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Abstract: Plasmonic nanoantennas with suitable far-field

characteristics are of huge interest for utilization in opti-

cal wireless links, inter-/intrachip communications, LiDARs,

and photonic integrated circuits due to their exceptional

modal confinement. Despite its success in shaping robust

antenna design theories in radio frequency and millimeter-

wave regimes, conventional transmission line theory finds

its validity diminished in the optical frequencies, leading

to a noticeable void in a generalized theory for antenna

design in the optical domain. By utilizing neural networks,

and through a one-time training of the network, one can

transform the plasmonic nanoantennas design into an auto-

mated, data-driven task. In this work, we have developed

a multi-head deep convolutional neural network serving as

an efficient inverse-design framework for plasmonic patch

nanoantennas. Our framework is designed with the main

goal of determining the optimal geometries of nanoan-

tennas to achieve the desired (inquired by the designer)

S11 and radiation pattern simultaneously. The proposed

approach preserves the one-to-many mappings, enabling
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us to generate diverse designs. In addition, apart from

the primary fabrication limitations that were considered

while generating the dataset, further design and fabrica-

tion constraints can also be applied after the training pro-

cess. In addition to possessing an exceptionally rapid sur-

rogate solver capable of predicting S11 and radiation pat-

terns throughout the entire design frequency spectrum,

we are introducing what we believe to be the pioneering

inverse design network. This network enables the creation

of efficient plasmonic antennas while concurrently accom-

modating customizable queries for both S11 and radiation

patterns, achieving remarkable accuracy within a single

network framework. Our framework is capable of designing

a wide range of devices, including single band, dual band,

and broadband antennas, with directivities and radiation

efficiencies reaching 11.07 dBi and 75 %, respectively, for a

single patch. The proposed approach has been developed

as a transformative shift in the inverse design of photon-

ics components, with its impact extending beyond antenna

design, opening a new paradigm toward real-time design of

application-specific nanophotonic devices.

Keywords: deep learning; inverse design; plasmonics;

nanoantennas

1 Introduction

Control and manipulation of light at the nanoscale is con-

sidered as one of the cornerstones of modern optics, with

the potential to revolutionize scientific and technological

advances. Through the years, light manipulation has been

implemented through various approaches such as pho-

tonic crystals [1], [2], metamaterials [3], [4], metasurfaces

[5]–[15], and plasmonic structures due to their unprece-

dented ability to locally control andmanipulate the incident

light at the nanoscale [16]–[20]. Plasmonic nanoantennas

serve a crucial role in a wide range of applications such as

plasmonic lenses [21], [22], plasmonic tweezers [23]–[25],

intra-/interchip optical communications [26], [27], LiDARs
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[28], augmented reality and holography [29], [30], imaging

[31], and in surface-enhanced Raman spectroscopy (SERS)

[32] due to their unique ability to guide and confine light at

the nanoscale. To date, plasmonic nanoantennas aremainly

used for near-field applications and lack a robust far-field

performance and a generalized far-field design methodol-

ogy. Although conventional antenna theory has been suc-

cessful in shaping the design theory and techniques in low-

frequency regimes such as radio frequency (RF) or mm-

wave, as we venture toward the optical domain, due to

the radically differentwave-matter interactions, the validity

of this theory diminishes significantly [33]. By leveraging

neural networks, we can convert this problem into an auto-

mated, data-driven task.

Data-driven methods such as deep neural networks

(DNNs) are receiving significant attention owing to their

remarkable success in computer vision [34], [35], natural

language processing [36], [37], and speech recognition [38].

In nanophotonics, DNNs have been used to replace the com-

plex and time-consuming design procedures by approxi-

mating the electromagnetic simulations and learning the

inverse process [39]–[51], predicting the fabrication imper-

fections [52], and postfabrication appearance [53]. While

promising, DNNs face challengeswith inverse problems due

to their reliance on a large number of labeled samples (i.e.,

devices with simulated responses), which grow exponen-

tially with additional degrees of freedom of the device. Also,

discriminative neural networks may lead to suboptimal

results due to the existing nonuniqueness in inverse prob-

lems. Prior studies addressed the inverse design problem

using discriminative networks in combination with brute

forcing [54], analytical gradient [41], and evolutionary algo-

rithms [55]–[57]. Tandem networks have been utilized in

variousworks [58], [59], and generativemodels such as vari-

ational autoencoders [60], [61] and generative adversarial

networks [43], [62]–[64] have been adapted to enhance the

design withmore degrees of freedom. However, thesemeth-

ods face severe constraints, such as inadvertent discarding

of desirable devices in tandem models due to transforming

the one-to-many mappings to one-to-one mappings, chal-

lenges in encapsulating fabrication constraints, and difficul-

ties in training generative models that may lead to blurry

and inaccurate results [65]. In addition, the generative mod-

els suffer from mode collapses, limiting their ability to gen-

erate multiple diverse results.

In this work, we have developed an inverse-design

framework for efficiently designing plasmonic patch

nanoantennas to overcome the aforementioned obstacles.

Our framework is capable of determining the optimal

configuration of nanoantennas to achieve the desired and

physically possible S11 and radiation pattern. The proposed

framework is developed based on the pseudo-inverse

function. It utilizes a multi-head deep convolutional neural

network as a surrogate solver to accurately estimate the S11
and the radiation pattern of a given device across the entire

frequency range. This is orders of magnitude faster than

numerical simulations. The particle swarm optimization

(PSO) is used in conjunction with the surrogate solver to

efficiently search the design space and locate the desired

devices. Following the search, a clustering algorithm is

applied to identify multiple diverse results. Contrary to

most NN-based inverse-design methods, our proposed

approach preserves the one-to-many mappings. It allows

the designer to choose from multiple diverse devices for a

given design problem. The framework enables the designer

to add fabrication constraints even after the training

process and generate the desired devices through complex

queries, enhancing customization in the design process. To

the best of our knowledge, this is the first time that a neural

network-based inverse design framework encapsulates all

of the mentioned properties while maintaining simplicity

and fast runtimes. The proposed framework can design

a wide range of devices with the desired characteristics,

including single band, dual band, and broadband antennas

with a maximum directivity of up to 11.07 dBi and radiation

efficiencies reaching almost 75 % for a single patch.

The proposed approach has been developed to serve as a

transformative foundation in inverse design,with its impact

extending beyond antenna design and toward real-time

design of application-specific nanophotonic devices.

2 Deep learning-based inverse

design framework

The conventional design process starts with a structure or a

set of known input parameters and obtains the correspond-

ing outcome afterward. However, in the inverse design,

the process works the other way around. The designer

starts with a set of known desired outputs, and the goal is

to discover the structure or parameters that can produce

those specific outcomes. This process is of great importance

because automating it with artificial intelligence (AI) and

data-driven methods can significantly accelerate the design

process and save time and resources. Additionally, it is possi-

ble to identify new and previously unattainable devices that

outperform the existing solutions.

Our inverse design framework utilizes a deep neu-

ral network (serving as a surrogate solver) to model the

simulation process and uses PSO to search the design
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space. The surrogate solver replaces the computationally

intensive numerical simulation process, enabling the PSO

algorithm to explore the design space efficiently and iden-

tify the deviceswith desired responses. The proposed frame-

work comprises three components: the “Multi-head Convo-

lutional Surrogate Solver,” the “Particle Swarm Optimiza-

tion Algorithm,” and the “Clustering Algorithm” (as shown

in Figure 1(b)). Together, these components generate a col-

lection of feasible and manufacturable nanoantennas with

desired responses. The framework takes a desired response

in a form of a query (Figure 1(a)) and generates a set of

devices that exhibit those responses (Figure 1(c)). The query

consists of a set of high-level conditions the desired device

must meet. Each condition is represented as a cost function

that the PSO aims to minimize (named design objectives).

In addition to the query, the designer can define fabrication

constraints and clustering parameters to specify the extrac-

tion of multiple devices. Fabrication constraints can be

incorporated into the inverse process by either adding them

as an extra cost function to the PSO objective function or by

limiting the search space of the PSO algorithm. After defin-

ing the search space and the objective function, PSO begins

optimizing the objective function: in other words, PSO will

search the device space for a set of devices that meets the

requirements. In the search process, several devices need

to be evaluated (i.e., their responses should be simulated).

This evaluation is done using the multi-head deep convolu-

tional surrogate solver, which is trained to approximate the

Figure 1: An overview of the proposed inverse-design framework. Our approach is based on solving the pseudo-inverse function. It employs a deep

neural network as a surrogate solver to replace the computationally expensive and time-consuming simulation process and uses an optimization

algorithm to search the design space for the desired devices. Our approach preserves the one-to-many mappings, allowing the generation of multiple

devices and accommodating fabrication constraints. The proposed framework operates by taking a requested response in the form of a query

and a set of fabrication constraints as input. An objective function is then defined based on these inputs, which must be minimized using the PSO.

A multi-head deep convolutional neural network is trained to perform as a surrogate solver and quickly predict the device responses, including

the device S11 and radiation patterns. The PSO efficiently explores the design space using the surrogate solver and identifies the desired devices.

Finally, a clustering algorithm is applied to generate a diverse set of multiple devices. (a) The desired responses in the form of a query, (b) our inverse

design framework, (c) generated devices given the desired response, and (d) multi-head deep convolutional surrogate solver.
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responses of the given device. The architectural detail of the

surrogate solver is illustrated in Figure 1(d). The surrogate

solver enables the PSO to search the device space in amatter

of seconds. PSO iteratively collaborates with the surrogate

solver until convergence. After the device space is searched,

the mean shift algorithm clusters the resulting particles to

locate a set of admissible solutions, instead of just one. It

then outputs the set of devices, as illustrated in Figure 1(c).

The surrogate solver and the inverse process are explained

in detail in Sections 2.3 and 2.4, respectively.

We refer to our approach as solving the pseudo-

inverse function, which involves modeling the forward pro-

cess using the neural network and optimizing it to find

the desired devices. In the following, we will explain the

pseudo-inverse function, its advantages, and why modeling

the inverse process directly using neural networks has chal-

lenges and would not provide the mentioned benefits.

Assuming that the parameters and response of the

nanoantenna can be represented as vectors d ∈ Rn and r ∈
Rm, where n and m are the dimensions of the device and

response space, respectively. We will define the function

f : d→ r as the forward design function. This function is

known and well-defined, meaning that for any input device

d, a single response r is produced. This function can be

evaluated through time-consuming numerical simulations.

Considering the above notations, the function f −1: r→

d is called the inverse design function. The ability to eval-

uate, learn, and estimate this function plays a crucial role

in inverse design tasks because a target device with a set

of desired responses can be determined by evaluating this

function. However, f is neither injective nor surjective, lead-

ing to the fact that it does not have a well-defined inverse

function f −1. As a result, some responses cannot be gener-

ated by any device, while multiple devices can generate oth-

ers (see Supplementary Figure S1), resulting in one-to-many

mappings. When using machine learning models such as

discriminative neural networks to model the inverse func-

tion, one of themain challenges is dealingwith one-to-many

mappings in the dataset. This is because discriminative neu-

ral networks are designed to learn one-to-one mappings,

and modeling the inverse function using these networks

would result in poor convergence and inaccurate results. A

workaround to overcome this issue is converting d→ r to

a bijective mapping [58], resulting in a one-to-one inverse

function that removes potentially valuable devices from the

device space.

Contrary to methods that do not preserve the one-to-

many mappings, our inverse design framework is based

on solving the pseudo-inverse function, denoted as f †,

with the property of f ( f †(r)) ≈ r, which can preserve the

one-to-many mappings. This function is defined as f †(r) =
D, where D is a set of possible solutions (devices), each

satisfying the following condition:

D =
{
d ∈ Rn, ‖ f (d)− r‖2 < 𝜀

}
, (1)

where 𝜀 is a predefined threshold value indicating the

maximum allowed discrepancy between the desired and

the target responses. A set of possible solutions D can be

obtained by a search or an optimization algorithm. This pro-

cess includes multiple evaluations of the forward function

(the numerical simulations), which can be time-consuming.

To speed up this process, we have developed and trained a

multi-head convolutional neural network as the surrogate

solver to approximate the simulation function, allowing for

a fast and parallel evaluation of f . Additionally, we have

injected the designer’s knowledge by incorporating a pre-

defined structure and considering a set of prior fabrication

constraints (such as minimum feature sizes and minimum

distances between the T-stubs with the feed and the patch),

reducing the device space significantly. As a result, our

pseudo-inverse function can be defined as follows:

D =
{
d ∈ Rk,

‖‖‖f̂ (d)− r
‖‖‖2 < 𝜀

}
, (2)

where k is the dimension of the reduced device space k ≪

n, and f̂ (d) is the approximated simulation function using

the surrogate solver. The values of d are also limited to the

range ofmotion of the parameters of a predefined structure.

Having a fast surrogate solver and a bounded device space,

PSO is utilized consequently for efficient exploration of the

device space and determining possible solutions D. Since

the one-to-many mappings remain intact, multiple diverse

solutions can be determined by identifying the clusters

formed by the PSO algorithm using a clustering algorithm

and obtaining the local minima in each cluster. Notably,

the proposed surrogate solver performs the PSO’s particle

evaluation stages in parallel, allowing all particles to be

evaluated simultaneously, which hugely increases the effi-

ciency of the inverse algorithm. For instance, designing a

single device using our framework requires an average of

20 iterations of the PSO, with 512 devices evaluated in each

iteration. The average execution time of our inverse design

process is 0.08 ± 0.02 s per device, depending on the hard-

ware. It is noteworthy that, without the surrogate solver, the

execution time to design one device would take more than

56 h.

One of the most important advantages of the proposed

approach lies in the fact that fabrication constraints can be

imposed by either limiting the search space (e.g., fixing a

parameter, reducing the range of a variable) or penalizing
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the regions where the fabrication constraints are not met,

after the training and learning process (one does not need

to limit the training dataset space to a dataset where fab-

rication constraints have already been applied, which will

eliminate many of the potential devices). Furthermore, the

designer can choose a less sensitive device to fabrication

imperfections, as the one-to-many mapping is preserved

and multiple solutions are discovered.

2.1 Dataset

Deep neural networks often require large-scale datasets for

accurate predictions. Thenumber of training samples varies

based on different factors, including the input and output

dimensions and the mapping complexity. Gathering a large-

scale dataset is both time-consuming and costly, especially

when training a physical surrogate solver, as the generated

devices must also go through the simulation process.

In this work, by exploiting the designer’s knowledge,

we have significantly reduced the dimensions of the device

space and have bound it to meet fabrication limitations,

such as the overall size of the device,minimum feature sizes,

minimum distance between two elements, and compati-

bility of the device with current fabrication technologies.

Our devices have three or four degrees of freedom, and

we are specifically interested in the device’s S11 response

and radiation pattern. The S11 frequency range spans from

180 THz to 207 THz, and we have sampled the data at 96

points within this range. Additionally, we have captured

the directivity of the device at four frequencies of inter-

est (185 THz, 188.5 THz, 193.5 THz, 198.5 THz). For each fre-

quency, we have two cuts of the radiation pattern in𝜑 = 0◦

and 𝜑 = 90◦, and these data have been sampled through 72

points. This makes our device space belong to d ∈ R3 or d ∈
R4, and our response space belongs to r ∈ R672. In the text,

the responses are denoted individually in the form of rs11 ∈
R96, r𝜑=0◦ ∈ R4×72, r𝜑=90◦ ∈ R4×72, or in a concatenated and

flattened form of r =
[
r⊤
s11
, r⊤

𝜑=0◦ , r
⊤

𝜑=90◦
]⊤
.

A dataset of 50,000 samples has been generated and

simulatedwith their corresponding responses for the device

with three degrees of freedom using the CST Studio.

Throughout this process, Latin hypercube sampling (LHS)

[66] has been used to generate random samples due to its

efficiency in covering the parameter space compared to

simple random sampling (see Supplementary Section S1.1

for the importance of using LHS). About 90 % of the gen-

erated data has been used for training (45,000 samples),

and the remaining 10 % has been kept for validation

and testing (2,500 each). The validation set evaluates the

surrogate model to obtain the optimal architecture and

training hyperparameters. In contrast, the test set deter-

mines the model’s final accuracy. We have also verified that

all the generated samples are unique, with no leakage of

validation or test sets.

Throughout the text, the experiments and the results

are reported for the dataset with three degrees of freedom,

and the quantitative and qualitative results for the device

with four degrees of freedom can be found in the Supple-

mentary Material.

Upon further analysis of the gathered dataset, the pres-

ence of one-to-many mappings was confirmed. This was

achieved by extracting distinct devices from the dataset that

exhibited similar responses (see Supplementary Figure S1,

which shows three instances of this relationship).

Furthermore, we have observed a strong linear corre-

lation between the radiation patterns of different frequen-

cies (on the same cut), indicating that the radiation pattern

varies smoothly as the frequency changes (see Supplemen-

tary Figure S2).Weutilized this observationwhile designing

our surrogate solver to determine the radiation pattern at

other frequencies within the range of our interest through

linear interpolation.More detailed description of this obser-

vation can be found in Supplementary Section S1.4.

2.2 Basic antenna design

Infusion of the designer’s knowledge into the inverse design

process not only ensures that the design process is grounded

in practicality and real-world applicability but also signif-

icantly reduces the size of the required dataset. This is

important particularly due to the complex nature of plas-

monic systems, where generating large datasets is time-

consuming and requires computationally expensive numer-

ical simulations. Moreover, by integrating domain-specific

knowledge, the network becomes more efficient at gener-

alizing from smaller datasets. Here, to inject the designer’s

knowledge into the model, the basic structure of the

antenna is designed using thewell-known formulas for plas-

monic patch antennas [26], [27], and two separate datasets

with three and four parameters have been generated

by adding T-stub configurations to the predesigned basic

structure.

In the optical regime, metals behave differently than

in the radio frequency (RF) due to the negative values of

the real part of their permittivity. This unique feature of

metals enables them to support surfacemodes at themetal/-

insulator interface, namely the surface plasmon polaritons

(SPPs). A plasmonic MIM waveguide is comprised of two

metal/insulator interfaceswhere eachmetal/insulator inter-

face supports individual SPPs. Bringing the two interfaces

to the same proximity results in the coupling of the SPPs
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on the two interfaces and a single propagating plasmonic

mode in the MIM waveguide. The propagating mode in a

MIM plasmonic waveguide is a transverse magnetic (TM)

in nature, and as a result one must either use modified

propagation constants and impedances to model/analyze

the problem using the conventional transmission line the-

ory [67], or use mere approximative methods (see Supple-

mentary Section S2) by taking advantage of the fact that

the magnitude of the TM component is rather small with

respect to the transverse component and approximate the

mode as a TEM to design the basic parameters (it should

be noted that the formulas and the methodologies outlined

in Supplementary Section S2 are predominantly based on

empirical and numerical fits that were previously proposed

in the literature for plasmonic patch nanoantennas, and

these methodologies are applied here exclusively for the

design of the basic structure of the antenna which we will

be used to generate the dataset, while our proposed inverse

design framework will do further designs).

The basic parameters of the patch are chosen as shown

in Figure 2, where Wg = 100 nm, Lg = 1,000 nm, Lst =
850 nm, Wp = 500 nm, and Lp = 320 nm. Our inverse net-

work will determine Dst, Da, and La. This selection aims to

achieve impedance matching for single band, dual band,

and broadband operations, using various shapes and con-

figurations of the T-stub that will be further designed

and added to the structure by our inverse design net-

work. The thickness of the metallic layers in the waveg-

uide and the patch have been chosen in a way to be

larger than the surface wave skin depth 𝛿m (see Supplemen-

tary Section S3), but not very small which leads to fabrica-

tion implications (hAg = 100 nm), whereas the thickness of

the dielectric layer is chosen as hd = 20 nm (see Supplemen-

tary Section S4, Figure S3(b)).

Although the most prominent and most accessible

method to control the resonant frequency of the patch is

by controlling the length of the patch, a different approach

has been chosen here. Here, the length of the patch is

fixed, and we will tune the resonant frequency (resonant

frequencies for dual band and broadband operations) of

the patch using various symmetrical T-stub configurations.

The basic shapes of the T-stubs are based on the T-shaped

resonators that previously used in diplexers [68] and dual

band transformers [69]. Here, we will show that, our net-

work is capable of generating all of the desired responses

(forward problem) and the devices (inverse problem) for

all of the queries using two T-stubs (the three-parameter

case), and a combination of two T-stubs with two nor-

mal stubs (stubs without additional arms) configurations

(the four-parameter case), without changing the patch

dimensions.

There are several reasons behind this choice: by alter-

ing the T-stub dimensions and locations, one can also con-

trol the antenna’s bandwidth without significantly altering

other antenna characteristics, whereas changing the patch

size will not provide the same level of control over band-

width. Additionally, although one of the widely accepted

methods to induce dual band or broadband operation in the

patches is introducing slots in the patch, this will increase

the radiating edge of the patch and lead to higher edge

currents, resulting in increased spurious radiation and

decreased radiation efficiency. Moreover, slots might lead

to higher cross-polarization levels; they require tighter tol-

erances during fabrication (especially in plasmonic struc-

tures where feature sizes are extremely small) as precise

slot dimensions and positions are crucial for achieving the

desiredmulti band performance, and slots are also typically

hard to design as they can introduce additional resonances,

which may lead to unwanted harmonic radiations. Apart

from the drawbacks mentioned above, inducing multi band

or broadband operation in the antenna typically using slots

requires the creation of slots of different shapes and sizes in

the patch and this method hugely increases the number of

parameters in the hyperparameter space (e.g., length,width,

Figure 2: Basic structure of the plasmonic patch. (a) 3D view of the full structure, (b) top view of the antenna.
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shapes, and location of the slots), and the data required to

train the network.

2.3 Multi-head convolutional surrogate
solver

As previously mentioned, the simulation of electromagnetic

devices requires considerable computational resources and

time. For instance, simulating a single nanoantenna can take

over 20 s (with symmetric boundary conditions), even on a

high-end computer. To facilitate this process, we have uti-

lized deep neural networks to approximate the simulation

function. Using deep neural networks as a surrogate solver

exhibits several advantages: it significantly reduces compu-

tation time, performs tasks orders of magnitude faster, and

enables parallel evaluation of multiple samples. Moreover,

we can use backpropagation to compute the derivative of

the simulation function, which is beneficial for optimization

tasks.

The architecture of deep neural networks plays a

vital role in their performance. Factors such as the num-

ber and type of layers and the activation function signifi-

cantly impact the network’s ability to generalize to unseen

data. Additionally, selecting an appropriate inductive bias,

such as convolution over fully connected, can reduce the

required training samples. We have conducted an exten-

sive hyperparameter optimization (HPO) process to select

the optimal network architecture and training parameters

(e.g., learning rate, weight decay, batch size). This process

involves sampling different configurations based on the pre-

defined range of hyperparameters and a set of network con-

figurations. Subsequently, the network is trained with the

sampled configuration, its performance is evaluated on the

validation set, and the best configuration is selected from

the sampled configurations (each iteration of this process

is called a trial). HPO can speed up the entire process with

trial pruning and early stopping techniques, in which tri-

als with less promising results are terminated earlier. The

parameters considered in the HPO for sampling include the

learning rate, regularization weight, batch size, configura-

tion of fully connected layers (i.e., number of layers and

neurons), whether to use convolutional layers, and their

corresponding configurations.

To train the network during each trial, mean-squared

error is used to measure the error between predicted and

actual responses. To reduce the computational cost of this

step, only the S11 response is utilized during the hyper-

parameter optimization process, and the radiation pattern

is employed only after the HPO trials. We use the Adam

optimizer to learn the network weights, and the maximum

number of epochs for the training of each trial is 1,000.

Figure 3(a) illustrates a parallel coordinate plot of the

generated trials (300 trials have been generated in the HPO

process), showing the sampled configurations and their cor-

responding validation errors. The diagram highlights the

20 trials with the lowest validation error (S11), where all

trials have a learning rate between 0.002 and 1e−5, use

convolutional layers, and their regularization weight is less

than 2e−7. We have selected the top five trials among the

generated trials and trained them on the gathered dataset

for longer epochs with the rest of responses. Figure 3(b)–(i)

display the training and validation learning curves for this

process. The curve indicates the successful convergence of

models after 5,000 epochs without showing overfitting. We

have selected the trial with the lowest validation error and

evaluated themodel on the test set to determine themodel’s

overall accuracy and to ensure that the model does not

overfit the validation set.

The selected architecture, depicted in Figure 1(d), com-

prises two main components: the backbone and the convo-

lutional blocks. The backbone block takes the parameters of

the device as the input andmaps them into the latent space.

This block comprises five fully connected layers, each with

512 neurons. The last fully connected layer is followed by

three convolutional heads that map the features from the

latent space to the response space. The responses predicted

by each convolutional head are S11 and radiation pattern in

𝜑 = 0◦ and 𝜑 = 90◦ planes, respectively. We have realized

that a single head is enough to predict all the radiation

patterns of different frequencies for each cut, due to the

high linear correlation of the radiation patterns in the same

cut. Since the radiation pattern changes gradually with fre-

quency, a linear interpolation is utilized to approximate the

radiation pattern at any frequency between 185 THz and

198.5 THz using the four approximated patterns from our

surrogate solver. Given a device d, the trained surrogate

solver is capable of estimating device responses r̂ = f̂ (d),

where r̂ comprises both the estimated S11 and radiation

patterns in 𝜑 = 0◦ and 𝜑 = 90◦ planes, presented in con-

catenated vector form. Furthermore, the radiation patterns

are interpolated at the specified frequency.

Due to the presence of spatial correlation in all

responses, we designed the heads with convolutional layers

instead of fully connected layers to effectively model spatial

correlations and generate the final responses. Subsequently,

during hyperparameter optimization, it was observed that

convolutional layers consistently outperformed fully con-

nected layers in capturing spatial correlations (see Sup-

plementary Section S5 for additional information regarding

the configuration of the convolution blocks).
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Figure 3: Hyperparameter optimization of the proposed convolutional surrogate solver. a) A parallel coordinate diagram shows the generated trials

and their configuration during the hyperparameter optimization (HPO) process. The blue lines indicate the top 20 trials with the lowest validation

error. (b–i) The training and validation learning curves of the top five trials generated by HPO. (b) Training error of S11, (c) training error of directivity

(𝜑 = 0◦), (d) training error of directivity (𝜑 = 90◦), (e) total training error, (f) validation error of S11, (g) validation error of directivity (𝜑 = 0◦),

(h) validation error of directivity (𝜑 = 90◦), and (i) total validation error.

We have evaluated the overall accuracy of our net-

work using the test set. The following are the mean squared

errors for each response: the total error for S11, the radiation

pattern in 𝜑 = 0◦, and 𝜑 = 90◦ planes is, 0.53, 0.16, and

0.6, respectively. It is worth mentioning that the current

antenna structures have one plane of symmetry and the

patterns are symmetric in 𝜑 = 0◦ while nonsymmetric in

the𝜑 = 90◦ plane, leading to a higher error of the radiation

pattern in 𝜑 = 90◦ plane.

Figure 4(a)–(d) depict the qualitative prediction accu-

racy of the network. These figures show the simulated

and predicted responses generated by the surrogate solver

for four devices, demonstrating an almost perfect match

between the two. To better illustrate the distribution of

errors in each response, we have computed the error

distribution plot as shown in Figure 4(e), where results indi-

cate that themajority of the test samples exhibit errors<1.0.

More precisely, 90.84 % of the samples have S11 error <1.0,

97.64 % of the samples have directivity (𝜑 = 0◦) error <1.0,

and 85.68 % of the samples have directivity (𝜑 = 90◦) error

<1.0. The numerical value of the MSE in each sample may

not accurately reflect the quality of alignment between the

predicted and target responses. This is due to the fact that,

responses can have very large dips (for example, S11 can

have a dip value of−50 dB). A small difference between the
predicted and target responses near the dip regionmay lead

to a high squared error, despite the excellent visual align-

ment between the patterns, as shown in Figure 4. The MSE

is primarily used for training purposes and to demonstrate

the convergence of the process.
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Figure 4: The prediction accuracy and the error distribution of the proposed surrogate solver. (a–d) The simulated response and the predicted

response of four devices, (e) the error distribution of each response type.

2.4 Inverse design framework

In our proposed framework, we have utilized the pseudo-

inverse function to model the inverse problem. This

approach offers several advantages, such as preserving

one-to-many mappings, enabling the generation of multiple

diverse designs (explained in 2.4.2), imposing fabrication

constraints, and utilizing query-based objective functions

(described in 2.4.3). The ultimate objective of our inverse

design framework is to identify a set of candidate devices

D that satisfy the pseudo-inverse condition, given a desired

response r:

D =
{
d ∈ Rk,

‖‖‖f̂ (d)− r
‖‖‖2 < 𝜀

}
, (3)

To achieve this, we have utilized the Particle Swarm

Optimization (PSO) algorithm in combination with our neu-

ral network-based surrogate solver to efficiently explore

the reduced device space (Rk) and generate possible solu-

tions for D. PSO is a population-based, meta-heuristic, evo-

lutionary algorithm that is widely utilized in search and

optimization problems and has proven as a highly effective

approach for finding optimal solutions that minimize the

objective function. The significant superiority of PSO over

other alternatives such as genetic algorithm [70], apart from

its straightforward implementation and accelerated conver-

gence, lies in the memory retention of particles and the

dynamic information exchange between them (information

flow) [71], [72].

PSO starts by randomly creating particles to form a

population in which each particle represents a unique con-

figuration of a nanoantenna. In the next step, the popu-

lation is evaluated using a predefined objective function

(this evaluation is carried out simultaneously for all the

particles using the surrogate solver). Consequently, particles

are moved toward better solutions (with a lower objective

function value) based ondifferent factors, including the best

local and global positions. The second and third steps are

repeated iteratively until the particles are converged, and

the results are used to determine a single optimum nanoan-

tenna (Section 2.4.1) as well as multiple diverse nanoanten-

nas (Section 2.4.2).

2.4.1 Single optimal result

To obtain a single optimal device that meets the desired

response, the particle with the lowest objective function

value is selected after PSO has converged. To evaluate the
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performance of our inverse method in generating single

results,wehave tasked ournetworkwith generating a single

configuration of a nanoantenna for 2,500 randomly sam-

pled responses. The target S11 is defined across all frequen-

cies (180 THz–198.5 THz), and the target radiation pattern

is defined in 𝜑 = 0◦ and 𝜑 = 90◦ planes at four different

frequencies. We have utilized the squared L2 distance as

our objective function (discussed in 2.4.3), in which the

entire shape of the generated and target responses must

match. The target responses are extracted from the test set,

consisting of randomly sampled devices with correspond-

ing responses. In this experiment, we are confident that a

device with the desired response exists within our design

space. Our goal is to validate the capability of our inverse-

design framework in finding these devices, also known as

the physical targets [50], [51]. To quantitatively evaluate

the performance of this experiment, we have calculated

the mean squared error between the target and simulated

responses of the generated devices. The total error for S11,

the radiation pattern in 𝜑 = 0◦ and 𝜑 = 90◦, is 0.46, 0.11,

and 0.4, respectively. Figure 5 shows several instances of

this evaluation where responses of the generated devices

match very well with the target response (see Supplemen-

tary Section S6, Figure S7 for the error distribution for this

experiment).

2.4.2 Multiple diverse results

Due to the existence of one-to-many mappings in our

dataset, a response may be realized with more than one

device, creating several local minima in the optimization

space. As PSO explores the design space, particles tend to

get absorbed by regions where local minima are present. As

a result, several clusters are formed after the convergence

where the density of the particles is higher around local

minima. In addition, using a query-based objective func-

tion brings flat regions into the optimization space, where

several points meet the optimization criteria. To discover

multiple diverse devices, the mean shift algorithm [73] is

used to identify the clusters formed by PSO and locate the

local minima. Mean shift is a nonparametric, density-based

clustering algorithm used for segmentation and clustering,

which can identify dense regions in the data space and

finding local optima.

Figure 6(a)–(d) illustrate the procedure of discovering

multiple diverse designs using the PSO particles and the

mean shift algorithm. To obtain a set of diverse results D,

after exploring the device space using a neural network-

based surrogate solver, the resulting particles are filtered

based on the value of the objective function, the clusters

are identified using the mean-shift algorithm, and a set of

candidate devices is determined by selecting the best parti-

cle in each cluster.

An experiment has been conducted to evaluate the

accuracy of our inverse method in generating multiple

diverse results with the same goal as in the previous section,

where the squared L2 distance is used, and the generated

response’s shape must match the target response. However,

in this evaluation, the inverse design framework is tasked

with discovering more than one device for each target S11.

The qualitative results of this experiment are shown in

Figure 6(e)–(i), indicating that the inverse design frame-

work successfully discovered multiple configurations given

the target responses. We have further improved the perfor-

mance of PSO in exploring multiple local minima by priori-

tizing exploration over exploitation. This was achieved by

increasing the number of particles and selecting the ring

topology over fully connected. In the ring topology, parti-

cles can only communicate with their nearest neighbors,

which limit their perception of the global minimum. This

encourages distributed exploration in which the optimiza-

tion space is partitioned into multiple regions, and particles

operate exclusively within those specific areas.

2.4.3 PSO’s objective function

Two different objective functions have been utilized

throughout our framework for the PSO, the squared L2 dis-

tance and the query-based objective function. The squared

L2 distance between the predicted and target responses is

defined as follows:

l(d, r) = ‖‖‖f̂ (d)− r
‖‖‖2, (4)

where r encapsulates the entire S11 and the radiation pat-

tern in the two radiation pattern cuts (at the specified fre-

quency), all stacked together in a single vector. This type of

objective function is useful when the generated response

needs to precisely conform to the target response, i.e., to

accurately match the target S11 in the entire working fre-

quency and the radiation pattern at every direction in the

specified frequency. This objective function is used to evalu-

ate the performance of the inverse design framework, quan-

titatively and qualitatively (Sections 2.4.1 and 2.4.2). It is also

convenient to perform the inverse design task merely by

defining a few conditions on the target response that the

generated device must satisfy. This simplifies the inverse

task for the designer, as one does not need to provide the

full definition of the target response but only a few desired

conditions. As a result, the framework can generate a wider

range of candidate devices.
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Figure 5: Inverse design verification experiment with the goal of generating single optimal devices given the target responses. (a–d) The generated

devices by the inverse design framework given the target responses.

To achieve this, we have introduced and employed a

query-based objective function. The term query refers to a

request sent to the inverse-design framework to generate a

nanoantenna. It contains a set of high-level conditions that

the generated antenna should fulfill. For instance, to gen-

erate an efficient single band nanoantenna, the generated
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Figure 6: Qualitative results from the multiple diverse results experiment: (a–d) examples of utilizing a clustering algorithm (mean shift) to generate

multiple diverse devices given a target response. (a) The response of the generated devices and the target one, (b) device space after being explored

by the PSO with the purple dots showing the particles, (c) particles are clustered into two groups using the mean shift algorithm, (d) generated devices

by inverse design. (e–i) Qualitative examples of the experiment where the proposed inverse design framework was tasked to generate multiple

diverse devices given the target response.

device must satisfy the following conditions: having an S11
dip less than −10 dB at the antenna’s working frequency

and directivitymore than 10 dBi in a specific direction. Each

condition in the query is modeled as a cost function that

takes the predicted response and returns an error scalar

based on howwell the requirement is met. The query-based

objective function is then defined as a weighted sum of the

cost functions, which is used as the objective function for

the PSO:

l(d, r) =
∑
c∈C

𝑤cc
(
f̂ (d), r

)
, (5)

where c is a cost function, wC is the corresponding weight,

and C is a set of cost functions of the specified query. We

have used the query-based objective function to design a

wide range of different nanoantennas, which can be found

in the results section.

In our framework, we can handle fabrication con-

straints in the following ways: first, we can fix a set of

device parameters in advance. For instance, we can task the

framework to generate a device based on a desired response

with a predefined stub location. Second, we can limit the

range ofmotion of the parameters. For example,we can set a

minimum andmaximum value for the notch length. Finally,

we can add an additional cost function to the PSO’s objective

function to account for any fabrication limitations. This will

output a cost if the constraints are not met.

3 Results

In this section, we will put our inverse design framework

through a set of comprehensive tests to generate designs

that not only satisfy the standard criteria required in

real-world applications but potentially outstripping them

from performance point of view, while addressing complex

design challenges. In this set of query-based experiments,
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we are unsure if the desired device exists in the design

space, and whether it is physically possible to have a device

with such responses (also knownasnonphysical targets [50],

[51]). However, the inverse network generates the closest

match that it can find in the design space.

3.1 Single band nanoantennas
with maximum directivity

Typically, a single rectangular patch exhibits directivities

in the range of 5–8 dBi; however, as shown in Figure 7(a),

one can see that a directivity of up to 11.07 dBi is made

possible for a single patch with our inverse design frame-

work. In this section, the inverse design network has been

tasked to design single band nanoantennas at frequencies

f = 193.5 THz with S11 < −10 dB and the highest possible

directivity in both 𝜑 = 0◦ and 𝜑 = 90◦ planes.

An interesting observation that can be made from the

single band devices generated by our network (see Sup-

plementary Section S6 for more single band devices gen-

erated by our framework) is that lengths of the arms of

the T-stubs are mostly short in length. This makes perfect

(a)

(b)

(c)

(d)

Figure 7: Single band nanoantennas designed by the proposed inverse design framework: (a) a single band nanoantenna (device d1) designed for

f = 193.5 THz with S11 <−10 dB and the highest possible directivity in𝜑 = 0◦ and𝜑 = 90◦ planes. (b) A single band nanoantenna (device d2) designed

for f = 185 THz with S11 <−10 dB, the highest possible directivity in 𝜑 = 0◦ and 𝜑 = 90◦ planes, and a suppressed radiation in 𝜃 = 180◦.

(c) and (d) Unconstrained and constrained single band nanoantennas (devices d3 and d4), respectively. Each subfigure (i–v) in panels (a–d) shows the

schematic of the device, S11, directivity in 𝜑 = 0◦ plane, directivity in 𝜑 = 90◦ plane, and the 3D radiation pattern for each of the devices, respectively.
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sense from a physical point of view because if the length

of the arm of the T-stub were longer, it would be either

closer to the patch or pass through it. Either of the cases

distorts the fringing field at the beginning side of the patch,

acting as if there were slots in the patch, creating multiple

resonances and making the patch act as multiple cavities

(multi band operation). This is because a patch acts as a

resonant cavity and typically resonates when its physical

dimensions correspond 𝜆/2. Introducing slots into the patch

modifies this resonant cavity by introducing discontinuities

in the current distribution, changing the effective length

of the antenna and distribution of the electric field across

the patch, and the fringing fields, which is similar to creat-

ing multiple smaller resonators within the main patch (see

Supplementary Section S6 for another set of the single band

antennas).

It should be noted that the radiation efficiency of

all of the single band nanoantennas generated by our

inverse-design framework is plotted in Supplementary

Figure S10(a), where radiation efficiencies of all of the

nanoantennas lie approximately in the range of 70–75 % at

their central operational frequency, illustrating high radi-

ation efficiencies, given the plasmonic nature of the struc-

tures. Additionally, polarization of the radiated waves, for

all of the single band antennas, are illustrated in Supple-

mentary Figures S10(b)–(e) where the axial ratio, which is

the ratio of the major axis to the minor axis of the polar-

ization ellipse, is plotted against all 𝜑 and 𝜃 angles in 2D

equirectangular maps, showing linear polarization around

the z-axis perpendicular to the antenna plane where the

radiation is maximum.

In integrated circuits, planar antennas with half-space

limited radiation patterns are of great interest, as they

inherently prevent interference with the electronic and

photonic components underneath them. Here, we will aim

for the back lobe suppression, and the inverse design net-

work has been tasked to design nanoantennas at frequen-

cies f = 185 THz with the highest possible directivity at

𝜃 = 0◦, and minimum radiation at 𝜃 = 180◦, in both𝜑 = 0◦

and𝜑 = 90◦ planes. The generated device and its responses

are shown in Figure 7(b) (see Supplementary Section S6

for more instances of back lobe-suppressed single band

nanoantennas).

3.2 Single band nanoantennas
with constraints

One of the major strengths of the proposed framework

compared to its counterparts is that, apart from the fab-

rication/design constraints that were already applied in

the dataset generation phase, further constraints can be

applied to parameters after the training process. This is

of great importance in cases where the training process is

finished; however, because of various design-specific, space-

constraints, one wants to further limit the parameters. Typ-

ically, this process requires retraining the network again

while considering these constraints; however, in our frame-

work, this can be done without retraining the network and

simply by adding a set of constraints during the inverse

process (explained in Section 2.4.3).

As the first constraint, we will fix the length of the

arm of the T-stub (as can be seen from a direct compari-

son between Figure 7(c) and (d)). This case is of particular

importance in 2D arrays where the long length of the arm

in the T-stub makes it difficult to have a dense array in

the y-direction. To illustrate this point, we have first tasked

the network to design an antenna with S11 < −10 dB and

directivity>9 dBi at f = 193.5 THz. Let us consider the cases

where our network has generated devices with long T-stub

arms as shown in Figure 7(c). As mentioned before, if there

exist multiple devices that generate the same results (mul-

tiple clusters), our algorithm has the capability to choose

either of the clusters (the network can be configured to

either choose the best response, or any of the other clus-

ters depending on the defined criteria). As a result, we will

ask the network to only generate devices, satisfying the

exact same queries at the same frequencies (S11 < −10 dB
and directivity >9 dBi at f = 193.5 THz); however this time,

length of the arm of the T-stub is limited. The generated

devices and their corresponding responses for the uncon-

strained and constrained cases are shown in Figure 7(c)

and (d), respectively, perfectly illustrating the capabilities of

our inverse network and the fact that, in order to impose

constraints on the design, there is no need to retrain the

network, thereby constraints can be applied even after the

training process is finished (see Supplementary Section S6

for the second case of imposing constraints where we will

fix the location of the arm of the T-stub at 50 nm and the

network is tasked to generate devices with S11 < −10 dB
and directivity >8 dBi at f = 186.5, 187.5, 189.5, 193.5, and

196.5 THz).

3.3 Dual band and broadband nanoantennas

In this test, the network is tasked to generate dual band

nanoantennas operating at two uncorrelated frequencies

with S11 < −10 dB and directivity >8 dBi at both frequen-

cies. We have tasked the network (as shown in Figure 8(a)

and (b)) to specifically generate dual band antennas with

two uncorrelated frequencies because uncorrelated fre-

quencies do not share harmonics or other signal character-

istics that can lead to cross-band interference, thereby they
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Figure 8: Dual band and broadband nanoantennas designed by the proposed inverse design framework: (a) a dual band nanoantenna designed for f1
= 188 THz and f2 = 201 THz and (b) a dual band nanoantenna designed for f1 = 185 THz and f2 = 198.5 THz with S11 <−10 dB and the highest possible
directivity in 𝜑 = 0◦ and 𝜑 = 90◦ planes. (c) and (d) Two broadband nanoantennas with bandwidths of 13.5 THz and more than 22 THz, respectively.

Subfigures (i–iv) in panels (a) and (b) show the schematic of the device, S11, and directivities in the frequency dips of each device, respectively.

Subfigures (i–v) in panels (c) and (d) show the schematic of the device, S11, and directivities in f = 185 THz, f = 191.5 THz, and f = 198.5 THz, respectively.

are less likely to interfere with each other. Moreover, since

the two operational frequencies do not interfere with each

other, they can be used simultaneously without degrading

each other’s performance, which leads to better spectrum

efficiency. From the optical imaging point of view, dual band

antennas can capture images at two different wavelengths

simultaneously, providing richer information about the sub-

ject which is of huge interest in microscopy. Additionally,

since different wavelengths interact differently with vari-

ous objects andmaterials, utilization of dual band antennas



16 — S. Hemayat et al.: Inverse design of plasmonic patches with deep surrogate solvers and PSO

in LiDARs enables them to operate at two different wave-

lengths, leading to an improve in the resolution, accuracy,

and better differentiation between different types of objects

or materials.

Bandwidth plays a key role in the capacity of opti-

cal intra-/interchip communication networks as broadband

nanoantennas are capable of transmitting/receiving signals

through multiple channels. As mentioned before, patch

nanoantennas are inherently resonant structures and their

impedance changes rapidly with frequency, leading to a

largemismatch between the patch and the feed, resulting in

their narrowband operation. As a result, having broadband

plasmonic patch nanoantennas is of great importance in

photonic integrated circuits due to their low-profile, planar

nature. As the last test, we have tasked our network, as

shown in Figure 8(c) and (d), to design broadband nanoan-

tennas with S11 < −10 dB and directivities >8 dBi over the

whole range. This superior broadband feature while main-

taining relatively high directivities over the whole range

enables the plasmonic patch nanoantennas to play a pivotal

role in photonic integrated circuits.

3.4 Multiple-diverse results

In this section, our inverse design framework is tasked to

generate three different devices for each set of defined cri-

teria, shown in Figure 9(a)–(c), respectively. For instance,

Figure 9(a) illustrates three different devices that have been

generated by our inverse-design framework with S11 <

−10 dB, and directivity >10 dBi in both 𝜑 = 0◦ and 𝜑 =
90◦ planes, at f = 187.5 THz. Figure 9(b) and (c) also show

three different devices generated by our inverse network,

with the same criteria, but this time at f = 193.5 THz and

f = 198.5 THz. As it is obvious in Figure 9, the proposed

framework is capable of successfully generating multiple

devices for a set of criteria, each of which can be used

for different applications and according to different design

limitations.

Figure 9: Multiple diverse single band nanoantennas designed by the proposed inverse design framework: (a)–(c) multiple diverse devices generated

for the same query. Subfigures (i–iv) in (a)–(d) represent (i) three different nanoantennas generated for the same query, (ii) their corresponding S11,

(iii) directivity in phi, and (iv) directivity in phi= 90 planes, respectively. Red, green, and blue plots in each subpanel (ii–iv) correspond to the nano-

antenna of the same color.
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4 Discussion

In this section, we will discuss the nonlinearity of the

current problem, and how the proposed method can be

extended for use in inverse design of random media where

extremely large datasets are required.

4.1 Discussion on nonlinearity
of the problem

Although the parameter space (3 and 4 parameters) may

seem small at the first sight, the amount of nonlinearity they

introduce to the result space is significant. In our work, the

combination of stubs and their arms serve as the impedance

matching network, either for single band, dual band, or

broadband cases. The nonlinearity of the problem is par-

tially embedded in the context of impedance matching and

the fact that the input impedance of each section with a

length l shows a tan(𝛽l) or cot(𝛽l) dependency, which itself

is the source of nonlinearity of the problem because of the

nonlinear behavior of the tangent function near its poles

(in various certain regions a slight change in a parameter

leads to a huge change in the response). On the other hand,

addition of the armon a stub introduces another level of fre-

quency sensitivity: at the junction of the arm and the stub,

the input impedance depends on both tan(𝛽l1) and tan(𝛽l2),

and as a result, location of the arm and its length introduces

a relatively significant amount of nonlinearity in certain

regions of the input impedance function at the junction of

the stub and its arm (see Supplementary Figures S13), show-

ing two examples of this nonlinearity, where a rather slight

change in the location of the arm of the T-stub (Da) leads

to emergence of nonlinear changes in the S11. Furthermore,

adding the second stub (as in the 4-parameter case) results

in a new impedance transformation path on the Smith chart,

which increases the nonlinearity (sincewith combination of

two stubs, the impedance point can traverse a potentially

looping or crisscrossing through different reactance and

resistance levels paths). All of the mentioned nonlinearities

combine with another significant source of nonlinearity

of the problem, which is the coupling between different

sections of the structure such as the coupling between stubs,

T-stub’s arm, and the patch.

4.2 Novelty of the current framework and
its potential for extension to problem
consisting randommedia

It is important to brieflymention the novelties of the frame-

work and why the proposed approach is a good candidate

for use in random media, such as deep tissue imaging [74],

random lasers [75], study of coherent backscattering [76],

[77], quantum information processing [78], and random

metasurfaces [79].

Nonuniqueness nature of the inverse problem, where

a response can be realized by multiple devices, makes it

challenging to directly learn the inverse mapping using

discriminative neural networks. Approaches, such as tan-

dem networks [58], aim to reduce the one-to-many map-

pings to a one-to-one mapping in order to learn the inverse

mapping directly. However, this may result in eliminating

devices from the device space that could still be useful. It

is important to generate multiple devices because it allows

the designer to choose a device that exhibits less sensitivity

to fabrication imperfections. When two devices have the

same desired response, the one that is more stable and less

sensitive to fabrication is preferred. Generative approaches,

including those based on variational autoencoders [60], [61]

and generative adversarial networks [43], [62]–[64], have

the ability to generate multiple devices. However, due to

the complexity of training, these approachesmay still suffer

from mode collapses and fail to adequately capture the

diversity of the device space.

An important capability of our network that renders

very useful for inverse design of random media is preserv-

ing the one-to-many mappings, which is crucial for captur-

ing the inherent complexity of the problem as it enriches

the dataset for training of the network, leads to better

generalization and prediction capabilities, and facilitates

an effective and comprehensive exploration of the design

space, leading to discovery of optimal solutions that might

otherwise be overlooked. Additionally, many of the output

devices may not be exactly realizable due to various fac-

tors (such as environmental variations in real-life scenar-

ios, special arrangements of scatterers that might be hard

to fabricate, etc.), as a result preserving the one-to-many

mappings will handle this issue effectively by offering mul-

tiple alternative solutions. Moreover, in real-life random

media scenarios, measurement noise and statistical fluctu-

ations in the arrangement of scatterers can lead to discrep-

ancies in the design process and performance. Preserving

the one-to-many mappings mitigates the impact of such

noises/fluctuations by offering alternative solutions.

Additionally, the proposed approach allows for adjust-

ments and optimizations by applying post-training con-

straints, which is of great importance, especially in ran-

dom media where many of the output devices may not be

fabricable and the applications of further constraints are

mandatory (which can be done without any retraining pro-

cedure using our network). This means that if a device with
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a desired response exhibits different, unwanted behavior

after fabrication due to errors in the fabrication process

(for example, the feed and arm of the T-stub being merged

due to fabrication inaccuracy), we can ask the framework

to find another device with the same response but less

sensitive to the fabrication imperfections. For instance, this

can be achieved by fixing a parameter in the PSO search

space, limiting the range of motion of the parameters, or

by defining an additional cost function in the PSO objective

function. In tandem networks [58], one-to-many mappings

are eliminated, meaning that for each response, only one

device can fulfill it, making it impossible to have other

devices that meet the fabrication constraints. In generative

networks also, this aspect has not been explored, especially

in approaches with larger degrees of freedom that generate

freeform objects, leading to devices that are not fabricable.

The proposed architecture has been developed to learn

from smaller dataset sizes and presents a relatively good

level of generalization (considering the nonlinearity of the

problemmentioned earlier in Section 4.1) and is a good can-

didate for utilization in inverse design problems concerning

random media with a large number of parameters, where

extremely large datasets are required for the network to

learn the relationships in those highly nonlinear spaces.

It is important to note that in generative approaches

and tandem networks, the inverse function f −1: r→ d is

directly modeled, where the entire response r ∈ R672 is

required to be provided to generate a device. However, this

may not be favorable as only the response in a specific

region r ∈ Rq might be of interest (q≪ 672), and providing

arbitrary responses in the rest of the regions may limit

the diversity of the generated devices to those that exactly

exhibit r ∈ R672. In our framework, we can use a query-

based approach to search for the desired device simply by

defining a few conditions instead of providing the entire

response. This results in finding additional devices that

exhibit the desired behavior.

4.3 Importance of using PSO as the search
algorithm

PSO and GA [70] are the most prominent optimization algo-

rithms used extensively in numerous applications due to

their versatility, robustness, and their ability to navigate

through complex, high dimensional problems. Apart from

PSO’s simplicity, fewer tuning parameters, and faster con-

vergence speed in rugged and complex spaces, in the follow-

ing, wewill discussmultiple reasonings behind the choice of

PSO over GA for our network.

Themost significant advantage of PSO over other evolu-

tionary algorithms, such as GA, lies in the inherent memory

of the particles and the information flow between them.

Each particle in PSO has a memory and shares its own

experience with all other particles while obeying univer-

sal rules. Consequently, each particle benefits from other

particles’ knowledge, enabling the swarm to efficiently nav-

igate through complex and rugged spaces collectively.More-

over, PSO does not rely on gradient information, making

it a good candidate for problems with highly nonlinear,

nondifferentiable, or noisy objective functions.

In PSO, each particle’s position is updated based on

its personal experience and its knowledge of the global

experience shared by other particles, which will result in

a balance between exploration and exploitation by prevent-

ing premature convergence in highly nonlinear spaces. This

is in a strong contrast with GA, which relies on random

discrete crossover and mutation operators and struggles

to maintain this balance, leading to overexploitation or

insufficient exploration of the search space. This is due to

the fact that crossover operators may produce offsprings

without inheriting the useful features of parents, leading

to poor exploration, whereas mutation often comes at the

cost of disrupting the existing good solutions, making it

very challenging to find the optimum(s) in problems with

rugged spaces. The discreteness of the crossover and muta-

tion operators in GA also introduces abrupt changes in the

search space andmay lead to fluctuations in the errors, con-

trary to PSO, which benefits from a smoother search trajec-

tory due to the continuous nature of adjustment of particle

velocities.

Furthermore, over successive generations, GAs tend to

lose population diversity, especially in cases where selec-

tion pressure is high. This loss of diversity mitigates the

algorithm’s ability to escape local minima, which is more

pronounced in highly nonlinear problems.

5 Conclusions

In this study, we have developed an efficient framework

for the inverse design of plasmonic patch nanoantennas in

the NIR regime. Our framework can design a wide range of

devices including single band, dual band, and broadband

antennas, with directivities of up to 11.07 dBi and radiation

efficiencies reaching 75 % for a single patch. Moreover, our

approach demonstrates a remarkable versatility in terms

of applying various post-training design and application-

specific constraints where, in addition to the primary fab-

rication constrains that have been considered while gen-

erating the dataset, further constraints can also be applied

after the training process. This is crucial in addressing the

ever-expanding needs of modern optical phased arrays,
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where designers are dealing with increasingly strictly strin-

gent integration requirements. The proposed approach pre-

serves the one-to-manymappings and provides the designer

with the ability to choose from multiple diverse designs,

given specific geometry and constraints. Our approach takes

a significant departure from traditional NN-based inverse-

design methods and sets a precedent for future research

in the field leveraging the robust predictive and generative

capabilities of deep neural networks in optical designs. This

paradigm shift toward an inverse design approach fosters

a more efficient and creative design process, enabling the

exploration of innovative optical designs thatmight be over-

looked or infeasible in conventional forward and inverse-

design methods.
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