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Several systems, such as proteins and glasses, are
acterized by a complex potential energy surface, i.e., th
are many minima that are separated by barriers of differ
heights spanning the entire gamut of energy scales.1–3 For
these systems, it is meaningful to characterize the distri
tion of energy barriers,g(E), which is notoriously very dif-
ficult to compute. In several papers, we have proposed
developed related methods for calculation ofg(E) from the
temperature-dependent fractionf u(T) of unstable ‘‘instanta-
neous normal modes.’’ We have obtainedg(E) in peptides4

and proteins5 and the unit density Lennard-Jones liquid.6 Our
methods are necessarily approximate and rely on physic
motivated simplifications. Probably the most important sim
plification is that the potential energy landscape is assum
to look the same from all the minima. This excludes t
existence of ‘‘correlation’’ where the height of a barrier de
pends upon the depth of the connected minima. The assu
tion is clearly stated in our work. For example,7 ‘‘We now
invoke a major simplifying assumption, the equivale
minima model—the topology of the potential surface is ide
tical when viewed from each minimum.’’ Again,5 ‘‘We as-
sume ... the potential energy as seen from the minimum
any basin will be identical to any other.’’

In the accompanying Comment, Zwanzig8 considers a
one-dimensional potential energy function,U(x), generated
by successive placement of randomly chosen parabola
alternating downward~barrier! and upward~minimum! cur-
vature along theU50 line; the minima have negative energ
and the barriers positive energy. This model has a stro
correlation. A minimum with negative energyEa will have
relative barrier energiesE such thatE>uEau. There is no
possibility that a deep minimum will adjoin a low barrie
Thus, the model is antithetical to the assumptions in o
papers.

Zwanzig demonstrates that the Straub and Thiruma
~ST! integral equation theory,4,5 starting from the exact
g(E), yields an incorrectT dependence off u(T) at low T.
For that example, the ST equation results in a linearT de-
pendence while the exact result varies as (1/T)exp(21/T).
We consider this neither surprising nor a damaging criticis
of our work, since Zwanzig’s model has strong correlatio
explicitly excluded in our theories. It is therefore interestin
and informative to repeat Zwanzig’s calculation for a on
dimensional potential with zero correlation.
J. Chem. Phys. 103 (3), 15 July 1995 0021-9606/95/103(3)/12Downloaded¬09¬Jul¬2001¬to¬128.197.30.175.¬Redistribution¬subject¬to¬
har-
re
g

u-

nd

lly
-
ed
e
-
p-

t
-

of

of

ng

r

ai

,

-

We choose a one-dimensional rough potential of a form
originally studied by Zwanzig:9

V~x!5x2/21e cos~qx!. ~1!

This potential consists of a quadratic ‘‘background’’ potentia
which varies slowly compared with the sinusoidal ‘‘rough-
ness.’’ An effective Smoluchowski equation was propose
for coarse grained motion~on the length scale greater than
1/q! which leads to the correct mean first passage time. A
low temperatures, the effective diffusion constant is reduce
from the original by an Arrhenius-like temperature factor
exp(22be) since motion on a length scale greater than 1/q
involves activated crossing of barriers of a height 2e. For this
to be true, it must be that the background~quadratic! poten-
tial be approximately constant over the coarse grainin
length scale 1/q.

Using the integral equation of Straub and Thirumalai,4,5

the fraction of unstable modesf u(T) and the distribution of
intrinsic barrier heightsg(E) are related by5

f u~T!5E
0

`

dE g~E! f̄ u~T,E!. ~2!

It is straightforward to calculate the fraction of unstable
modes for this potential as a function of temperature. We us
the original kernelf u(T,E) which was derived for a symmet-
ric piecewise parabolic potential4,5 with the result

f u~T!5E
0

`

dE g~E!
1

11e2bE/3 . ~3!

Restricting ourselves to a region ofx where the background
potential varies slowly compared with the roughness poten
tial, the intrinsic barrier height distribution for the potential
@Eq. ~1!# ~as seen from any local minimum on the potentia
surface! is to a good approximationg(E)5d(E22e). The
fraction of unstable modes for this model potential is simply

f u~T!5
1

11e4be/3 . ~4!

Note that the fraction of unstable modes for this model has
low temperature limiting behavior of (1/T)exp(21/T). A
comparison of the numerically computedf u(T) with that ob-
tained from the ST integral equation is displayed in Fig. 1
The ST integral equation is successful because the potent
in Eq. ~1! satisfies the equivalent minima hypothesis and no
because Eq.~1! can be fitted by a piecewise harmonic poten
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1238 Letters to the Editor
tial. In the example chosen by Zwanzig8 the piecewise po-
tential is exactlypiecewise harmonic. Nevertheless, the
integral equation is not satisfactory at lowT because corre
lations in the potential violate the fundamental assumption
our theory.

The Comment of Zwanzig does serve to emphasize
our results forg(E) are dependent on the validity of th
‘‘equivalent minima’’ hypothesis. It is of great interest t

FIG. 1. The fraction of unstable modes as a function of temperature c
puted numerically and using the integral equation of Straub and Thirum
for the one-dimensional rugged potentialV(x)5x2/21e cos(qx) with e52
andq510 ~shown by inset!. The barrier height distribution is taken to b
g(E)5d(E22e).
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examine this hypothesis—and, more generally, to characte
ize the potential surface—in liquids and proteins. Correla
tions could be measured directly by computer simulation
Existing evidence favors low correlation. For both liquids
and proteins,f u(T)}T at lowT. For a system with nondelta
functiong(E), Zwanzig’s Comment shows that such behav
ior is inconsistent with strong correlation, while it is consis-
tent with our theories. Our attitude has been, and is, th
since g(E) is such a crucial, and previously inaccessible
quantity, it makes sense to continue with approximate theo
ries with clearly stated assumptions whose reliability can b
examined.
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