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Abstract—We examine the problem of minimizing feedback in
reliable wireless broadcasting, by pairing rateless coding with
extreme value theory. Our key observation is that, in a broadcast
environment, this problem resolves into estimating themaximum
number of packets dropped amongmany receivers rather than for
each individual receiver. With rateless codes, this estimation relates
to the number of redundant transmissions needed at the source
in order for all receivers to correctly decode a message withhigh
probability. We develop and analyze two new data dissemination
protocols, called Random Sampling (RS) and Full Sampling with
Limited Feedback (FSLF), based on themoment and maximum
likelihood estimators in extreme value theory. Both protocols rely
on a single-round learning phase, requiring the transmission of
a few feedback packets from a small subset of receivers. With
fixed overhead, we show thatFSLF has the desirable property
of becoming more accurate as the receivers’ population gets
larger. Our protocols are channel agnostic, in that they do not
require a-priori knowledge of (i.i.d.) packet loss probabilities,
which may vary among receivers. We provide simulations and an
improved full-scale implementation of the Rateless Delugeover-
the-air programming protocol on sensor motes as a demonstration
of the practical benefits of our protocols, which translate into
about 30% latency and energy consumption savings. Further,we
apply our protocols to real time oblivious (RT) rateless codes in
broadcast settings. Through simulations, we demonstrate a100-
fold reduction in the amount of feedback packets while incurring
an increase of only 10-20% in the number of encoded packets
transmissions.

Index Terms—Extreme Value Theory, Forward Error Correc-
tion (FEC), Rateless Coding, Over-the-Air Programming.

I. I NTRODUCTION

Reliable data broadcasting is the basis for over-the-air program-
ming (OAP) of sensor networks [1–4]. OAP is used to deliver
software updates and data from a broadcaster (source) to large
populations of sensors (receivers) within wireless transmission
range of the source. Similar protocols have also been developed
for applications like real-time updating of stock-quotes and
score-boards on cellular and mobile smartphones.

A preliminary version of this paper appeared in the proceedings of the IEEE
INFOCOM 2010 conference.

This work was supported in part by NSF grants CCF-0729158, CCF-0916892
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Automatic Repeat reQuest (ARQ) protocols are commonly
employed to guarantee the reliability of data dissemination over
lossy wireless channels [5]. ARQ requires receivers to notify
a source about missing packets via acknowledgments (ACKs)
or negative acknowledgments (NACKs). When the number of
receivers gets large, however, these messages become excessive
and result in the well-knownbroadcast storm problem [2, 4, 6].

Packet-level forward error correction (FEC) provides a
promising approach to effectively reduce feedback [7]. FEC
requires the source to anticipate packet losses and make re-
dundant transmissions proactively, instead of waiting forfeed-
back from receivers and then making additional transmissions.
Rateless codes such as random linear codes, LT codes [8]
and Shifted LT codes [9] allow FEC to be implemented in
a practical and efficient way. The source encodesM original
packets of a file and then transmits the encoded packets. A
receiver is able to recover the file successfully after receiving
M (or slightly more) distinct encoded packets.

One of the challenges of implementing FEC is for the
source to determine an appropriate amount of redundancy
when transmitting proactively. While too many redundant FEC
packets slows down the data dissemination process unneces-
sarily, insufficient redundancy leaves many receivers unable
to decode packets. Furthermore, the inherent heterogeneity of
channel characteristics across receivers (e.g., due to link quality,
distance to the source, and antenna sensitivity) significantly
complicates the task of redundancy estimation. While estimat-
ing each receiver’s packet loss probability may be possible[10],
such an approach does not scale given that per-receiver packet
loss probability needs to be ascertained.

This paper is based on the following key observation. When
using rateless codes in a broadcasting environment, such as
wireless, the number of redundant packet transmissions cor-
responds to themaximum number of redundant packet trans-
missions needed among all receivers. This allows us to exploit
advances in extreme value theory [11], a powerful mathematical
tool for studying the distribution of extreme order-statistics,
such as maxima of random variables, to effectively quantify
transmission redundancy with minimum overhead.
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In this paper, motivated by OAP applications, we consider
the problem of disseminating a file composed of multiple
segments, orpages, from one source toN receivers over a
lossy wireless channel. Each page consists of a fixed number
of packets. Our first contribution is formalizing this problem
using extreme value theory, in order to perform accurate online
estimation of the amount of transmissions (formally defined
as δ-reliable volume in Section III) a source needs to make
in order to achieve a probabilityδ of successfully delivering
each page of the file to all the receivers. Thanks to extreme
value theory, we are able to perform accurate estimation of
the δ-reliable volume without requiring specific knowledge
of channel characteristics. This accurate estimation can be
accomplished with extrapolation based on limited information
obtained from the dissemination of asingle page.

Second, we develop two new data dissemination protocols,
calledRandom Sampling (RS) andFull Sampling with Limited
Feedback (FSLF), based on extreme value estimators known to
be asymptotically exact asN → ∞. Both protocols estimate
theδ-reliable volume during alearning phase, and then reliably
disseminate the rest of the file during atransmission phase.
While RS restricts the overhead of the estimation during the
learning phase, by randomly sampling feedback from a small
subset of receivers,FSLF judiciously exploits the fact that the
extreme value estimators require only samples of thek + 1
largest order statistics, for somek << N , to collect all
the feedback needed. We further show thatFSLF has the
appealing property of providing more accurate estimation of
theδ-reliable volume when the receivers’ population gets larger,
without incurring higher overhead.These results forFSLF hold
under the assumption that receivers can overhear each others’
transmissions.

Third, we show through extensive simulations that bothRS
and FSLF almost completely eliminate receivers’ feedback
during the transmission phase. Thanks to the high accuracy
of the estimators, the amount of packet transmission by the
source is only about 5% higher than with ARQ.

Fourth, we compare the performance of different extreme
value estimators, namely, themoment andmaximum likelihood
estimators, in conjunction with theRS and FSLF protocols.
Amongst all the possible combinations, we observe thatFSLF
based on the moment estimator achieves the best performance,
in terms of minimizing overhead and maximizing accuracy.

Fifth, to demonstrate practical benefits of our protocols,
we conductreal mote experiments on a testbed of 14 Tmote
Sky sensors [12] and perform larger-scale simulation usingthe
TOSSIM simulator [13]. Specifically, we design a new over-the-
air programming protocol based on Rateless Deluge [4], called
Extreme Value Quantile Estimation (EV-QE) Deluge, which
integrates theRS protocol. The experiments and simulations
show that EV-QE Deluge lead to a 75% reduction in control-
plane traffic together with 30% savings on latency and energy
consumption, at the expense of an about 5% increase in data-
plane traffic as compared to Rateless Deluge.

Finally, we employ extreme value estimators for creating

scalable broadcast versions of real time oblivious (RT) rateless
codes [14]. RT codes have a simple decoder design, making
them especially suitable for wireless sensor receivers. However,
each receiver is required to send information about its decoding
progress to the source periodically, limiting the scalability of RT
codes for large receiver populations. For a marginal increase in
the number of encoded packets broadcast from the source, we
show how using EVT to predict the decoding progress offers
a major decrease (on the order of two orders of magnitude) in
the total amount of feedback required from the receivers.

This paper is organized as follows. In Section II we survey
related work. We formulate our problem in Section III. We
point out the limitations of classical estimation techniques
in Section IV-A, give a primer on extreme value theory
in Section IV-B, and introduce the moment and maximum
likelihood estimators in Section IV-C. The design of theRS
and FSLF protocols is presented in Section V. Simulation
results and sensor mote experiments are provided in SectionVI
and VII, respectively. We illustrate the practical applicability of
our approach by designing and then benchmarking a scalable
broadcast version of RT codes [14] in Section VIII. We provide
concluding remarks in Section IX.

II. RELATED WORK

The concept of exploiting FEC for reliable data dissemination
has been the subject of prior research, both in wireline and
wireless settings, and we next survey those works most related
to our paper. The works in [15, 16] numerically evaluate the
performance improvements achieved with different levels of
FEC redundancy. In order to allow the sender to decide when to
stop transmitting FEC-coded packets without explicit feedback,
the authors in [17–20] study the properties of file dissemination
completion times. While in practice the packet loss probability
differs from node to node due to many factors (i.e., link quality,
distance to the source, antenna sensitivity), the works in [15,
17, 21, 22] as well as some hybrid FEC/ARQ protocols such
as [23], assume homogeneous packet loss probabilities in their
analysis. The works in [16, 18–20] do study the more realistic
scenario of heterogeneous packet loss, but they assume that
receivers’ packet loss probabilities areknown to the source, a
relatively strong assumption for practical multiple receiver en-
vironments. In our work, we allow the packet loss probabilities
to beunknown andheterogeneous across receivers. The idea of
applying EVT to minimize feedback was first proposed in [20].
However, the techniques presented in this present paper are
completely different from those in [20], since we resort here to
on-line measurements to estimate the extreme-value parameters.

While it is possible to perform online estimation of net-
work parameters such as packet loss probabilities [10], such
techniques are not generally scalable with the number of
receivers in the network, given that all per-receiver packet
loss probabilities must be determined. The authors in [24] try
to estimate FEC redundancy without obtaining the individual
receivers’ packet loss probabilities, but they do not establish
relationship between the redundancy and the probability of
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success. In this present work, we propose to estimate the
amount of transmissions needed to fully disseminate data to
all receivers, with probabilityδ. Our estimate is computed
online without the knowledge of channel characteristics, and
we establish an analytical relationship between the amountof
transmissions and the probability of success.

Finally, estimation can also be performed using classical
approaches [25]. However, they have significant overhead (cf.
Section IV for details), which our approach avoids by utilizing
the theory of extreme values.

III. PROBLEM FORMULATION

We consider the problem of broadcasting a file from a source
(e.g., a base station) toN receivers within its transmission
range. The file is divided intoR pages, each consisting ofM
packets.Encoding is done at the packet level using rateless
codes (e.g. computing random sums of input packets). Our
analysis and simulations in Sections IV, V, and VI assume
idealized rateless codes, where each receiver needs to receive
precisely M distinct packets in order to recover a page.
Sections VII and VIII show how to apply the results to some
practical rateless codes, namely random linear codes and RT
codes.

The time axis is slotted, and each packet transmission is
assumed to take one time slot. The packet loss probability for
receivern (n = 1, .., N ) is pn, wherepn’s are heterogeneous
and unknown, but assumed to be independent, identically
distributed (i.i.d.) random variables. The source encodesand
broadcasts the pages in an increasing order. Sending one page
is denoted as onerealization in the data dissemination process.

In a given realizationr of the data dissemination process,
denote byT r

n the number of time slots required for receiver
n to recover a page.Since the packet losses are governed
by i.i.d. random variables, the time required for decoding the
page is i.i.d. across receivers; in other words,T r

n ’s are also
i.i.d. random variables. Denote byT r the random variable
representing the completion time for this realization,i.e., the
number of time slots needed to disseminateM packets to a
cluster ofN receivers:T r = max

n=1...N
T r
n .

The success probability of a page dissemination is the
probability that the page is decoded by allN receivers. The
δ-reliable volume, denoted astδ, is the amount of packets the
source needs to broadcast to guarantee a success probability δ.

Our goal is to sample and analyze a fixed number of feedback
packets in a single realization, corresponding to the broadcast of
the first page of a file, in order to estimate theδ-reliable volume
tδ. Our estimation aims to accurately quantify the valuetδ of a
realizationr, where, by definition,Pr{T r ≤ tδ} = δ. Note that
tδ is also referred to asδ-quantile of the distribution function
Pr{T r ≤ t} [26, p.404].

IV. EXTREME VALUE QUANTILE ESTIMATION

We begin this section with a review of traditional approaches
in quantile estimation, pointing out their limitations, and a
short primer on extreme value theory, a powerful statistical

tool for studying the distribution of the maxima of random
variables. We then introduce extreme value theory-based esti-
mators, which form the basis of our near-zero feedback data
dissemination protocols described in Section V.

As discussed in Section III, for a given realizationr of
the data dissemination process, the completion times of the
receivers are i.i.d. random variables,T r

1 , T
r
2 , .., T

r
N , following

an unknown distribution functionF (t). Let their order statistics
be T r

1,N , T r
2,N , .., T r

N,N , meaning thatT r
1,N ≤ T r

2,N ≤ .. ≤
T r
N,N . Clearly, T r

N,N , which corresponds to the maximum of
completion times among all receivers, is identical toT r, the
number of packet transmissions by the source during realization
r. Similarly, for R realizations,r = 1, .., R, the set ofT r’s are
also i.i.d. random variables because they are the maxima of
i.i.d. random variables.T r

n . Let their order statistics be denoted
by T 1,R, T 2,R, .., TR,R.

Recall that our goal is to quantify theδ-reliable volume, tδ,
needed in order to achieve a success probabilityδ of delivering
a page to all receivers, corresponding to theδ-quantile of the
distribution functionPr{T r ≤ t} = Pr{ max

n=1,..N
T r
n ≤ t} =

FN (t) [26, p.404]. Equivalently, this problem can be consid-
ered as estimating theτ -quantileτ = δ

1

N of the distribution
functionF (t). The τ -quantile is preciselytδ.

A. Classical Estimators and their Limitations

Classical quantile estimators compute theδ-quantile,t̂δ, by
interpolating linearly between the order statistics [26, p.404].
For example, consider the averaging quantile estimator [25].
After the completion times ofR realizations are collected and
ordered asT 1,R ≤ T 2,R ≤ . . . ≤ TR,R, the δ-quantile for
Pr{T r ≤ t} = FR(t) is estimated as

t̂δ =

{
1
2 (T

j,R + T j+1,R) if δ = j
R , j = 1, ..R− 1

T j+1,R if j
R < δ < j+1

R , j = 0, ..R− 1.
(1)

A major limitation of all interpolation-based quantile estima-
tors is that they need many realizations (i.e., largeR) to estimate
high quantiles. The fundamental reason is that all these estima-
tors implicitly assume that the estimation will not exceed the
largest order statistic, namely,TR,R. For instance, using Eq. (1)
to estimate the high quantile (whenδ > 1− 1

R ) always yields
t̂δ = TR,R. Therefore, this estimator becomes ineffective when
δ > 1 − 1

R . In other words, it is not possible to estimate any
quantile higher than(1− 1

R ) based on the data collected fromR
realizations using classical quantile estimators. Equivalently, to
determinetδ wherePr{T r ≤ tδ} = δ, one needs to collect the
completion times ofT rs from at leastR = 1

1−δ realizations.
Note that one could equivalently estimate theτ -quantile,

τ = δ
1

N , of the distribution functionF (t) by collecting the
individual completion times,T r

n , from all receivers. However,
it can be shown that at leastR = 1

1−δ realizations are still
required.

B. Extreme Value Theory

The completion time for successfully disseminating a page
corresponds to the maximum of the individual completion times



4

Fig. 1. The relationship between functionF andU .

of each receiver. In order to estimate theδ-reliable volume by
extrapolating beyond the limited amount of feedback (basedon
only a single realization), one needs to explore the properties
of the distribution of the maximum of i.i.d. random variables.

Extreme Value Theory (EVT) provides a sound theoretical
framework for such an extrapolation. It restricts the behavior
of the distribution of the maximum of i.i.d. random variables,
namelyT r, whereT r = max

n=1,..N
T r
n , to an EVT distribution.

The EVT distribution can be specified by just two parameters,
theextreme value index and thescale factor [11], defined below.
Consequently, we can quantify theδ-reliable volume without
requiring knowledge of channel statistics of each individual
receiver. Formally:

Theorem 1 ( [11], Theorem 1.1.3): Suppose there exists
a sequence of constantsa(N) and b(N), such that
maxn=1,..N T r

n−b(N)
a(N) has a non-degenerate limit distribution as

N → ∞. Then

lim
N→∞

FN (a(N)t+ b(N)) = Gγ(t), (2)

where

Gγ(t) = exp
(
−(1 + γt)−

1

γ

)
, for 1 + γt > 0, γ ∈ R, (3)

and the right-hand side is interpreted to beexp(−e−t) when
γ = 0.

DefineU to be the inverse function of 11−F . As depicted in
Fig. 1,U( 1

1−τ ) corresponds to theτ -quantiletτ of F (t) . The
functionU is more convenient to work with when performing
quantile estimation. The next theorem relates the asymptotic
behavior ofU to that ofF .

Theorem 2 ( [11], Theorem 1.1.6): The following statement
is equivalent to Eq. (2). There exists a positive functiona, such
that forx > 0

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
, (4)

and the right-hand side is interpreted to belog x whenγ = 0.
Moreover, Eq. (2) holds withb(N) = U(N) and the same
function a.

Eq. (4) can be used as the basis for extreme quantile
estimation.Let N be thesample size andk be theintermediate
number, where, asN → ∞, k → ∞, and k

N → 0. Then,
one can use the following estimator for theτ -quantile (see [11,

page 67]):

t̂τ = Û(
1

1− τ
) = Û(

N

k
) + â(

N

k
)
( 1
1−τ · k

N )γ̂ − 1

γ̂
. (5)

From the definition ofU , it can be shown thatU(x) =
F−1(1 − 1

x ). SinceF−1(T r
N−k,N) corresponds to theN−k

N -
quantile fork < N , we have

Û(
N

k
) = T r

N−k,N , (6)

which is the (N − k) largest completion time in ther-th
realization.This quantity is readily obtained by computing the
order statistics of the empirical completion times reported by
the receivers. Therefore, when using Eq. (5) to estimate theτ -
quantile, one only needs to estimate theextreme value index γ
and thescale factor a(Nk ). This is the reason why theδ-reliable
volume at the source can be estimated without knowledge of
channel characteristics. Next, we describe statistical approaches
for estimating these two parameters.

C. Estimation of the Extreme Value Index and Scale Factor

We will now introduce two important EVT estimators used
to estimate the extreme value indexγ and the scale factora(Nk )
of Eq. (5). Note that these estimators are derived from Eq. (2)
or its equivalent forms.

1) The Moment Estimator [11, 27]: Themoment estimator is
an extension of the simple and widely used Hill estimator [28],
which is a special casej = 1 of the following equation:

M
(j)
N =

1

k

k−1∑

i=0

(logT r
N−i,N − logT r

N−k,N )j , j = 1, 2. (7)

The Hill’s estimator provides an estimate forγ+ , max(0, γ)

(i.e., γ̂+ = M
(1)
N ). Thus, γ̂+ → 0 when γ < 0 (i.e., it is

non-informative).Let γ− , min(0, γ). This quantity can be
estimated as follows:

γ̂− = 1− 1

2

(
1− (M

(1)
N )2

M
(2)
N

)−1

. (8)

Complementarily to the Hill’s estimator,̂γ− can only estimate
the case whereγ < 0 and converges to 0 for the caseγ ≥ 0.

The moment estimator forγ ∈ R is a combination of the
estimator forγ+ andγ−

γ̂M = M
(1)
N + 1− 1

2

(
1− (M

(1)
N )2

M
(2)
N

)−1

. (9)

The corresponding moment estimator of the scale factor is

âM (
N

k
) = TN−k,NM

(1)
N (1− γ̂−). (10)

The following theorem states that̂γM and âM (Nk ) are
consistent estimators (i.e., they converge in probability to the
actual values ofγ anda(Nk )). In the following, we denote the
upper endpoint ofF (t) by t∗ = sup{t : F (t) < 1} ≤ ∞ and
use the notation→p to denote convergence in probability.
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Theorem 3 ( [11], Theorems 3.5.2 and 4.2.1): Suppose
Eq. (2) holds andt∗ > 0. Let γ̂M and âM (Nk ) be defined as
in Eq. (9) and Eq. (10). Then

γ̂M →p γ and
âM (Nk )

a(Nk )
→p 1, (11)

providedk = k(N)→∞ and k
N → 0, asN →∞.

From the definitions ofÛ(Nk ), γ̂M , âM (Nk ) in Eq. (6),
Eq. (9), and Eq. (10) respectively, we deduce the following im-
portant result, namely that only thek+1 largest order statistics
(of theN samples) are needed to compute the estimator of the
τ -quantile given by Eq. (4).

Corollary 1: Collecting thek + 1 largest order statistics of
T r
n (i.e., T r

N−K,N , T r
N−K+1,N , . . . , T r

N,N ) is sufficient for the
computation of̂tτ .

2) The Maximum Likelihood Estimator [29]: Given a set
of observationsT r

1,N , . . . , T r
N,N , themaximum likelihood (ML)

estimator aims to determine which parameters of the extreme
distribution make the observed data most likely to occur. We
next summarize the work in [29], which provides an equivalent
method of approximating Eq. (5).

As before, the upper endpoint ofF is denotedt∗ = sup{t :
F (t) < 1} ≤ ∞. For s < t∗, let Fs(t) be the conditional
distribution function ofT r

n − s givenT r
n > s. More precisely,

Fs(t) = P (T r
n ≤ t+ s|T r

n > s) =
F (s+ t)− F (s)

1− F (s)
, (12)

for s < t∗, t > 0 and1− F (s) > 0.
Let Hγ(t) be the generalized Pareto distribution function

Hγ(t) = 1− (1 + γt)−
1

γ . (13)

Then, (based on [11, 29] and the citations therein) there exists
a normalizing functiona(s) > 0, which is the same as that
defined in Eq. (4), such that

lim
s→t∗

sup
0<t<t∗−s

∣∣∣∣Fs(t)−Hγ(
t

a(s)
)

∣∣∣∣ = 0, (14)

if and only if Fs is in the maximum domain of attraction of
Gγ(t).

Eq. (14) shows that the distribution of an applicable random
variableT − s givenT > s converges to a generalized Pareto
distribution Hγ(t), as s → t∗. Therefore,Hγ(

t
a(s) ), which

is determined by the parametersγ and a(s), can be used to
approximateFs(t).

The ML estimator aims to determine the parameters which
make the observed data most likely to occur [30]. Specifically,
given a set ofL independent observationst1, t2, .., tL (drawn
from Hγ(

t
a(s) )), the ML estimator determines values ofγ and

a(s) that maximize the joint probability that these observations
will occur. Formally, lethγ,a(s)(t) =

∂Hγ (t/a(s))
∂t be the PDF

(Probability Density Function) ofHγ(
t

a(s) ). Thus we have

hγ,a(s)(t) =
1

a(s)

(
1 + γ

t

a(s)

)−
1

γ
−1

. (15)

Therefore, the joint density function for allL independent
observations is as follows,

hγ,a(s)(t1, t2, .., tL) = ΠL

i=1hγ,a(s)(ti). (16)

Eq. (16) is also calledlikelihood function. The goal of the ML
estimator is to find the values ofγ anda(s) that maximize the
likelihood when given the observationst1, t2, .., tL. Namely,

{γ̂MLE, â(s)MLE} = argmax
γ,a(s)

ΠL

i=1hγ,a(s)(ti). (17)

Equivalently, one can maximize the logarithm of the likelihood
function, calledlog-likelihood, as following,

{γ̂MLE , â(s)MLE} = argmax
γ,a(s)

L∑

i=1

log hγ,a(s)(ti). (18)

In order to obtain the estimation that maximizes the likelihood,
one can set the partial derivatives of the log-likelihood function
(Eq. (18)) with respect toγ anda(s) to zero. Therefore, using
Eq. (15), one can obtain the ML estimation forγ anda(s) by
solving the following system of equations,





∂ log hγ,a(s)(t)

∂γ
= 0,

∂ log hγ,a(s)(t)

∂a(s)
= 0.

(19)

Namely,




L∑

i=1

1

γ2
log

(
1 +

γ

a(s)
(ti)

)

−
L∑

i=1

(
1

γ
+ 1

) ti
a(s)

1 + γ
a(s) ti

= 0,

−
L∑

i=1

1

a(s)
+

L∑

i=1

(
1

γ
+ 1

) γ
a2(s) ti

1 + γ
a(s) ti

= 0.

(20)

Now back to the problem of estimating the extreme
value index and the scale factor using ML estimator.
When given a set of order statistics of random variables
T r
1,N , .., T r

N,N , the distribution of the set of random variables{
(T r

N−k+i,N − T r
N−k,N )|i = 1 . . . k

}
given T r

N−k,N , Fs(t),
can be approximated by the distribution of an ordered sam-
ple of k i.i.d. random variables with CDFHγ(

t
a(s) ), where

s = T r
N−k,N . According to Eq. (20), one thus can obtain the

ML estimators for the extreme value indexγ and the scale
factor a(Nk ) by solving the following system of equations,




k∑

i=1

1

γ2
log

(
1 +

γ

a(Nk )
(T r

N−i+1,N − T r
N−k,N )

)

−
k∑

i=1

(
1

γ
+ 1

) 1
a(N

k
)
(T r

N−i+1,N − T r
N−k,N )

1 + γ
a(N

k
)
(T r

N−i+1,N − T r
N−k,N)

= 0,

k∑

i=1

(
1

γ
+ 1

) γ
a(N

k
)
(T r

N−i+1,N − T r
N−k,N)

1 + γ
a(N

k
)
(T r

N−i+1,N − T r
N−k,N )

= k.

(21)
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Algorithm 1 Learning Phase: Random Sampling (RS) at the
source

1: Attach a common random seed to each packet in the first
page

2: repeat
3: Broadcast a new encoded packet
4: if any completion times received from receiversthen
5: store received completion times
6: end if
7: until N ′ completion times are collected
8: Perform estimation

There are only two unknown variables in Eq. (21), which
areγ anda(Nk ), and their solutions are the ML estimators for
the extreme value index and scale factor, denotedγ̂MLE and
âMLE(

N
k ) respectively. Discussions on obtaining the solutions

of Eq. (21) numerically can be found in [31].
Under appropriate technical conditions [29], it can be shown

that γ̂MLE − γ and âMLE(
N
k )− a(Nk ) converge to asymptotic

Normal distributions, under suitable normalization. Further-
more, similar to the moment estimators, the ML estimators only
require knowledge of thek + 1 largest order statistics.

V. BROADCASTING PROTOCOLS WITHL IMITED FEEDBACK

In practical applications, one of the crucial steps to startthe
estimation is to collect sample data, which is referred to the
learning phase in this paper. The estimation will then be used
to determine the required redundancy for the remaining pages,
which are distributed in thetransmission phase of our protocols.

In the learning phase, the source disseminates the first page
to the network and then collects individual completion times
(T r

ns) from a subset ofthe receivers. Upon collecting enough
responses, the source estimates theδ-reliable volume using
either the moment estimator based on Eq. (9) and Eq. (10), or
the ML estimator based on Eq. (21). The estimate oftδ is used
to determine how many packets to transmit in the transmission
phase.

It is important to minimize the communication overhead
of our protocol (in terms of the duration and the amount of
feedback) in order to maintain scalability, especially when there
is a large number of receivers. We propose two methods for
managing this overhead -Random Sampling (RS) and Full
Sampling with Limited Feedback (FSLF).

A. Random Sampling

1) Learning Phase: In our first approach,Random Sampling,
the source restricts the amount of feedback by only collecting
completion times from a smallsubset (N ′) of receivers chosen
uniformly at random amongN receivers, whereN ′ ≤ N . We
will show through simulation in Section VI-A that randomly
choosingN ′ = 50 out of N = 104 receivers is sufficient to
achieve good estimation.

In order to collect feedback fromN ′ random receivers, the
source keeps encoding and transmitting packets till it receives

Algorithm 2 Learning Phase: RS at the receivers
1: Keep receiving encoded packets until the first page is

successfully decoded
2: Use the common random seed to generate a set ofN ′

different pseudo-random integers uniformly distributed on
[1 . . .N ]

3: if node ID belongs to the set ofN ′ integersthen
4: send completion time to the source
5: end if

feedback fromN ′ receivers with their completion time. It also
attaches a common random seed to each packet.The source’s
algorithm in the learning phase is shown in Algorithm 1.

After decoding the first page, the common seed is used by
all receivers to generate the same set ofN ′ pseudo-random
integers uniformly distributed on[1 . . .N ]. Only receivers with
IDs within this common set send their completion time back
to the source. The source continues to send packets until it
receivesN ′ feedback packets. It then uses the feedback to
estimatetδ. The receivers’ algorithm in the learning phase is
shown in Algorithm 2. In practice the feedback channel itself
may be faulty, or a receiver with ID among theN ′ chosen
receivers may fail to decode the first page. To deal with both
of these issues, one may elect to use a smaller threshold on
the number of feedback packets that must be received before
attempting estimation at the source.

As discussed in Section IV, to quantifytδ, one can either
estimate theδ-quantile ofPr{Tr ≤ t} = FN (t), or estimate
the τ -quantile, τ = δ

1

N of Pr{T n
r ≤ t} = F (t). In our

case, we will estimate theτ -quantile, since the source collects
completion timesT r

n during the dissemination process.
According to Eq. (5), withN ′ data samples,T r

1,N ′, .., T r
N ′,N ′ ,

the source first sorts the data and then obtains the number of
transmissions required using the following estimator:

T̂RS(δ) = Û

(
N ′

k

)
+ â

(
N ′

k

)
(

1

1−δ
1

N

· k
N ′

)γ̂

− 1

γ̂
. (22)

The result will be one of two differentδ-reliable volume
estimators,T̂M

RS(δ) corresponding to the moment estimator or
T̂MLE
RS (δ), corresponding to the ML estimator.Theorem 3 im-

plies that the moment estimators ofγ anda(Nk ) are consistent
asN ′ → N andN →∞.

2) Transmission Phase: The source first broadcasts data
packets as estimated in the learning phase. Receivers that cannot
recover the page, sense the channel and, if no other request is
overheard first, reply to the source with a request for additional
data packets. The source transmits2i−1η additional packets
in the i-th round of its transmissions, whereη is an integer.
This multiplicative factor is important in reducing the number
of rounds (i.e., making it proportional to the logarithm of
the number of additional packet transmissions needed). Our
simulations indicate that this approach does not typicallyresult
in many unnecessary transmissions.If there is no request for a
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Algorithm 3 Transmission Phase: RS at the source
1: repeat
2: Encode a new page
3: Broadcast the required number of encoded packets

(determined by estimation)
4: i← 1
5: repeat
6: Broadcast2i−1η packets
7: i = i+ 1;
8: until no request for additional encoded packets is

received withinTreport amount of time
9: until no new page to broadcast

Algorithm 4 Transmission Phase: RS at the receivers
1: repeat
2: Decode a new page
3: repeat
4: Receive new encoded packets
5: if encoded broadcast packets no longer received

then
6: Request encoded packets from source
7: end if
8: Try to decode the page
9: until successfully decode the current page

10: until all pages are decoded

predefined length of timeTreport, the source moves on to the
next page. In our sensor mote implementation (Section VII),we
useη = 1 andTreport = 500 (ms). Algorithm 3 and 4 show
the algorithms respectively run by the source and the receivers
during the transmission phase.

B. Full Sampling with Limited Feedback

A simple way to improve the quality of estimations using the
RS is to collect more feedback, e.g., by increasingN ′ toward
N . However, this approach does not scale as the number of
receiversN becomes large and may cause feedback implosion,
precisely the problem we try to avoid in the first place.

By exploiting the inherent properties of the EVT estimators,
we devise a sampling approach calledFull Sampling with
Limited Feedback which is able to collect all the completion
times needed from the receivers, with an almost fixed amount
of feedback. Consequently, an appealing property ofFSLF is
that, given a fixed amount of feedback, the estimators become
more accurate when the network has more receivers, since the
source collects more useful data samples.FSLF is designed for
the case where receivers can hear each other.

Although FSLF broadly mirrors the Algorithms 1 and 2
during the learning phase, the approach for collecting samples
is different. It exploits the fact that the EVT estimators only
need thek + 1 (recall k is the intermediate number) largest
order statisticsT r

N−k,N , T r
N−k+1,N , .., T r

N,N as inputs for the
estimation. Therefore, if the sorting process can be performed
before the collection process, and the source only collectsthe

Algorithm 5 Learning Phase: FSLF, at receivern

1: Keep receiving encoded packets until the first page is
successfully decoded and record timeT r

n

2: Listen to the channel until last packet is sent by the source
and record timeT r

3: Wait for a random time period proportional toT r−T r
n, and

record the number of feedback packets containing receiver
completion times sent to the source during that period

4: if number of feedback packets transmitted by other re-
ceivers to source≤ k then

5: SendT r
n to source

6: end if

k+1 largest individual completion times from all the receivers
in the network, then this is equivalent to the case where the
source collects all the data, sorts them, and then uses thek+1
largest order statistics as inputs for the extreme estimators to
quantify theδ-reliable volume.

In order for the source to collect thek+1 largest completion
times, receivers with larger completion times are granted higher
priority in sending feedback.This is achieved as illustrated in
Algorithm 5. The source transmits the first page as in theRS
protocol. Ideally, after the page is successfully disseminated, all
receivers record the network completion timeT r = max

n=1,..N
T r
n .

Each receiver then sets a random timer with length inversely
proportional to the difference between its own completion time
T r
n and the network completion timeT r (note that only the dif-

ference betweenT r andT r
n is needed, not the absolute value of

these variables). Before the timer expires, each receiver records
the number of overheard feedback packets with completion
time larger than or equal to its own. When the timer expires,
a receiver reports its own completion timeT r

n only if less than
k + 1 feedback packets have been recorded.

The timer of each receiver is set as follows. RecallTreport is
the interval of time allotted to receivers to report the feedback.
We set the length of the timer to be a random variable uniformly
distributed betweenTreport

T r−M+1 (T
r−T r

n) and Treport

T r−M+1 (T
r−T r

n+
1). Therefore, a receiver with larger individual completion time
T r
n will report its completion time sooner. After waiting for the

end of the report interval, the source estimates theδ-reliable
volume using thek + 1 largest order statistics.

In practice, each receiver may not precisely know the net-
work completion time and the source may not be able to collect
all k + 1 largest completion times, due to lossy channels. We
let each receiver consider the time when overhearing the last
data packet sent by the source as the network completion time,
and use it in lieu ofT r. In the case where the source collects
k′ < k + 1 feedback packets, it may consider them as the
k′ largest completion times. In such a case, the source may
underestimatetδ. However, the source also has an estimation
from RS when sending the first page. Therefore, it can compare
both estimates and keep the larger one.

The estimators forFSLF are slightly different fromRS. With
FSLF, although the source collects onlyk+1 completion times,
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it is equivalent to the case where it collects the completiontimes
from all the receivers, sorts them and then use thek+1 largest
order statistics as inputs for the extreme estimators. Thus, one
obtains the estimation oftδ as following,

T̂FSLF (δ) = Û(
N

k
) + â(

N

k
)
( 1

1−δ
1

N

· k
N )γ̂ − 1

γ̂
. (23)

We again have two differentδ-reliable volume estimators,
T̂M
FSLF (δ) and T̂MLE

FSLF (δ), depending on the estimators used
(moment or ML).Further, assuming that the source received
thek+1 largest completion times, Corollary 1 implies that the
moment estimators ofγ anda(Nk ) are consistent asN →∞.

In summary, an important property ofFSLF is that given the
same amount of feedback, it achieves higher accuracy as the
number of the receivers becomes larger.FSLF helps to mitigate
the problem of feedback implosion in the learning phase, as it
restricts the number of feedback packets. Therefore, thanks to
its scalability and increasing accuracy, this approach is ideal
for broadcasting in dense networks.

C. Overhead Analysis of Extreme Value Estimators

We next summarize the overhead of the EVT estimators and
compare it with that of classical approaches. We look at the
number of feedback packets needed for the estimation as well
as the number of pages, which corresponds to the time needed.

According to the discussion in Section IV-A, to estimatetδ,
a classical estimator needs to know the completion time of1

1−δ
pages to get a valid estimation. Therefore, the learning phase
of classical estimators requires the transmission of at least 1

1−δ
pages and the collection of the completion time for each page.

For EVT estimators, the learning phase for bothRS and
FSLF requires the transmission of only one page to estimatetδ.
During the learning phase ofRS, only N ′ receivers report their
completion times. Therefore the number of feedback packets
needed forRS estimation isN ′. In the learning phase ofFSLF,
the source transmits the first page usingRS, and then collects
the k + 1 largest completion times. Therefore, the number of
feedback packets needed forFSLF is N ′ + k + 1.

Note that these comparisons are for the best case of all
estimators. In practice, the difference between them can beeven
larger as shown by our simulations and experiments.

VI. N UMERICAL RESULTS

A. Performance of Extreme Value Estimators

We first investigate the overhead and accuracy of the EVT
estimators proposed in Section V in thelearning phase, as well
as the benefit of applying the estimation to thetransmission
phase, in terms of reducing feedback requests and maintaining
the minimum requiredδ-reliable volume, tδ, whereδ = 99%.

In this simulation, a two-page file is disseminated toN
(ranging from 102 to 104) receivers. Each page consists of
M = 1000 packets. For receivern, the corresponding packet
loss ratepn, unknown to the source, is a uniformly distributed
random variable in the range[0, 0.2]. The δ-reliable volume

estimations are obtained from Eq. (22) and Eq. (23) forRS and
FSLF, respectively. The extreme value index and scale factor
are estimated by the moment estimator (Eq. (9) and Eq. (10)),
and the ML estimator (by solving Eq. (21) using Matlab).

For RS, the source collects feedback fromN ′ = 50 random
receivers. The intermediate number isk = 20. Since the
solution of the system of equations for the ML estimator yields
complex solutions whenN ′ is small (similar issue is reported
in [11]), we omit the ML estimation here. ForFSLF, the values
of k for the moment estimator and the ML estimator are set
to 20 and50, respectively. The results shown in the following
figures represent an average over 1000 iterations.

Fig. 2(a) shows that the overhead of the estimators (i.e.,
the number of packets collected for the estimation) marginally
increases as the number of receiversN grows. As discussed
in Section V-C, the smallest possible overhead forRS and
FSLF to perform estimation isN ′ andN ′ + k + 1 feedback
packets, respectively. The result shows that the overhead for
both estimators is close to minimum and remains almost a
constant as the number of receivers increases. Note that the
overhead ofFSLF is slightly higher thanRS, sinceFSLF needs
to collect thek + 1 largest completion times at the end of the
learning phase. Since a small intermediate numberk for the ML
estimator yields to complex solutions, it is set to 50 for theML
estimator, larger than the one for the moment estimator, which
is 20. Recall for theFSLF sampling technique, the intermediate
number corresponds to the number of samples the source needs
to collect from the receivers. Therefore,FSLF with the ML
estimator has higher overhead thanFSLF with the moment
estimator in the learning phase, as shown in Fig. 2(a). Next we
will show that this extra communication cost trades off with
higher accuracy in estimating theδ-reliable volume.

Fig. 2(b) shows the accuracy of the estimators by comparing
the estimations with the empirical quantile. The empiricalquan-
tile is obtained from the classical quantile estimator in Eq. (1)
by running105 identical iterations, bringing this estimate close
to the actual value. The accuracy of theRS approach decreases
as the number of receivers increases. Recall that estimating δ-
quantile,tδ, of FN (t) is equivalent to estimating theτ -quantile,
t′τ , τ = δ

1

N of F (t) (see Section IV). Therefore, increasing the
number of receivers requires greater extrapolation to estimate
higher quantiles. SinceRS fixes the number of feedback to
N ′ = 50, its accuracy thus decreases.

On the other hand, the accuracy ofFSLF-based estimators
improves as the number of receivers grows, because the source
collects more useful data with increasingN . Correspondingly,
the EVT estimates converge to the actual value asN → ∞.
Further, the overhead ofFSLF barely increases asN grows, as
shown in Fig. 2(a), confirming the scalability ofFSLF.

Next, we study the benefit of applying the estimation in
reducing control traffic during the transmission phase. We
record 1), the number of feedback requests and 2), the extra
number of data packets transmitted compared to a pure ARQ
scheme, where the source only transmits when requested and
so the number of data packets transmitted is minimum.
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Fig. 2. Performance of EVT estimators. (a) Learning phase: the overhead of quantile estimation, (b) Learning phase: theaccuracy of the estimators, (c)
Transmission phase: the amount of feedback, (d) Transmission phase: the ratio of extra packets sent to the minimum packets needed.

Fig. 2(c) shows the average number of feedback packets
during the transmission phase. When transmitting a page of
M = 1000 packets toN = 104 receivers using theRS and
moment estimator methods, the average number of feedback
packets is only 1.2 per page. When usingFSLF, it decreases to
0.19 for the moment estimator and 0.04 for the ML estimator.
Therefore, in all cases, receivers recover the page using the
initially estimatedδ-reliable volume with little or no feedback.

Fig. 2(d) shows that the moment estimator using bothRS and
FSLF overestimates the required redundancy by only 4% (of the
total number of packets transmitted). In the ML estimator, the
overestimate is relatively large when the number of receivers
is small, but decreases to a reasonable level for largerN .

Based on the above simulations, we conclude thatFLSF
using the moment estimator provides the best trade-off along
all dimensions of interest (high estimation accuracy and low
amount of feedback).RS using the moment estimator is ac-
curate when the number of receivers is small. However, the
amount of feedback needs to grow with increasingN to
maintain accurate estimation. Both protocols drasticallyreduce
receiver(s)-to-sender traffic and incur only marginal extra com-
munication due to overestimatingtδ.

B. Further Evaluation on FEC Redundancy Estimators

We next study further how each parameter (i.e.,k, N ′, andδ)

affects the accuracy of the FEC redundancy estimators. We only
investigate theRS method, as theFSLF approach is equivalent
to RS whenN ′ = N and yields better accuracy otherwise, as
shown in Fig. 2(b).

In this simulation, we focus on the learning phase. The
parameters areM = 1000, N = 1000 and the packet loss
rates among receivers are again heterogeneous, and uniformly
distributed in the range of[0, 20%]. The estimations are com-
pared with the empirical result which is obtained from Eq. (1)
by running105 identical iterations, and each point in the figures
represents an average over 100 independent estimations, plotted
with a a 95% confidence interval.

1) Varying the intermediate number k: We first investigate
the accuracy of the estimators by varying the choice of the
intermediate numberk and fixingN ′ = N = 1000, δ = 95%.
Fig. 3(a) shows that the bias of both estimators increases as
k increases, which is expected from the properties of extreme
quantile estimators [32]. The results show that while a larger
value ofk leads to a smaller variance for the moment estimator,
it yields a larger variance for the maximum likelihood estimator.
Although the moment estimator has larger variance for small
values ofk (e.g.,k = 10, 20), its 95% confidence interval is
still small, i.e., less than 1% of the estimated quantile.

2) Varying the sample size N ′: We next study how the
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Fig. 3. Performance of extreme value FEC redundancy estimators for different parameters, with 95% confidence interval.(a) N ′ = 1000, δ = 95%, varying
k, (b) δ = 95%, varyingN ′, (c) N ′ = 1000, varying δ.
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Fig. 4. Extreme value estimators for network with small number of receivers with non-i.i.d. packet loss rates. (a) Two state error-burst channel model, (b) The
amount of feedback, (c) The amount of extra data communication.

sample sizeN ′, affects the estimators’ accuracy, by fixingδ =
95%, k = 10, 20 for the moment estimator, andk = 50, 150
for the ML estimator. As expected, Fig. 3(b) shows that the
estimators become more accurate and their variances reduceas
N ′ increases. It is worth noting that for the moment estimator,
a sample sizeN ′ = 25 is sufficient to achieve good estimation,
i.e., within 4% of the empirical value. This implies that the
overhead of usingRS can be made very small, since it roughly
corresponds toN ′ feedback packets, as shown in Fig. 2(a).

3) Varying the success probability δ: We verify the accuracy
of the estimators over a large range of desired success prob-
ability δ, ranging from0.7 to 0.9995. The result (Fig. 3(c))
shows that both estimators are accurate over the entire range.
As one could expect, the estimation variance increases withthe
stringency of the success probability. However, all estimation
errors are within the order of 5% of the empirical value.

C. Small Network and Non-i.i.d. Scenarios

We evaluate the estimators under a non-typical EVT scenario,
i.e., a network with small number of receivers that have non-
i.i.d. packet loss rates. We consider a two state error-burst
channel model in Fig. 4(a). When the receivers are in a good
channel state their packet loss rates are heterogeneous random
variables uniformly distributed in the range[0, 0.2]. When there

is an error-burst (with probabilityPG,B = 0.2), the channel will
switch to the bad state, wherein the packet loss of each receiver
is uniformly distributed in the range[0.6, 0.8]. The channel
switches back to the good state with probabilityPB,G = 0.5 at
subsequent time slots.

Similar to previous simulations, the source first transmitsone
page, collects feedback, and estimatestδ. It then transmits the
next pages based on the estimate. The parameters are as follows,
M = 50, N ranging from 20 to 60,N ′ = 20, k = 10, and
δ = 95%. The results in Fig. 4(b) and Fig. 4(c) demonstrate
that for these scenarios, the estimators still significantly reduce
feedback from the receivers. The extra communication due to
overestimating theδ-reliable volume is slightly larger than in
i.i.d. packet loss scenarios, but it is reasonable.

Both RS and FSLF can be adapted for time-varying chan-
nels by repeatedly running the learning phase periodically,
depending on channel coherence times. From an engineering
perspective, slightly overestimating theδ-reliable volume and
sending a few extra encoded packets will effectively ensurethat
at leastδ fraction of the receivers successfully decode the page.

VII. PROTOTYPE IMPLEMENTATION

In this section, we enhance an over-the-air programming pro-
tocol for wireless sensor networks using the proposed extreme
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value techniques. Our modifications are based on Rateless
Deluge [4], which uses random linear codes for efficient
file distribution to wireless sensors. The performance of both
protocols is compared using our Tmote sky [12] testbed as well
as through the TOSSIM bit-level network simulator [13].

A. Setup

In our setup a file is divided into pages consisting of
20 packets, each with 23 bytes of payload. The packet loss rate
of each receiver is a uniform random variable in the range [0.1,
0.2]. All sensors are within communication range and transmit
at their highest power setting to ensure a good link, and packet
loss at the receiver is forced by dropping packets uniformlyat
random according to its own packet loss rate. All results in this
section represent an average of10 independent trials.

A sensor requests encoded packets from the sender if it
discovers that its neighbors have new data. The request message
specifies the page number and the number of packets needed.
When a sensor receives enough packets, it can decode the page
successfully. A sensor suppresses its request if it has overheard
similar requests by other sensors recently.

Here, we augment the original Rateless Deluge with the
extreme value quantile estimation technique, and refer to the
new protocol as EV-QE Deluge. To ensure a fair comparison,
minimal modifications are made to Rateless Deluge. EV-QE
Deluge operates in the same manner as Rateless Deluge when
disseminating the first page, referred to thelearning phase in
Section V. The source then uses theRS approach to collectN ′

random feedback packets from the receivers and estimate theδ-
reliable volume corresponding to success probabilityδ = 0.95.

In the transmission phase, the source initially disseminates
a page based on the estimatedδ-reliable volume. After that,
it waits for a certain amount of time (Treport = 500 (ms),
as in [1]). In the case that a receiver requests additional
encoded packets during this interval, the packets are trans-
mitted. Otherwise the source proceeds to the next page.Note
that it is possible that the source will proceed to next page
without delivering the current page to all nodes. However,
the underlying Deluge protocol, upon which EV-QE Deluge
is based, guarantees that all data will be reliably disseminated
to all nodes eventually [1].

B. Tmote Sky Sensor Testbed

The performance of EV-QE Deluge and the original Rateless
Deluge is first evaluated on a testbed with 14 Tmote Sky
sensors. One sensor serves as the file-sending base station and
12 other sensors are receivers. The last sensor is used to record
network traffic. During each experiment, a new file is injected
from a PC into the base station to disseminate to the receivers.

The size of the file is 8518 bytes, which corresponds to 20
pages using Rateless Deluge and EV-QE Deluge. We monitor
the network traffic due to the encoded packets transmitted and
due to the encoded packet requests. We also record the overall
completion time of disseminating the file. Since the number of

Fig. 5. Tmote Sky sensors testbed with 14 motes.

Fig. 6. Rateless Deluge vs. EV-QE Deluge: 20 pages,N = 12, M = 20,
heterogeneous packet loss.

receivers here is small (12 sensor motes), we have the source
collect the feedback from every receiver after disseminating the
first page. Namely,N ′ = N = 12 in the first experiment. The
intermediate numberk is set to 5.

The results in Fig. 6 show that EV-QE Deluge sends out
slightly more encoded packets (about 6%). However, it dras-
tically reduces the amount of feedback, which is only 17.3
packets on average. Note that this number includes the overhead
messages in the learning phase for the estimation oftδ, which
is 12, as well as the request messages when the source transmits
the first page using the original Rateless Deluge, which is 3.9 on
average, as shown in Fig. 6. Therefore, with EV-QE Deluge, in
the transmission phase, the average number of feedback packets
is about 1.4 for 19 pages in total, indicating that most of the
time the entire network finishes receiving enough packets after
the source’s first set of transmissions for each page. Being able
to accurately estimatetδ, EV-QE Deluge effectively reduces the
overall data dissemination time by about 30%.

C. Large Scale Network Simulation with TOSSIM

We next compare the performance of both protocols in
TOSSIM for a larger scale experiment. The energy consumption
(due to CPU and Radio) for both protocols is also monitored
through PowerTOSSIM [33]. The parameters for theRS method
are set toN ′ = 30, k = 20.

The simulation results for varying number of receiversN ,
are shown in Fig. 7(a), 7(b) and 7(c). As expected, the number
of data packets sent out by EV-QE Deluge is slightly higher
than Rateless Deluge. However, asN increases, the number of
feedback packets of EV-QE Deluge remains almost constant at
about 50, including theN ′ = 30 initial feedback packets for
the source to estimateδ-reliable volume. On the other hand,
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Fig. 7. Rateless Deluge vs. EV-QE Deluge, TOSSIM simulation: 9 pages,M = 20, heterogeneous packet loss, varying the number of receivers N . (a) Total
packets transmitted: forward and feedback channels, (b) Completion time, (c) Average energy consumption per receiver.

the amount of feedback of Rateless Deluge increases with
N . By reducing the control overhead, EV-QE Deluge is able
to effectively reduce the overall completion time and energy
consumption per receiver by about 30%.

VIII. A PPLICATION TO REAL TIME OBLIVIOUS (RT)
RATELESSCODES

A. RT Codes

To further emphasize the general applicability of our results,
we describe in this section application of extreme value esti-
mators to real time (RT) oblivious codes. RT codes are erasure
correcting rateless codes which use a feedback channel from
the receiver to the source in order to efficiently encode packets
at the source. As compared to other rateless codes that require
very few redundant packet transmissions, RT codes trade com-
munication efficiency (encoded packets transmitted, feedback)
for lower processing overhead and lower memory requirement
at the receivers. To achieve this, a receiver discards any
encoded packet that cannot be decoded immediately; therefore
RT encoded packets are designed to maximize the decoding
probability of encoded packets when they are received.

The RT encoder creates each encoded packet by combining
(XORing) d randomly-chosen input packets out of theM
total input packets (d ≤ M ), where d is the degree of the
encoded packet. Letm be the number of input packets already
decoded at the receiver and reported to the source (encoder)
via feedback. The degreed is determined as follows

d =

{
M if m = M − 1⌊

M+1
M−m

⌋
otherwise,

(24)

The encoder continues transmitting encoded packets as de-
scribed above until the receiver has decoded all the input
packetsi.e., until m = M . Using the construction in Eq. (24)
the authors in [14] show that the expected number of encodings
required for decodingM input packets is less than2M . The
expected number of feedback messages from the receiver to the
source isO(

√
M), and the total expected decoding complexity

of RT codes isO(M logM).
A receiver can decode a degreed encoded degree packet

if any d − 1 input packets used its construction are already

available (previously decoded) at the receiver; because XORing
the encoded packet with thesed − 1 input packets reveals
an unknown input packet. Otherwise the encoded packet is
discarded by the receiver (instead of being stored for decoding
at a later time, as is the case, for example, in LT [8] decoding).
When an input packet is successfully decoded the receiver may
elect to send its decoding progress (the updated number of
input packets decoded,m) to the source if doing so changes
the degreed of encoded packets in Eq. 24.

Consider the scenario of extending this to the case of a source
transmittingM input packets toN receivers in a wireless
communication environment with i.i.d. packet loss rates across
the receivers. The value ofm across the receivers may vary
significantly during decoding. In order to accommodate all
the N receivers, the source has to encode packets using the
smallest value ofm collected from the receivers. Otherwise,
some receivers will not be able to decode the packets.

However, the most significant problem with this approach
is that the number of feedback packets from receivers to
the source grows asO(N

√
M), as we shall demonstrate in

Section VIII-C. For large receiver populations, as is oftenthe
case in dense cellular and sensor networks, the source would
be overwhelmed by the number of feedback packets.

B. Broadcasting Version of RT code

To improve the applicability of RT codes in a broadcasting
scenario, we incorporate use of extreme value estimation tech-
niques. Thus, instead of collecting feedback from the receivers
to adjust the RT degree distribution of the encoded symbols1,
we propose to have the source accurately predict these timings.
We consider the same problem as in the previous sections, i.e.,
broadcasting a file with multiple pages from a source toN
receivers within its communication range. Each page consists
of M packets. Encoding is done at the packet level using an
RT code. In the broadcasting version of RT code, the source
adjusts the degree of encoded packets according to the number
of decoded packets of each receiver using Eq. (24). Specifically,
let the number of input packets decoded at receivern to be

1The terms ‘symbol’ and ‘packet’ are used interchangeably inthis text.
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mn (n = 1, .., N ), then the source creates a degreed encoded
packet according to the following equation,

d =

{
M if minn mn = M − 1⌊

M+1
M−minn mn

⌋
otherwise. (25)

In our approach, the source collects feedback in the form of
sample data from a few receivers and estimates the transition
points when the encoded packets’ degrees are to be incre-
mented. In effect, the source broadcasts encoded packets and
adjusts their degrees according to the total number of encoded
packets already broadcast instead of relying on continuous
feedback from the receivers.

Note that this problem differs from the previous sections in
that here the estimation is performed to predictmultiple transi-
tion points at a time. Specifically, denote byθn,m the number
of encoded packets the source needs to broadcast for noden to
be able to decodem input packets. The source can determine
the degree of the encoded packets with information aboutθn,m
from all receivers. For example, if according to the original
RT code design, the degree of the encoded packet isd when
all receivers have decodedm packets, then alternatively, the
source can adjust the degree to bed whenmaxn θn,m packets
have been sent. Therefore, the problem becomes to estimate
maxn θn,m by only collecting a small amount of feedback when
transmitting the first page, instead of continuously collecting
feedback from all receivers for each page.

Our goal is to sample and analyze a fixed number of feedback
packets in the broadcast of the first page of a file, in order
to estimate theδ-reliable volume tδ of each instance in the
RT code design when the degree of encoded symbols changes.
We can then reduce the amount of feedback while transmitting
subsequent pages by having the source broadcast encoded
packets according to the estimation instead of feedback from
the receivers.

The sampling technique used here is random sampling,
i.e., RS as described in Section V-A. For simplicity, we only
consider the moment estimator. Similar to EV-QE Deluge, our
proposed RT code with EVT estimation technique first obtains
estimations by transmitting the first page. It then uses these
estimations for the transmission of the rest of the pages. Ifafter
the transmission of a page, there remain one or more receivers
which have not finished receiving it, the source switches back
to the original RT code.

C. RT Codes Simulation Results

We evaluate the performance of our EVT-based broadcasting
version of RT code, namely, RTB scheme (labeled EVT estima-
tion in the figures). The number of receivers in the network is
N = 100. We assume the packet loss rates across the receivers
are heterogeneous, unknown, and they are i.i.d and uniformly
distributed between 10% and 20%. The sample size ofRS is
15 and the intermediate number for extreme value estimator is
k = 10. The success probability associated with each transition
point to estimate isδ = 99%. The simulation results shown here
represent an average over 100 independent identical iterations.
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Fig. 8. Expected number of transmissions from the source.N = 100 receivers,
packet loss rates are distributed uniformly at random from 10% to 20%, varying
the number of input packets. 95% confidence interval. Averaged over 100
iterations.
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of input symbols.M = 100 input packets, packet loss rates are distributed
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In the following simulations we evaluate the performance
of the original RT code, RTB and RT code with another
simple estimation technique (labeled MAX estimation). With
the MAX estimation, the source determines the degree by
simply taking a maximum of the givenN ′(N ′ ≤ N) sample
data,θ1,m, .., θN ′,m, collected during the transmission of the
first page. Namely, instead of performing extrapolation using
Eq. (5), the MAX estimation simply uses the largest order
statistic, i.e.,max1,..,N ′ θn,m to estimate the actual shifting
point,max1,..,N θn,m. Note that while this approach is simple,
it generally underestimates the transition point, since the sample
size is much smaller than the number of receivers in the
network. Moreover, this simple approach does not provide any
relationship between the number of packets broadcasted by the
source and the probability of successfully delivering the pages.

Figs. 8 and 9 plot the average number of encoded packets and
the average number of feedback packets needed to guarantee
completion across all receivers for the original RT code, EVT
estimation and MAX estimation. Both estimation techniques
need slightly more encoded packets than the original RT codes.
The difference in the number of encoded packets required
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Fig. 10. Original RT vs. modified RT, expected completion time. M = 100

input packets, packet loss rates are distributed uniformlyat random from 10%
to 20%, varying the number of receivers. 95% confidence interval. Averaged
over 100 iterations.

by EVT estimation and the original RT code remains almost
constant even as the number of input packets (M ) increases.
However, both the EVT and MAX estimation techniques dras-
tically reduce the amount of feedback required as compared to
the original RT codes.

MAX estimation transmits less encoded packets than EVT
estimation because it underestimates the time to change the
degree. This is because MAX estimation may fail to take
into account very slow receivers, and may therefore be too
optimistic about the decoding rate of the estimated slowest
receiver. This results in receivers falling back to the original RT
scheme more often with MAX estimation and, consequently,
significantly more feedback.

In Figs. 10 and 11, we compare the performance of the
different schemes while varying the number of receivers. We
report the average number of encoded packets required and the
number of feedback packets needed to guarantee completion.

For all sizes of receiver populations, the number of encoded
packets transmissions required by the EVT and MAX esti-
mation techniques is slightly larger (10%∼ 20%) than that
required by original RT codes, and appears to grow sub-linearly
with the number of receivers. On the other hand, the number
of feedback packets required using the estimation techniques
is drastically smaller (revealing a reduction by a multiplicative
factor of 60 with MAX and 150 with EVT) than that required
by the original RT codes.Though the size of feedback packets
is generally smaller than that of data packets, in many casesthe
difference is not very significant. For instance, in TinyOS [1],
the default maximum packet size (including headers) is 36 bytes
while the minimum packet size is 13 bytes.

IX. CONCLUDING REMARKS

In this paper, we propose novel, on-line prediction mechanisms
for data dissemination in wireless networks with heterogeneous
packet loss probabilities. These mechanisms are based on
a combination of rateless coding with extreme value theory
(EVT) estimation. Rateless coding requires receivers to only
receive a sufficient number of distinct, encoded packets and
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Fig. 11. Expected number of feedback packets while varying the number of
receivers.M = 100 input packets, packet loss rates are distributed uniformly
at random from 10% to 20%, varying the number of receivers. 95% confidence
interval. Averaged over 100 iterations.

eliminates the need for them to convey control information
aboutwhich specific packets require retransmission (i.e., they
only need to indicate thenumber of missing packets). Following
a short learning phase, EVT estimation nearly suppresses
feedback packets and retransmissions altogether by providing a
source with an accurate prediction of the number of redundant
packet transmissions needed.Our mechanisms, based on the
(asymptotically exact) moment and ML estimators in extreme
value theory, offer major scalability benefits because (1) esti-
mation of per-receiver packet loss probabilities is not required;
(2) the amount of feedback used to estimate redundancy is
nearly constant; (3) accuracy improves with growth in the
number of receivers.

We introduce two new protocols,RS andFSLF, for wireless
data broadcasting.We show thatFSLF using the moment
estimator provides the best trade-off in terms of obtaininghigh
estimation accuracy while maintaining low feedback. We then
further investigate the impact of the system parameters on the
estimation result through simulation and provide guidelines
for practical implementation.We also demonstrate practical
feasibility of our proposed approach by integratingRS into the
Rateless Deluge OAP protocol on a testbed of T-sky sensor
motes. Our experimental and simulation results indicate a 30%
reduction in latency and energy consumption, an improvement
of particular significance for battery-limited wireless devices.

Finally, we incorporate use of EVT estimation into RT codes
under a broadcasting scenario. We employ EVT to estimate the
transition points (i.e., the number of packets transmissions),
at which a source changes the degree of encoded packets.
Our simulations show that such an approach reduces the total
number of feedback packets by a factor of 100 compared
to original RT codes. These results demonstrate the wide
applicability of our protocols to improving the performance of
any broadcasting application making use of feedback.
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