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Several systems, such as proteins and glasses, are char- We choose a one-dimensional rough potential of a form
acterized by a complex potential energy surface, i.e., thereriginally studied by Zwanzig:
are many mini_ma that are separated by barriers of differing V(X)=x22+ € cogq¥). 1)
heights spanning the entire gamut of energy scalégor
these systems, it is meaningful to characterize the distribul his potential consists of a quadratic “background” potential
tion of energy barriersy(E), which is notoriously very dif- which varies sIo_vay compared Wi'[.h the sjnusoidal “rough-
ficult to compute. In several papers, we have proposed angess:” An effective Smoluchowski equation was proposed

developed related methods for calculationg¢E) from the ~ fOr coarse grained motiofon the length scale greater than
temperature-dependent fractibp(T) of unstable “instanta- 1/g) which leads to the correct mean first passage time. At

neous normal modes.” We have obtaing(E) in peptided low temperatures, the effective diffusion constant is reduced

and proteingand the unit density Lennard-Jones lig&iour from the original by an Arrhenius-like temperature factor

. : . exp(—2Be) since motion on a length scale greater thap 1/
methods are necessarily approximate and rely on phys"Ca"%volves activated crossing of barriers of a heigatRor this
motivated simplifications. Probably the most important sim-

e . : to be true, it must be that the backgrougiadratig poten-
plification is that the potential energy landscape is assumega| be approximately constant over the coarse graining

to look the same from all the minima. This excludes thelength scale 1.

existence of “correlation” where the height of a barrier de- Using the integral equation of Straub and ThirumAfi,
pends upon the depth of the connected minima. The assumghe fraction of unstable modeg(T) and the distribution of
tion is clearly stated in our work. For exampléWe now intrinsic barrier heightgy(E) are related by

invoke a major simplifying assumption, the equivalent

minima model—the topology of the potential surface is iden- ¢ (T)= fwdE o(E)fy(T,E). )
tical when viewed from each minimum.” Agamh*We as- 0

sume ... the potential energy as seen from the minimum of is straightforward to calculate the fraction of unstable

any basin will be identical to any other.” modes for this potential as a function of temperature. We use
In the accompanying Comment, Zwarfzigonsiders a the original kernef,(T,E) which was derived for a symmet-

one-dimensional potential energy functids(x), generated ric piecewise parabolic potentfalwith the result

by successive placement of randomly chosen parabolas of B 1

alternating downwardbarriey and upwardminimum) cur- :J

vature along thé&) =0 line; the minima have negative energy ful™) 0 dE o(E) 1+e2FER " @

and thg barner; 'posmve.energy. ,Th's model h.as a Stror‘?Zestricting ourselves to a region wfwhere the background
correlation. A minimum with negative enerds,, will have  yqtential varies slowly compared with the roughness poten-
relative barrier energieE such thatE=|E,|. There is N0 g the intrinsic barrier height distribution for the potential
possibility that a deep minimum will adjoin a low barrier. [gq. (1)] (as seen from any local minimum on the potential
Thus, the model is antithetical to the assumptions in oukyrface is to a good approximatiog(E)= S(E—2¢). The

papers. fraction of unstable modes for this model potential is simply
Zwanzig demonstrates that the Straub and Thirumalai

(ST) integral equation theo®? starting from the exact
g(E), yields an incorreci dependence of,(T) at low T.

For that example, the ST equation results in a linade-  Note that the fraction of unstable modes for this model has a
pendence while the exact result varies asT&kp(—1/T).  |jow temperature limiting behavior of (Tyexp(—1/T). A

We consider this neither surprising nor a damaging criticismcomparison of the numerically computég(T) with that ob-

of our work, since Zwanzig's model has strong correlation,tained from the ST integral equation is displayed in Fig. 1.
explicitly excluded in our theories. It is therefore interestingThe ST integral equation is successful because the potential
and informative to repeat Zwanzig's calculation for a one-in Eq. (1) satisfies the equivalent minima hypothesis and not
dimensional potential with zero correlation. because EqJ1) can be fitted by a piecewise harmonic poten-

fu (M= 17 %P3 - (4)
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examine this hypothesis—and, more generally, to character-

o ' ' ' ' ize the potential surface—in liquids and proteins. Correla-

o6l | tions could be measured directly by computer simulation.
Existing evidence favors low correlation. For both liquids

o5l ] and proteinsf(T)«T at low T. For a system with nondelta

functiong(E), Zwanzig’'s Comment shows that such behav-
ior is inconsistent with strong correlation, while it is consis-
tent with our theories. Our attitude has been, and is, that
since g(E) is such a crucial, and previously inaccessible,
guantity, it makes sense to continue with approximate theo-
ries with clearly stated assumptions whose reliability can be
examined.
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FIG. 1. The fraction of unstable modes as a function of temperature com-
puted numerically and using the integral equation of Straub and Thirumalai
for the one-dimensional rugged potenti&lx) = x2/2+ e cos(gx) with e=2
and g=10 (shown by inset The barrier height distribution is taken to be
g(E)=6(E—2e).
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