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Entanglement sudden death: a threat to advanced quantum key
distribution?

Gregg S. Jaeger • Alexander V. Sergienko

� Springer Science+Business Media Dordrecht 2014

Abstract Entanglement is a global characteristic unique to

quantum states that depends on quantum coherence and may

allow one to carry out communications and information pro-

cessing tasks that are either impossible or less efficient using

classical states. Because environmental noise, even when

entirely local in spatial extent, can fully destroy entanglement

in finite time, an effect referred to as ‘‘entanglement sudden

death’’ (ESD), it may threaten quantum information pro-

cessing tasks. Although it may be possible to ‘‘distill’’

entanglement from a collection of noise-affected systems

under appropriate circumstances, once entanglement has been

completely lost no amount of distillation can recover it. It is

therefore extremely important to avoid its complete destruc-

tion in times comparable to those of information processing

tasks. Here, the effect of local noise on a class of entangled

states used in entanglement-based quantum key distribution is

considered and the threat ESD might pose to it is assessed.

Keywords Entanglement � Quantum information �
Quantum state decoherence

1 Introduction

Entanglement and non-locality, which long have been of

interest in the foundations of quantum theory, have become

of interest for technological applications as the field of

quantum information science has matured. The investiga-

tion of the effects of noise on entanglement and non-

locality is of prime importance in practical situations, in

some cases even more than the less subtle but often related

effect of quantum state decoherence. The development of

practical linear optical technology has also been important

for both the exploration of foundational questions and

quantum communication and information processing

applications. One aspect of the latter is quantum decoher-

ence mitigation as a means of furthering practical quantum

optical networking tasks such as quantum key distribution

(QKD) (Gisin et al. 2002) in which entanglement can be

understood to play a role, either implicitly or explicitly, as

in Ekert (1992); here the relation of the former to the latter

is consider in relation to a practical example.

Under the influence of noise, the quantum coherence

supporting entanglement and non-locality can disappear

rapidly or, more typically, be lost asymptotically in time.

The latter occurs when weak noise influences a quantum

system due to interactions with the system’s environment.

However, even in the latter case, the entanglement and

non-locality depending on it can still suddenly and com-

pletely disappear. Such phenomena are referred to as

Entanglement Sudden Death (ESD) (Ann and Jaeger 2007;

Yu and Eberly 2004, 2006, 2007) and Bell non-locality

Sudden Death (BNSD) (Jaeger and Ann 2008), respec-

tively. ESD and BNSD have recently been intensively

explored in various contexts, especially theoretically but

also experimentally (e.g. Almeida et al. 2007), in both

continuous and discrete systems subject to noise of various

sorts (Ann and Jaeger 2009, 2007, 2008; Gisin et al. 2002).

As a means for combating quantum decoherence effects,

so-called decoherence-free subspaces (DFSs) involving

entangled quantum states can be very helpful in practical
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QKD, see for example (Walton et al. 2003). It is interesting

to consider whether the mechanism of DFSs, which in most

contexts are introduced to help protect processing tasks

against the effects of noise, would be helpful or hurtful in

light of ESD and BNSD, given that entanglement is more

fragile than coherence itself. A passive entangled-photon

detection method has previously been described in relation

to this method, including a scheme using DFSs for QKD.

We have recently proposed such a method realized in four-

photon entangled states, which currently lie at the frontier

of current investigations of quantum entanglement (Jaeger

and Sergienko 2006). This technique involves a specially

conceived basis of entangled states that results from the

natural extension of concatenated coding techniques that

support decoherence mitigation in simple phase noise

scenarios (Jaeger and Sergienko 2006). It is important to

understand the extent to which such techniques might be

threatened by ESD despite the fact that complete deco-

herence is resisted for all finite times in simple noise

models.

Here we consider the effect of ESD on this specific

method for performing decoherence-mitigated QKD under

a specific local noise model. Section 2 first describes

details of the theory of quantum coherence and system

evolution in the presence of environmental noise. Then,

Sect. 3 considers ESD in both theoretical and experimental

contexts for various sorts of such noise. Section 4 describes

the application of DFSs in QKD. In the final section, we

focus on the pertinence specifically of phase-noise-induced

ESD for QKD by virtue of their effects on the above

mentioned specific classes of state in the quantum optical

context.

2 Quantum decoherence

Quantum decoherence, the significance of which here lies

in the degradation of quantum properties it can cause, can

be classified roughly into two sorts: intrinsic and extrinsic

decoherence; here, we will follow the standard approach of

considering decoherence as originating extrinsically (Jae-

ger 2007). Extrinsic decoherence involves standard quan-

tum dynamics of the object system together with the

environment of the system of interest with which it inter-

acts, causing it to evolve non-unitarily. The environment is

assumed to be described by a Hilbert space of far greater

dimension than that of the system suffering decoherence,

which we take to refer here both to dephasing and to zero-

temperature relaxation.

Decoherence in such situations arises when correlations

occur between the system and environment, due to their

mutual interaction. The reduced system state, which is that

of an open quantum system is obtained by averaging over

the environmental degrees of freedom, typically exhibits

decoherence, and in some cases also exhibits ESD or

BNSD. The open quantum systems model considered here

involves a quantum system of interest qsys and an envi-

ronment qenv, beginning in a joint state qtot in tensor

product space Hsys �Henv. The joint system, by contrast

to the object system, always evolves unitarily. Each system

evolves under its internal Hamiltonian, that is, HsysðtÞ or

HenvðtÞ, together with the influence of the interaction

HintðtÞ.

HtotðtÞ ¼ HsysðtÞ � Iþ I� HenvðtÞ þ HintðtÞ: ð1Þ

The joint system is described by a statistical density matrix

qstðtÞ that evolves unitarily: qstðtÞ ¼ UðtÞqtotU
yð0Þ

according to the unitary transformation UðtÞ ¼ exp

�i
R t

0
dt0Htotðt0Þ

� �
. The density operator averaged over

noise fields is qðtÞ ¼ qstðtÞh inoise, cf. (Yu and Eberly 2006).

As a result of mutual interaction, correlations develop

between the system and the environment over the time

interval ½0; tÞ. The environment, appearing as noise to the

system of interest, causes dephasing and/or amplitude

damping often leading to complete decoherence only

asymptotically of the system reduced state qsys ¼ trenvqtot.

This process is represented using operator sum decompo-

sition cf. (Kraus 1983; Yu and Eberly 2006). In particular,

the time-evolved density matrix is given by the completely

positive and trace preserving (CPTP) map,

qðtÞ ¼K qð0Þ½ � ¼
XN

l¼1

K
y
lðtÞqð0ÞKlðtÞ; ð2Þ

where the operators in the decomposition Kl satisfy the pos-

itivity and trace preserving relations via
P

l K
y
lðtÞKlðtÞ ¼

I and
P

l KlðtÞK
y
lðtÞ ¼ I (Kraus 1983). These two con-

ditions enforce completeness and unitality, the latter ensur-

ing that the identity, which corresponds to the fully mixed

state, is unchanged by the map.

Even though environmental noise in some states causes

the open subsystem of interest to fully decohere only in the

limit t!1 or, in the case of DFSs not at all, this noise for

non-trivial classes of initial state destroys in finite time the

non-classical properties such as entanglement or non-

locality dependent on the maintenance of strong quantum

coherence. The quantum state purity PðqÞ ¼ tr q2 is a

readily computed measure of quantum coherence that

proves useful in this contest. For a d-dimensional system,

1=d�PðqÞ� 1. The lower bound 1=d achieved only for

the completely mixed state. The upper bound 1 is that of

any any pure state, such as those typically prepared for

using in quantum information processing and communi-

cation. The strongest decoherence effect is obviously that
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in which such an initially purity 1 state later reaches

minimum purity, that is, 1=d.

In the study of quantum decoherence another valuable

coherence measure for arbitrary mixed state density

matrices q1 and q2, is the quantum state fidelity given by

Fðq1; q2Þ ¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

p
q1

ffiffiffiffiffi
q2

pq� �h i2

; ð3Þ

with 0� Fðq1; q2Þ� 1. The upper bound 1 indicates that q1

and q2 are indistinguishable and the lower bound 0 indi-

cates that q1 and q2 are orthogonal; the fidelity may be

used in certain circumstances to find the time of the loss of

coherence from that of an initial state of interest.

3 Disentanglement

Because entanglement is a global property of quantum

states that is non-increasing under local operations (LOs),

there are natural state classifications arising from the con-

sideration of state behavior under local operations. Since

classical communication (CC) also cannot affect entan-

glement, entangled state classification can likewise involve

local operations in conjunction with classical communi-

cation (LO?CC). For bipartite states, there exists only one

equivalence class of entangled pure states of two-level

systems under such constraints, under LO?CC transfor-

mations, namely, that of the Bell states. In the tripartite

case, the standard classification scheme identifies two

distinct classes of genuinely tripartite entangled pure states.

Pure states are of the same entanglement class in this sense

if the parties involved have a chance of successfully

mathematically converting one state into another under the

stochastic LO?CC transformations (see Bennett et al. 2001

for more detail).

For studies involving bipartite entanglement, concur-

rence CðqÞ and the closely related entanglement of for-

mation Ef ðqÞ are most often used used as entanglement

measures, because they are valid for both pure and mixed

states. For a two-qubit density matrix qAB, the concurrence

is

C qABð Þ ¼ max 0;
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
�

ffiffiffiffiffi
k3

p
�

ffiffiffiffiffi
k4

ph i
; ð4Þ

where the argument of the concurrence function,

K �
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
�

ffiffiffiffiffi
k3

p
�

ffiffiffiffiffi
k4

p
, is a function of the

eigenvalues ki ði ¼ 1; 2; 3; 4Þ, ordered by decreasing mag-

nitude, of the matrix, ~qAB ¼ qAB rA
y � rB

y

� �

q�AB rA
y � rB

y

� �
, where q�AB is the complex conjugate of

qAB; rAðBÞ
y the standard Pauli matrix acting on qubit A(B)

(Wootters 1998), and noting CAB ¼ CðqABÞ to simplify

notation for later use; the more conceptual measure of

entanglement, the entanglement of formation, can be

written in terms of the concurrence as

Ef qABð Þ ¼ h 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

AB

q� �

=2

	 


; ð5Þ

where hðxÞ ¼ �x log2 x� ð1� xÞ log2 ð1� xÞ.
For systems beyond the 2 9 2- and 2 9 3-dimensional

cases, good entanglement measures are known to exist so

far only in special circumstances, for example, when extra

symmetries are present. For this reason, studies of ESD are

not easily extendible and focus must shift to BNSD (Jaeger

and Ann 2008). Furthermore, entanglement must be

understood as differing from non-locality in principle. For

example, already in the two-qubit system, there exist sit-

uations in which entanglement and non-locality appear to

differ, the Werner states can exhibit entanglement without

violating a Bell inequality (Werner and Wolf 2001; Werner

1989). The next largest bipartite system, by dimensionality,

that can be considered is the symmetric 3	 3-dimensional

case.

Although there is no generalized entanglement measure

known to exist so far for arbitrary mixed-state two-qutrit

entanglement, the separability condition for a two-qutrit

Werner-like state, q�, composed of the maximally mixed

component I9=9, and a maximally entangled component

jWi ¼ ðj11i þ j22i þ j33iÞ=
ffiffiffi
3
p

,

qe ¼
ð1� eÞ

9
I9 þ ejWihWj; ð6Þ

with 0� e� 1 has been found (Caves and Milburn 2000).

The above state is separable, that is, not entangled, if and

only if e� 1=4.

Addressing the relationship between decoherence and

disentanglement, that is, the nature of the loss of

entanglement in relation to the loss of state coherence,

was an important step toward the discovery of ESD and

BNSD. ESD is the extreme case in which coherence may

persist, or be lost only asymptotically, whereas the

entanglement is entirely eliminated in finite time. In

particular, the discovery that they may decay at different

rates was an indication that ESD is possible. A discrete-

variable model of spatially separated atoms in a cavity

subjected to vacuum noise leading to spontaneous

emission was shortly thereafter used in the search for

additional examples of ESD (Yu and Eberly 2004). In

the two-qubit basis

j1iAB ¼ j þ þiAB ; j2iAB ¼ j þ �iAB; j3iAB

¼ j � þiAB ; j4iAB ¼ j � �iAB

ð7Þ

an important class of initial states of the form

Entanglement sudden death
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qðtÞ ¼ 1

3

aðtÞ 0 0 0

0 bðtÞ zðtÞ 0

0 zðtÞ� cðtÞ 0

0 0 0 dðtÞ

0

B
B
B
@

1

C
C
C
A

ð8Þ

is that for which with a
 0; d ¼ 1� a, and b ¼ c ¼ z ¼ 1.

Yu and Eberly considered the evolution of states in the

operator-sum representation under noise described by

qðtÞ ¼
X4

l¼1

KlðtÞqð0ÞKylðtÞ ; ð9Þ

where the operators representing amplitude damping noise,

which satisfy the CPTP relations, can be written

K1 ¼
cA 0

0 1

� �

�
cB 0

0 1

� �

; K2 ¼
cA 0

0 1

� �

�
0 0

xB 0

� �

;

ð10Þ

K3 ¼
0 0

xA 0

� �

�
cB 0

0 1

� �

; K4 ¼
0 0

xA 0

� �

�
0 0

xB 1

� �

;

ð11Þ

where cAðBÞ ¼ cAðBÞðtÞ ¼ e�CAðBÞt characterizes the decay

for subsystem A(B), described by the rate parameter CAðBÞ

and xAðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

AðBÞ

q
.

In the Markov approximation with the two subsystems

decohering at the same rate, so that CA ¼ CB ¼ C with

analogous relations, cAðtÞ ¼ cBðtÞ ¼ cðtÞ and

xAðtÞ ¼ xBðtÞ ¼ xðtÞ. The concurrence is given

by CðqðtÞÞ ¼ 2
3

max 0; cðtÞ2f ðtÞ
n o

; with f ðtÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aþ 2x2 þ x4aÞ

p
. The satisfaction of the inequal-

ity, 1� að1� aþ 2x2 þ x4aÞ� 0, is a sufficient condition

for concurrence to be zero, which is readily satisfied. Thus,

for example, take the case of an initial state

qðtÞ ¼ 1

3

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

0

B
B
B
@

1

C
C
C
A

ð12Þ

that is, where a ¼ 1. For this example, one finds that ESD

occurs in the timescale tdis ¼ 1
C ln 2þ

ffiffi
2
p

2

h i
, which is finite for

nonzero finite values of C (Yu and Eberly 2004).

Besides the effect of quantum vacuum noise leading to

spontaneous emission as above, one can also examine the

effects of ‘‘classical’’ noise, that is, phase damping in a large

class of two-qubit mixed states that often arise in physical

contexts and includes the pure EPR-Bell states and the Werner

mixed states. Two types of noise effects can be considered,

both global and multi-local. One can also consider both weak

dephasing noise and weak amplitude damping noise, each

independently as well as when acting jointly (Yu and Eberly

2006, 2007). For Werner states given by

qW ¼
1� F

3
I4 þ

4F � 1

3
jW�ihW�j ; ð13Þ

with 1=4�F� 1, where jW�i is the Bell singlet state, it can

be shown that when subject to amplitude damping noise,

there is entanglement sudden death in a state of this form

only when the state is equal to or less than a critical fidelity

of Fcrit � 0:714. This state is more robust against amplitude

damping noise than to dephasing noise. The existence of

ESD in larger systems has also been shown in other cases.

For example, a compound system composed of a two-level

and a three-level system, as well as for composite systems

having any finite dimension (Ann and Jaeger 2008).

The demonstration of ESD in a bipartite system of a pair

of identical subsystems of arbitrarily large finite dimen-

sions has been shown under depolarizing noise (Ann and

Jaeger 2007). This is possible when considering the only

known case in which a mixed state entanglement measure

exists for arbitrary d [ 2, namely, the d 	 d isotropic

states. The isotropic states are those that are invariant under

U � U� transformations and are of the form

qisoðdÞ ¼
1� F

d2 � 1

� �

Id2 þ Fd2 � 1

d2 � 1

� �

PðjWðdÞiÞ: ð14Þ

This state is separable when F qisoðdÞ;PðjWiÞð Þ�
FcriticalðdÞ � d�1.

The isotropic states must satisfy F qisoðdÞ;PðjWðt ¼ð
0ÞiÞÞ[ FcriticalðdÞ; as well as F qisoðdÞ;PðjWðt\ð
1ÞiÞÞ�FcriticalðdÞ for some finite time t for there to be

ESD in the case of arbitrary finite dimensions d [ 2. These

conditions were both shown to be satisfied for an isotropic

state subject to depolarizing noise; an initially entangled

state becomes separable in finite time despite the persis-

tence of state coherence. The existence of ESD for ranges

of initial states in such a wide variety of contexts strongly

suggests that ESD is a generic phenomenon in all quantum

systems in specific classes of states.

Experimental evidence for ESD has been found in a

variety of physical contexts including optical setups and

atomic ensembles. Most significantly for our consider-

ations, confirmation of the existence of entanglement

sudden death for a pair of two-level systems due to multi-

local dephasing and amplitude damping noise in a

straightforward optical interferometric experiment has

been carried out (Almeida et al. 2007); this study was the

first experimental confirmation of ESD. In the realization,

one system is denoted by the horizontal and vertical

G. S. Jaeger, A. V. Sergienko
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polarizations of a photon, the other is the ground and

excited state of an atom, and the environment acting upon

these is the momentum of the photon. The general photon

polarization Bell-state

jUi ¼ jajjHHi þ jbj expðidÞjVVi; ð15Þ

where H is horizontal polarization and V is the vertical, is

considered. Two initial states jwIi defined by jbj2 ¼ jaj2=3

and jwIIi defined by jbj2 ¼ 3jaj2 have been considered.

Entanglement can be quantified in this case by the con-

currence, which there is

CðqÞ ¼ max 0; 2ð1� pÞjbjðjaj � pjbjÞf g: ð16Þ

These initial states both have a concurrence of CðqÞ � 0:8

and similar purity, respectively, PI � 0:91 and PII � 0:97.

jaj; jbj, and d are modified physically by a combination of

quarter- and half-wave plates put in the pump beam path.

The evolution of the system for the amplitude damping

channel is given by jHi � jai ! jHi � jai; jVi � jai !
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

jVi � jai þ ffiffiffi
p
p jHi � jbi; where jaiðjbiÞ denote

orthogonal spatial modes. Under this map, the horizontal

polarization state jHi is unaffected whereas the vertical

state jVi has a probability of flipping to jHi with proba-

bility p, in which case the spatial mode occupied also

changes, or remaining unchanged, with probability 1� p.

For the case of jbj � jaj, there is no entanglement if p ¼ 1.

By contrast, for jbj[ jaj, finite-time disentanglement

occurs for p ¼ ja=bj. Then jwIi undergoes asymptotic

disentanglement, with complete disentanglement occurring

only when p ¼ 1, the case where each individual subsys-

tem state is also completely incoherent. For jwIIi, the

concurrence goes to zero for p\1, showing ESD. A

comprehensive analysis of quantum optical experiments

exploring further ESD for the amplitude damping channel

has more recently also been carried out (Salles et al. 2008).

The polarization dephasing channel is described by jHi �
jai ! jHi � jai; jVi � jai !

ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

jVi � jaiþ ffiffiffi
p
p jVi �

jbi: In that case, the polarization states are unchanged but

coherent superpositions of polarization have reduced coher-

ence. Here, both states jwIi and jwIIi exhibit the same

behavior; for, but only for, p ¼ 1 they completely disentangle.

In the next section we consider what might be expected

when pursued with qubits transmittable using time-bin

‘‘levels,’’ and how the above results impact a specific

implementation of them.

4 Decoherence free subspaces in a quantum key

distribution

In practical quantum key distribution (QKD), traditional

interferometric techniques have thus far been almost

exclusively relied upon to improve cryptographic system

performance rather than quantum methods; in particular,

these have made no use of quantum entanglement for noise

mitigation. The relative complexity of decoherence-mitiga-

tion techniques such as decoherence-free subspaces (DFSs)

involving entangled quantum states has typically limited

their use in QKD due to their then often being a need for

addition qubits to implement them. However, this is chang-

ing. Here, we will both discuss a practical means of realizing

DFS methods involving entangled states (Gisin et al. 2002;

Walton et al. 2003) and consider the effect of dephasing

noise on their entanglement. In particular, a recent quantum

key distribution scheme using phase-time encoding and

passive photo-detection is discussed that is designed to allow

quantum signaling to be free from decoherence arising from

the collective dephasing of pairs of two-level systems to

discover any limitations due to other noise effects.

In order to understand the operation of this QKD

scheme, let us first review the two-level systems (‘qubits’)

formed from probability amplitudes of a single photon

separated into two distinct time bins, a method and appa-

ratus for creating which has been recently been provided

(Jaeger 2003). Such a set of states is measurable via early

and late time of photon arrival. The corresponding quantum

amplitudes then form the computational basis. These qubits

have been proposed for the realization of BB84 QKD, in

particular (Gisin et al. 2002). This method eliminates the

need to make active choices of bit encoding/decoding basis

of signal states because it is fully compatible with passive

detection methods. Consider a single time-bin qubit

encountering a specific passive-detection apparatus real-

ized by enlarging the range of possible space-time paths of

the two qubit amplitudes (Gisin et al. 2002; Jaeger 2003;

Walton et al. 2003).

In the scheme, under the preferred interferometric

decoding arrangement, amplitudes emerge in three separate

time bins for each photon in each of the two output ports of

a Mach–Zehnder interferometer (MZI). The MZI in the

receiver’s laboratory introduces a fixed phase shift corre-

sponding to that introduced by the time delay between

amplitudes jEi and jLi for early and late time of arrival of

the photon at any point on the segment of their trajectory

up to the MZI. These respectively result in quantum

amplitudes for early, intermediate and late photon arrivals

at photon detectors, that is, �1; 0;þ1 and �10; 00;þ10 in

the two output ports. Using the appropriate choices of

amplitude and relative phase of the initial key-bit encoding

qubit amplitudes jEi and jLi, the sender, Alice, can realize

the two complementary bases needed for carrying out the

BB84 protocol, the signal states of which are then decoded

by the receiver.

In addition to the ‘‘computational basis’’ states jEi and

jLi, Alice can create the ‘‘diagonal’’ basis states, in which

Entanglement sudden death
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the early and late amplitudes are placed in

balanced superpositions: j %i ¼ 1ffiffi
2
p ðjEi þ jLiÞ ; j &i ¼

1ffiffi
2
p ðjEi � jLiÞ. The effect of the MZI of the receiving lab

on the computational basis states is then to produce three

possible arrival times for the signal photon out of each of

the two available output ports of the MZI. The computa-

tional basis states are the transformed into a larger Hilbert

space, where the three post-MZI time bins are labeled

�1; 0;þ1 as above:

jEi ! ij � 10i þ iei/j00i � ei/j0i þ j � 1i ð17Þ

jLi ! ij00i þ iei/j þ 10i � ei/j þ 1i þ j0i; ð18Þ

where the two output trajectory segments leading out of the

two MZI ports are distinguished using primes. / is then

arranged to be zero. Each computational basis state then

results in a coherent superposition of four possible space-

time locations, because each beam splitter in the photon

trajectory contributes two possibilities. Each initial ampli-

tude can take long or short paths through the MZI and

emerge though one of two ports, providing six quantum

possibilities (as two of 8 ¼ 2	 4 possibilities become

indistinguishable in the intermediate final time bins, due to

the matching of the path-difference with the timing dif-

ference between early and late initial amplitudes, and

labeled as 0 and 00). The effect of introducing the decoding

MZI can be seen as an embedding of the four signal states

jEi; jLi; j %i; j &i in the larger Hilbert space containing

the six states j � 1i; j0i; j þ 1i; j � 10i; j00i; j þ 10i.
In the cases for which Alice chooses signal states in the

diagonal basis, the states output from the MZI are obtained

by appropriately adding the right hand sides of Expressions

17 and 18. The central arrival time bins of the two ports can

result from either early or late initial amplitudes entering

one output port or the other depending on the relative sign

of superposition states of these amplitudes, that is, the

diagonal basis of the BB84 protocol; when this signal basis

is chosen, the state amplitude for the central arrival time

bin arising from j %i can only enter the lower port and that

arising from the state j &i can enter only in the upper port.

When the computational basis of states jEi and jLi is

chosen instead and these states take the short or long paths,

respectively, through the MZI they produce signal states

that arrive early or late, respectively, whichever output arm

is involved.

Alternatively, by the encoding of signal qubits into

logical basis states of an even larger subspace, namely, that

in the Hilbert space of a photon pair, quantum keys can be

transmitted in a manner that is decoherence-free relative to

collective local dephasing (Palma et al. 1996; Walton et al.

2003). Making use of such a scheme, with the two photons

being temporally well separated, that is, separated by a

time longer than that used between the time-bin amplitudes

jEii and jLii ði ¼ 1; 2Þ of the individual photons, two-sign

capacity can be achieved.

A collective local dephasing model is one that assumes

that computational basis states acquire the same uncon-

trollable phase shift, v, relative to each other, i.e. when the

environment induces (on average) the transformation

jEi ! jEi; jLi ! eivjLi for every subsystem. To mitigate

this simple effect, one can use a two-qubit signal encoding

to logical basis states j0iL � jELi; j1iL � jLEi, which are

not affected by dephasing: the physical qubit dephasing

corresponds to the transformation jELi ! eivjELi; jLEi
! eivjLEi. Thus, the dephasing process above will have an

identical net effect on the two logical states. In effect, one

has both j0iL ! j0iL and j1iL ! j1iL, since only a relative

phase difference is observationally relevant, by contrast

with the incoherent behavior of non-encoded physical basis

states j0i and j1i; coherence protection under such noise

similarly follows for the relevant superpositions of these

two states j %iL ¼ 1ffiffi
2
p ðj0iL þ j1iLÞ; j &iL ¼ 1ffiffi

2
p ðj0iL �

j1iLÞ by linearity. For future reference, note that these

logical states are simply two Bell states - that is, j %iL ¼
jWþi and j &iL ¼ jW�i. The sender, Alice, can then

realize the BB84 protocol in this decoherence-free sub-

space by using polarization entangled photon pairs pro-

duced by spontaneous parametric down-conversion

(SPDC) converted into phase-time qubit pairs at random in

the appropriate four states comprised by states of this

logical basis together with their positive and negative

balanced superpositions in the complementary, ‘‘diagonal’’

logical basis, each with equal probability (see Walton et al.

2003 for a concrete realization). The same MZI is used in

the laboratory of the receiver as was used in the single-

photon arrangement, again allowing for passive state

decoding/detection. Now, the effect of the MZI is to allow

three possible arrival times (early, intermediate, and late)

for each photon in each of the two available output ports of

the MZI, much as before; the effect of the MZI on the

physical basis states of both qubits is the same transfor-

mation described above. Each photon will be involved in

one of each of the two sets of six events, with a corre-

sponding early, intermediate or late arrival time.

After detection, using a classical channel, both Alice and

Bob disclose the ‘‘choices’’ of encoding and decoding

bases in their respective local laboratories. When the two

basis choices are appropriate, Bob receives a key bit from

Alice; otherwise, his result provides no useful key material.

When Bob detects both photons in the intermediate time

bins he will be making a useful measurement in the diag-

onal logical signal basis, defined by an intermediate-length

arrival time difference. For example, the components of the
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two-qubit basis vectors (serving as logical qubit computa-

tional basis states) of corresponding to intermediate arrival

times only are thus transformed as

j0iL ! j00i þ j0000i þ ij000i � ij000i ð19Þ

j1iL ! j00i þ j0000i � ij000i þ ij000i; ð20Þ

up to a physically irrelevant overall global phase factor,

that describe appropriately post-selected pure ensembles.

Thus, when these two photons arrive in the same detector, a

detection of one bit (say 0) value is obtained; when they

arrive in two different detectors a detection of the other bit

value (say 1) is obtained, regardless of the detector(s) in

which the first photon and second photon arrive. Alterna-

tively, when the two photons arrive one in an early time bin

and one in a late time bin, so that the time separation

between their arrivals is either the shortest possible or the

longest possible of the three possible relative arrival

intervals, a useful measurement in the computational signal

basis is obtained. In the former case, a detection of one key

binary value is shared, whereas in the latter the other other

key value 1 is shared.

The extreme entanglement properties of Bell states

follow from nonseparability arising from their symmetry or

antisymmetry under the binary exchange of subsystems,

each half the (two qubit) size of the composite system. By

carrying out for one additional step an encoding procedure

similar to that described above, concatenating the code

with itself—that is, going from using two-photon states to

using four-photon states—elements of a recently delimited

basis of larger entangled states, which lie in a different, yet

more robust decoherence-free subspace, are obtained. The

symmetry of the Bell basis states has been used to define a

new, broader class of bases, ‘‘Bell gems,’’ that generalize

the Bell basis (Jaeger 2004). Bell gem G4, at the bottom of

this hierarchy, is the Bell basis itself. Those basis states,

rather than merely serving to encode logical qubits from

physical qubits, can be viewed as physical 16-its con-

structed from 4-its: since the Bell gem basis elements at

each level form a basis, each of these 16 states is orthog-

onal to the 15 others.

For QKD applications, however, one will not need all the

subspaces spanned by pairs elements that are available in

the Bell gem G16—a pair of complementary subspace bases,

one of which is taken from the eight pairs of states discussed

in Jaeger (2004) suffices. In particular, one needs only

j0i�L ¼ ð1=
ffiffiffi
2
p
Þðj %iLj &iL þ j &iLj %iLÞ ð21Þ

j1i�L ¼ ð1=
ffiffiffi
2
p
Þðj %iLj &iL � j &iLj %iLÞ; ð22Þ

which are elements of the Bell gem G16, because j %iL ¼
jWþi and j &iL ¼ jW�i. Typically DFS are tailored to

specific noise models. Note, in particular, that the two-

photon DFS above spanned by fj0iL; j1iLg does not protect

its logical states from ‘‘higher-order’’ dephasing. However,

it turns out that elements of above Bell gem can be used

in situations described by a more complex noise model

where even the two-photon DFS above is insufficient to

protect against such decoherence effects (Jaeger and

Sergienko 2006). In a more complicated environment than

one merely inducing dephasing as described immediately

above, such four-photon states can thus provide an appro-

priate decoherence-free subspace. Note, that the larger

Hilbert space spanned by G16 readily provides 8 orthogonal

subspaces and that, in an environment described by a noise

model including additional dephasing of the form j0iL !
j0iL; j1iL ! ei�vj1iL; with �v being another average random

phase, the two-photon logical states will themselves be

susceptible to decoherence analogous to that in the initial

single physical-qubit case but occurring at the two-qubit

level. By carrying out two logical qubit encoding steps to

arrive at elements of G16, such higher-order decoherence

can be seen to be avoided.

5 ESD and quantum key distribution

The first DFS described above was designed to operate

under the simple local collective random phase noise

model introduced in this section. The above QKD scheme

may also face noise as described by the open-system

dephasing noise model described in Section 2 that also

pertains to the quantum optical experiments described in

Section 3. Therefore, let us now consider the question of

whether such noise presents difficulties for the proposed

QKD scheme, based on what is known about its effects in

the quantum interferometer setting. We find that despite

having not been designed for such noise, unlike the case for

more fragile states, ESD poses no threat to them.

The behavior of the class of states of the generalized

(i.e. possibly unequally weighted) jUi form under such

noise was discussed in Section 3. Such states suffer from

both decoherence and disentanglement. Under both multi-

local dephasing and amplitude damping noise, there can

be decoherence and disentanglement. For example, we

saw that the relatively fragile states, ESD can occur under

amplitude damping noise if jbj[ jaj and the noise

parameter p ¼ j ab j. This takes place, for example, when

the squared amplitude of the damped basis state j11i is

three times that of the orthogonal state j00i of the

superposition while identifying 0 with H and 1 with

V. Even for such relatively noise-fragile states, with the
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inverse of this ratio of squared amplitudes both deco-

herence and disentanglement occur only in the infinite-

time limit, that is without ESD, while the infinite-time

limit is not relevant to QKD because it is only one step of

an overall cryptographic process which must be carried

out itself in finite time. For QKD based on the latter such

state, the reliability of the scheme might be reduced but it

would not fail.

Nonetheless, for greater reliably, one can use a logical-

qubit state encoding based on pairs of Bell singlet states as

in the DFS schemes described above, that is, of pairs each

of the form

jWi ¼ jajj01i þ jbj expðidÞj10i ; ð23Þ

with jaj ¼ jbj. These can be used with a phases expðidÞ of

þ1 or �1 alone or pairwise, in order to produce the Bell

gem states of Eqs. 21 and 22. In either case, the DFS

property protects these against entanglement sudden death

under collective phase noise, so long as the photon pairs

are truly prepared in pure states. This is because all effects

on joint states occur identically on the two elements of the

superposition.

In particular, for this state and a phase factor of �1, the

time-bin dephasing noise can still be simply described by

the effect

jW�i ! eih/0ij0ieih/1ij1i � eih/1ij1ieih/0ij0i ð24Þ

¼ eiðh/0iþh/1iÞ j0ij1i � j1ij0ið Þ ð25Þ

¼ eiðh/0iþh/1iÞjW�i; ð26Þ

the resulting global phase factor being unobservable. A

similar global phase will clearly result in the case of such

noise for whichever Bell state jW�i, that is, jWþi or jW�i
and therefore on the even linear combinations of the two.

This sort of noise will accordingly have no relevant effect

on the logical states of this decoherence-free sub-

space, because j0iL ! eiðh/0iþh/1iÞj0iL and j1iL !
eiðh/0iþh/1iÞj1iL; the logical states remain orthogonal despite

the noise, as can be seen by taking their inner product.

Analogous phase noise acting on the Bell gem states (cf.

Eqs. 21 and 22) at between two-photon states have the

analogous effect, one need only consider the logical basis

states j0iL and j1iL in place of j0i and j1i and ‘‘higher

order’’ phase shifts eih/Lii in place of eih/0i ði ¼ 0; 1Þ in the

expressions immediately above.

Such choices of readily producible DFS states are an

elegant solution to the problems of decoherence and dis-

entanglement in entanglement distribution networks in

such local noise conditions.

6 Conclusion

Both already realized and potential uses of entangled

photon states in quantum key distribution and quantum

networks in the presence of environmental noise were

investigated here. In particular, the use of quantum deco-

herence mitigation techniques involving entangled quan-

tum states were discussed, including a scheme that uses

decoherence free subspaces in a practical implementation

viable with linear optical equipment. This demonstrates the

value of theoretical quantum computing tools in emerging

real-world quantum technologies such as QKD networks,

where uniquely quantum mechanical properties such as

higher-order quantum entanglement may soon be practi-

cally distributed in noisy environments. Special attention

was paid to situations in which entanglement sudden death

could appear to be a serious threat. Our investigation

suggests that although this threat is a real one, specific

decoherence-mitigating methods such as that considered in

detail here are available that allow one to protect entan-

glement-based QKD from the threat of entanglement sud-

den death by exploiting decoherence-free subspaces.
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