EK 335
Introduction to Environmental Engineering Science

Text
“Introduction to Environmental Engineering and Science”
by Gilbert M. Masters, Prentice Hall
Instructor: Prof. Uday B. Pal
Office: 730 Comm. Av., Room 206
Phone: 617-353-7708
E-mail: upal@bu.edu
Office Hours: Friday 4-5 PM

Grading: Lincoln Miara
Office: 750 Comm. Avenue, Rm. B13
Phone: 617-358-1566
E-mail: lmiara@bu.edu
Course Grading

• Self-Study (Engineering Solutions to an Environmental Problem)
 – Oral Presentation (15 Minutes): 20%
 – Starts Feb. 2, two presentations per day

• Homework: 10%

• Test 1: 20% (Feb. 23, 2010)

• Test 2: 20% (March, 30, 2010)

• Final Exam: 30% (University Schedule)
<table>
<thead>
<tr>
<th>Student Name</th>
<th>Class</th>
<th>Presentation Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Husseini, Shoukry, Ishaq</td>
<td>Senior</td>
<td>2-Feb</td>
</tr>
<tr>
<td>Babaniyi, Olalekan, Adeoye</td>
<td>Senior</td>
<td>2-Feb</td>
</tr>
<tr>
<td>Belmonte, Peter, Holland</td>
<td>Senior</td>
<td>4-Feb</td>
</tr>
<tr>
<td>Bogoian, Jeffrey, Charles</td>
<td>Senior</td>
<td>4-Feb</td>
</tr>
<tr>
<td>Briggs, Kathryn, Elizabeth</td>
<td>Junior</td>
<td>1-Apr</td>
</tr>
<tr>
<td>Burriola, Richard, Adam</td>
<td>Senior</td>
<td>9-Feb</td>
</tr>
<tr>
<td>Canham, Amy, Canham, Amy</td>
<td>Junior</td>
<td>1-Apr</td>
</tr>
<tr>
<td>Chatham, James, Manning</td>
<td>Grad 1st</td>
<td>6-Apr</td>
</tr>
<tr>
<td>Chin, Justin</td>
<td>Senior</td>
<td>9-Feb</td>
</tr>
<tr>
<td>Docherty, Sean, Patrick</td>
<td>Junior</td>
<td>6-Apr</td>
</tr>
<tr>
<td>Foley, Daniel, John</td>
<td>Senior</td>
<td>11-Feb</td>
</tr>
<tr>
<td>Going, Louisa, Marie</td>
<td>Soph</td>
<td>20-Apr</td>
</tr>
<tr>
<td>Hathaway, Michael, Gerard</td>
<td>Junior</td>
<td>8-Apr</td>
</tr>
<tr>
<td>Hernandez, William, Joseph</td>
<td>Senior</td>
<td>11-Feb</td>
</tr>
<tr>
<td>Hulli, Leon Hulli, Leon</td>
<td>Senior</td>
<td>18-Feb</td>
</tr>
<tr>
<td>Jahnke, Charles, Arthur</td>
<td>Senior</td>
<td>18-Feb</td>
</tr>
<tr>
<td>Kocher, Sean, Petras</td>
<td>Junior</td>
<td>8-Apr</td>
</tr>
<tr>
<td>Lynch, Brian, Robert</td>
<td>Junior</td>
<td>13-Apr</td>
</tr>
<tr>
<td>Magis-Agosta, Jesse, Daniel</td>
<td>Senior</td>
<td>25-Feb</td>
</tr>
<tr>
<td>Marat, Yerzat</td>
<td>Senior</td>
<td>25-Feb</td>
</tr>
<tr>
<td>McDade, Daniel, Robert</td>
<td>Junior</td>
<td>13-Apr</td>
</tr>
<tr>
<td>McDowell, Patrick, Robert</td>
<td>Senior</td>
<td>2-Mar</td>
</tr>
<tr>
<td>Miklos, Laura, Yolanda</td>
<td>Senior</td>
<td>2-Mar</td>
</tr>
<tr>
<td>Miller, Denise, Elizabeth</td>
<td>Senior</td>
<td>4-Mar</td>
</tr>
<tr>
<td>Pyun, Joanna</td>
<td>Senior</td>
<td>4-Mar</td>
</tr>
<tr>
<td>Sadder, Omar, Ryan</td>
<td>Senior</td>
<td>16-Mar</td>
</tr>
<tr>
<td>Schein, Jeremy, Brian</td>
<td>Senior</td>
<td>16-Mar</td>
</tr>
<tr>
<td>Schmitt, Michael, Douglass</td>
<td>Junior</td>
<td>15-Apr</td>
</tr>
<tr>
<td>Srinivasan, Nikhilish</td>
<td>Senior</td>
<td>18-Mar</td>
</tr>
<tr>
<td>Uwilingiyimana, Jean, Bertrand</td>
<td>Junior</td>
<td>15-Apr</td>
</tr>
<tr>
<td>Vanguilder, Jeffrey, David</td>
<td>Senior</td>
<td>18-Mar</td>
</tr>
<tr>
<td>Widzinski, Christopher, Edward</td>
<td>Junior</td>
<td>20-Apr</td>
</tr>
<tr>
<td>Wolfson, Jill, Sarah</td>
<td>Senior</td>
<td>23-Mar</td>
</tr>
<tr>
<td>Wong, Tat, Chi Wong, Tat, Chi</td>
<td>Senior</td>
<td>23-Mar</td>
</tr>
<tr>
<td>Worth, Sterling, Ngo-Chi-hieu</td>
<td>Senior</td>
<td>25-Mar</td>
</tr>
<tr>
<td>Xiao, Wen Xiao, Wen</td>
<td>Senior</td>
<td>25-Mar</td>
</tr>
</tbody>
</table>
Syllabus for EK 335: Introduction to Environmental Engineering Science

4 hours/week

1. Mass and Energy Transfer 1 week

2. Environmental Chemistry 1.5 weeks
 - Inorganic Chemistry
 - Organic Chemistry
 - Nuclear Chemistry

3. Growth Models 1 week
 - Resource Consumption
 - Population Growth
 - Economic Growth

4. Risk Assessment 1.5 weeks
 - Hazard Identification
 - Dose-Response Assessment
 - Exposure Assessment
 - Risk Characterization
 - Comparative Risk Analysis

5. Water Pollution 2.5 weeks
 - Water resources and pollutants
 - Oxygen demand
 - Pollutant transport
 - Water and waste water treatment
 - Legislations

6. Air Pollution 2.5 weeks
 - Emissions overview (industry, transportation, commercial and residential)
 - Legislations
 - Criteria and Toxic Air Pollutants
 - Pollution modelling
 - Pollution Control
 - Air pollution and Meteorology

7. Global Change 1 week
 - Greenhouse effect and global temperature
 - Carbon, nitrogen, and oxygen cycle
 - IPCC Emissions Scenarios
 - Oceanic changes and changes in the stratosphere

8. Solid Waste Management and Resource Recovery 2 weeks
 - Life-Cycle Assessment
 - Source Reduction including a discussion of the RoHS Directive
 - Collection and Transfer Operations
 - Recycling
 - Waste to Energy Conversion
 - Landfills

Control volume boundary

Accumulation

Reactions: Decay and generation

Inputs → Outputs

Figure: 01-01

Copyright © 2008 Pearson Prentice Hall, Inc.
Stream: C_s, Q_s

Wastes: C_w, Q_w

Accumulation = 0

Reaction = 0

C_m, Q_m → Mixture

$Q =$ flow rate

$C =$ concentration of pollutant

Copyright © 2008 Pearson Prentice Hall, Inc.
Control volume boundary

$C_s = 20.0 \text{ mg/L}$

$Q_s = 10.0 \text{ m}^3/\text{s}$

$C_w = 40.0 \text{ mg/L}$

$Q_w = 5.0 \text{ m}^3/\text{s}$

$C_m = ?$

$Q_m = ?$

Figure: 01-03

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure: 01-04

Copyright © 2008 Pearson Prentice Hall, Inc.
$Q_w = 0.5 \text{ m}^3/\text{s}$
$C_w = 100.0 \text{ mg/L}$

$Q_s = 5.0 \text{ m}^3/\text{s}$
$C_s = 10.0 \text{ mg/L}$

$V = 10.0 \times 10^6 \text{ m}^3$
$k = 0.20/\text{day}$
$C = ?$

$C_m = ?$
$Q_m = ?$

Figure: 01-07

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure: 01-08

Copyright © 2008 Pearson Prentice Hall, Inc.
Flow in Q, C_i

Control volume V
Concentration C

Decay coefficient k_d
Generation coefficient k_g

Flow out Q, C

Figure: 01-10

Copyright © 2008 Pearson Prentice Hall, Inc.
The diagram illustrates a concentration curve over time, with the following equation:

\[C_\infty = \frac{QC_i + k_g V}{Q + k_d V} \]

Where:
- \(C_\infty \) is the final concentration.
- \(Q \) is the flow rate.
- \(C_i \) is the initial concentration.
- \(k_g \) is the first-order rate constant for adsorption.
- \(k_d \) is the first-order rate constant for desorption.
- \(V \) is the volume of the system.

The graph shows the concentration decreasing over time from an initial concentration \(C_0 \) to a final concentration \(C_\infty \). The time axis is labeled as \(t \).

Figure: 01-11

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure 01-12

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure: 01-13

Copyright © 2008 Pearson Prentice Hall, Inc.
Electrical output 1,000 MW\textsubscript{e}

Stack heat 300 MW\textsubscript{t}

Coal 3,000 MW\textsubscript{t}

Cooling water 1,700 MW\textsubscript{t}

\[Q_c = 40.6 \text{ m}^3/\text{s} \]
\[T_c = 30.0 \text{ °C} \]

Stream

\[Q_s = 100.0 \text{ m}^3/\text{s} \]
\[T_s = 20.0 \text{ °C} \]

\[Q_s = 100.0 \text{ m}^3/\text{s} \]
\[T_s = 24.1 \text{ °C} \]
Hot reservoir
T_h

Q_h Heat to engine

Heat engine

Q_c Waste heat

Cold reservoir
T_c

Work W

Figure: 01-15

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure: 01-16

Copyright © 2008 Pearson Prentice Hall, Inc.

Introduction to Environmental Engineering and Science: THIRD EDITION
Gilbert M. Masters and Wendell P. Ela 0-13-601837-8
3 kWhr (10,800 kJ)
450 g coal (including: 280 g C, 45 g ash, 9 g S)

33.3% efficient power plant

1 kWhr electricity (3,600 kJ)

85% S, 99.5% particulate removal

To atmosphere
1.4 g S (2.8 g SO₂)
0.14 g fly ash
280 g C
1,080 kJ

31.36 g ash 7.6 g S to disposal

13.5 g bottom ash
6,120 kJ to cooling water

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure: 01-19

Copyright © 2008 Pearson Prentice Hall, Inc.
Figure 01-21

Ultraviolet 7%
Visible 47%
Infrared 46%

Intensité (W/m²-µm)

Wavelength λ (µm)

Extraterrestrial solar flux
5,800-K Blackbody

Copyright © 2008 Pearson Prentice Hall, Inc.

Introduction to Environmental Engineering and Science: THIRD EDITION
Gilbert M. Masters and Wendell P. Ela 0-13-601837-8
\[\lambda_{\text{max}} = \frac{2.898}{T(K)} \]

Copyright © 2008 Pearson Prentice Hall, Inc.