’ In other words, even though the signal
and idler beams actually travel through free space, the imag-
ing behavior and Eq.~24! act as if they were in dispersive
media.

V. CONCLUSIONS

In summary, the use of a lens before the down-converting
crystal results in significant alterations of the coincidence
counting rate as a function of the transverse spatial coordi-
nates of the detectors. Using the approximately spherical

FIG. 7. Tuning curves for the two nondegenerate cases. The
crystal is tilted so that~a! c545.8°, ~b! c552.7°. In both cases the
fact that the central pump direction is no longer normal to the faces
of the crystal causes a distortion of the tuning curves which, in
practice, is accommodated by tilting the crystal slightly more~less!
to maximize the counting rates.

FIG. 8. The nondegenerate case whenle 5 788 nm,lo 5 632
nm, andZ1 5 Z2 5 450 mm. The weighted behavior of the two-
photon spherical mirror equation is manifest as the bar length of
about 3.6 mm is the predicted magnification of
M5@(Z2/Z1)(lo/le)# 5 0.8 times the original value.

FIG. 9. The nondegenerate case when the wavelengths are
switched:le 5 632 nm,lo 5 788 nm. The magnification value is
nowM5 lo/le51.25.
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pump wave fronts in an otherwise standard field-theoretical
calculation of this coincidence counting rate leads to modi-
fied wave-number phase-matching conditions and the deriva-
tion of the ‘‘two-photon spherical mirror equation’’@Eq.
~20!#. For a given distance between the crystal andD1 in the
signal beam, this equation dictates a location in the idler
beam where there is a true point-by-point transverse coordi-
nate position correspondence between the signal and idler
photons, which can be considered as an image plane and
explained through analogies to simple geometric optics. The
two-photon imaging behavior is a direct result of the quan-
tum mechanical correlations of the down-converted photons
which, in the spirit of ‘‘advanced wave’’ models~see, for
example, Ref.@65#!, is seen to be exactly the same as one
would observe on a screen placed in the idler beam, ifD1
were replaced by a pointlike light source behind the aperture
in the signal beam, and the pump wave fronts inside the
crystal were replaced by a spherical mirror. The quantum
nature of this situation is highlighted by the fact that the
free-space distances required for sharp imaging are depen-
dent on the wavelengths of the down-converted beams.
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APPENDIX A

In this appendix, we carry out the integration of the pump
field inside the crystal. A schematic of the components of
interest of the pumpk vector is shown in Fig. 10.

The input face of the crystal is parallel to thex-y plane,
and the crystal is cut so that the optic axis makes an angle
c with the z axis. The pump wave vectorkW p generally does
not lie in the x-z plane but makes an anglecp with the
z-axis and an angleup with the optic axis. Its perpendicular
componentkW' is the projection into thex-y plane making an
anglefp with the x axis.

As seen in Eq.~2!, the pump field inside the crystal is
given by

Ep~rW' ,z,t !5E d2k'Ep8e
2 ivpte2 i ~kpz

z1kW'•r
W
'!e2 ikW'

2sp
2/2.

~A1!

In order to determine the exactkW' dependence ofkpz, we
note from Fig. 10 that

kpz5AS vp

c
ne~vp ,up! D 22ukW'u2. ~A2!

Considering the long focal length and relatively small pump
diameter, we are justified in making the paraxial approxima-
tion

kpz'
vp

c
ne~vp ,up!2

ukW'u2

2
vp

c
ne~vp ,up!

. ~A3!

Furthermore, in the paraxial approximation we expand
kp to first order inup aboutc:

vp

c
ne~vp ,up!'

vp

c Fne~vp ,c!

1
d

dc
ne~vp ,c!~up2c!1••• G ~A4!

and see that Eq.~27! becomes

kpz'Kp1KpNp~vp ,c!Dup2
ukW'u2

2Kp
, ~A5!

where Np(vp ,c)[ @1/ne(vp ,c)#(d/dc) ne(vp ,c) and
Dup[up2c. Kp is the magnitude of the pump wave vector
if it were lying along thez axis,Kp[ (vp/c) ne(vp ,c). To
understand thekW' dependence inDup , note from the geom-
etry of Fig. 10 that

cos~up!5cos~c!cos~cp!1sin~c!sin~cp!cos~fp!.
~A6!

Now in the paraxial approximation sin(cp)5 ukW'u/ukWpu
' ukW'u/Kp!1 so that

cos~up!'cos~c!F12
1

2

ukW'u2

Kp
2 1•••G

1sin~c!F ukW'u
uKpu

1•••Gcos~fp!. ~A7!

But we can also expand cos(up) to first order aboutc:

cos~up!'cos~c!1
d

dc
cos~c!Dup1••• ~A8!

which implies that cos(up)2cos(c)'2sin(c)Dup . In com-
parison with Eq.~31!, we find thatDup is therefore given as

FIG. 10. A representation of the pump wave vector inside the
crystal: the optic axis, OA, lies in thex-z plane making an angle

c with the z axis. In general,kW p does not lie in thex-z plane, but

makes an angleup with OA, and an anglecp with thez axis.kW' is

the projection ofkW p into thex-y plane, making an anglefp with the
x axis. The same conventions hold for thee ray inside the crystal,
as discussed in Appendix B.
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Dup'
1

2

ukW'u2

Kp
2 cot~c!2

ukW'u
Kp

cos~fp!1•••. ~A9!

Thus, from Eq.~29!,

kpz'Kp2ukW'uNp~vp ,c!cos~fp!

51
ukW'u2

2Kp
@Np~vp ,c!cot~c!21# ~A10!

so that the integral givingEp(rW' ,z,t) is

Ep~rW' ,z,t !

5Ep8e
2 ivptE d2k'e

2 i @kW'•r
W
'2 ~kW'

2sp
2/2!#

3e2 i ~ ukW'uNp~vp ,c!cos~fp!2 ukW'u2/2Kp @Np~vp ,c!cot~c!21# !z

~A11!

It is here that we make the ‘‘thin crystal approximation,’’
for we see that ifz is small enough we might neglect the
computationally troublesome second term of the integrand.
For the sake of curiosity, we can get a rough idea of how
small the crystal must be to make this approximation rigor-
ously true. We can estimate this value using numbers that are
suitable to describe our actual experiment. For example, it is
not difficult to evaluateNp(vp ,c) and for a typical pump
wavelength of lp 5 351.1 nm andc'50°, we get
Np'0.08. Furthermore, given the mild focusing of the pump
beam we estimate the maximum value ofcp to be about 3
mrad, and estimatingKp as 2p/lp we get

ukW'uNp~vp ,c!cos~fp!'KpcpNp~vp ,c!cos~fp!

<4000 m21. ~A12!

Likewise,

ukW'u2

2Kp
@Np~vp ,c!cot~c!21#'

cp
2Kp

2
@Np~vp ,c!cot~c!21#

'100 m21. ~A13!

Therefore, if we assume the crystal is sufficiently thin
~e.g., on the order of 1024 m!, then the exponent in the
second term of the integral is much less thanp and we may
neglect this term. This thin crystal approximation greatly
simplifies the calculations without losing any of the physical
insight. Without it, we simply find through numerical calcu-
lations that the propagation directions of the down-converted
photons inside the crystal~and hence the eventual image
magnification! differ slightly in thex andy directions. As the
crystal gets longer and longer, this ‘‘distortion’’ of the final
image becomes more apparent. However, this effect appears
to be orders of magnitude smaller than the resolution of our
experiment~which is primarily defined by the 0.5 mm diam-
eter ofD2), and may be safely neglected. Thus in the thin
crystal approximation the pump field inside the crystal is
given by

Ep~rW' ,z,t !5Ep8e
2 i ~vpt2Kpz!E d2k'e

2 i @kW'•r
W
'1 ~kW'

2sp
2/2!#.

~A14!

APPENDIX B: TWO-PHOTON
PROBABILITY AMPLITUDE

In calculating the coincidence counting rate, the form of
the mode creation and annhilation operators in the field op-
erators in conjunction with the two-photon state~11! led to
the introduction of a two-photon probability amplitude,
A(T1 ,T2). In this appendix, we perform the integration re-
quired to expressA(T1 ,T2) as a simple function of the trans-
verse spatial coordinates. Inserting the field operators and
two-photon state intô0uE2

(1)E1
(1)uc&, we find

A~T1 ,T2!5A2E d3kWeE d3kWoE
0

L

dzd~ve1vo2vp!

3e2 iveT1e2 ivoT2ei ~kp2kez
2koz

!z

3e2 i ~sp
2/2! ~kWe'

1kWo'
!2ei ~k8

W
e'
•rWe'

1k8W o'
•rWo'

!

3e2 i ukWe'
8 u2/2ve cZ1e

2 i ukWo'
8 u2

2vo cZ2. ~B1!

Let us assume that we have filters in front of the detectors
that only pass a small range of wavelengths and have central
frequenciesVo andVe that exactly satisfy the frequencyd
function in Eq.~B1!:

vo5Vo1n8, ve5Ve1n, ~B2!

where n8,n!Vo ,Ve ; and Ve1Vo5vp . Then to do the
integration we expandkez andkoz, which are inside the crys-
tal, using the paraxial approximations

koz'
vo

c
no~vo!2

ukWo'
u2

2
vo

c
no~vo!

,

kez'
ve

c
ne~ve ,ue!2

ukWe'u2

2
ve

c
ne~ve ,ue!

, ~B3!

whereue and all other angles and vectors of subscripte are
defined in exact analogy to the subscriptp vectors and angles
in Fig. 10. We can expandkoz to first order inn8:

koz'Ko1
n8

uo
2

ukWo'
u2

2Ko
, ~B4!

where Ko[ (Vo/c) no(Vo) and uo
21[ d/dVo @(Vo/

c) no(Vo)] is the inverse of the group velocity.
We first expandkez to first order inue aboutc:

kez'
ve

c
ne~ve ,c!1

ve

c
ne~ve ,c!NeDue2

ukWe'u2

2
ve

c
ne~ve ,c!

,

~B5!
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where Due[up2c5 1
2ce

2cotc2cecosfe in analogy to Eq.

~A9!. We have definedce[ @ ukWe'u/(ve/c) ne(ve ,c)# and

Ne[ @1/ne(ve ,c)#(d/dc) ne(ve ,c). We can now expand
kez to first order inn:

kez'Ke1
n

ue
2NeukWe'ucosfe1

ukWe'u2

2Ke
~Necotc21!,

~B6!

where Ke[ (Ve/c) ne(Ve ,c) and ue
21[d/dVe@Ve /

cne(Ve ,c)]. With these expressions we can now start to
evaluate Eq.~B1!. Note thatd3kWe5d2kWe'dkez, where to a

good approximation dkez'd (n/c) . Likewise, d3kWo

'd2kWo'
d (n8/c) . Sinced(ve1vo2vp)5d(n1n8) the n8

integration yields

A~T1 ,T2!5A3E d2kWe'E d2kWo'
E dnE

0

L

dze2 in~T122Dz!

3ei ~k8
W

e'
•rWe'

1k8W o'
•rWe'ei uk

W
e'

uNecosfez

3e2 i @~So
2/2!ukWo'

u22 ~Se
2/2!ukWe'u21sp

2kWe'
kWo'

#, ~B7!

where T12[T12T2 , D[ 1/uo2 1/ue , and theS are de-
fined as

So
2[

c

Vo
Z21sp

22
c

noVo
z,

Se
2[

c

Ve
Z11sp

22
c

neVe
~12Necotc!z.

~B8!

But note that in the thin crystal approximation~see Ap-
pendix A! thez dependence in the integrand that depends on
kWe' andkWo'

is negligible. For example, the last term inSo
2 is

an insignificant fraction ofp when multiplied byukWo'
u2 and

may be neglected in the integration. Likewise, the last term
in Se

2 may also be dropped. Furthermore, estimates of

ei uk
W
e'

uNecosfez show that it may be neglected in the thin crystal
approximation. However, considering a typical value ofD is
on the order of 0.2 ns/m, we see that for any realistic value of
the filter width n, the quantitye2 inDz is not negligible.
Therefore the integral overn andz yields

E dnE
0

L

dze2 in~T122Dz!5E
0

L

dzd~T122Dz!5P~T12!,

~B9!

whereP(T12) is a unit step function which is only different
from zero when the difference in detection times,T12T2 , is
between 0 andDL. SinceDL is essentially the difference in

the amount of time it takes for o-ray and e-ray wave packets
to cross the entire down-converting crystal@67#, P(T12) ba-
sically describes the fact that although the pair of photons
can be created anywhere along the length of the crystal with
equal probability, they are created at the same time.

The remaining integrals overd2kWo'
andd2kWe' are simply

Gaussian and can be evaluated by completing the square in
each of the exponents of the integrand. The result is

A~T1 ,T2!5A4P~T12!e
i /2 @Y/X#. ~B10!

The complex quantitiesX andY are defined as

X[So
2Se

22sp
45Z1

c

Ve
Z2

c

Vo
1sp

2FZ1 c

Ve
1Z2

c

Vo
G ,

Y[urWe'u2Se
21urWo'

u2So
222sp

2rWe'•r
W
o'

5~rWe'2rWo'
!2sp

21urWe'u2Z2
c

Vo
1urWo'

u2Z1
c

Ve
.

~B11!

Therefore

uA~T1 ,T2!u25uA4u2P~T12!e
2Im@Y/X# ~B12!

sinceuP(T12)u25P(T12) , and for a general complex num-
berZ, ueiZu25e22ImZ. Furthermore, since bothX andY
are complex,

ImFYXG5
Re~Y!Im~X!2Im~Y!Re~X!

Re~X!21Im~X!2
. ~B13!

However, sincesp
2' c/vp @d2 f2 i (lp/pv0

2) f 2# we see
from Eq. ~B11! that

Re~X!5FZ1le

lp

Z2lo

lp
1~d2 f !S Z1le

lp
1
Z2lo

lp
D GF lp

2p G2
~B14!

sincec/V j5 l j /2p . Meanwhile, the imaginary part ofX is

Im~X!5
2c

vp

lpf
2

pv0
2 FZ1le

2p
1
Z2lo

2p G . ~B15!

So for any standard choice of the experimental parameters,
Im(X)!Re(X). Therefore the final evaluation of the square
of the two-photon probability amplitude gives

uA~T1 ,T2!u2

'uA4u2P~T12!e
2 @1/Re~X!2# @Re~Y!Im~X!2Im~Y!Re~X!#,

~B16!

which is a minimum when Re(X)250.
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