Neural Networks as Function Primitives
Software/Hardware Support with X-FILES/DANA

Schuyler Eldridge1 Tommy Unger2 Marcia Sahaya Louis1
Amos Waterland3 Margo Seltzer3
Jonathan Appavoo2 Ajay Joshi1

1Boston University Department of Electrical and Computer Engineering

2Boston University Department of Computer Science

3Harvard University School of Engineering and Applied Sciences

Boston Area Architecture Workshop ’16
Neural Networks as Function Primitives

Motivation

- Neural networks and machine learning are everywhere (again)
 - Broad use in high tech and big data, e.g., Google’s Tensorflow [1]
 - Enable automatic parallelization, e.g., ASC [3]
 - Provide a means for approximate computing, e.g., NPU [2]

- Our vision
 - Neural networks are a new functional primitive useful at various scales of computation [4]

- With that in mind, we’ve developed software and hardware for the use of accelerator-backed neural network computation

Our Contributions Towards this Vision

X-FILES: Software/Hardware Extensions

Extensions for the Integration of Machine Learning in Everyday Systems
- A defined user and supervisor interface for neural networks
- This includes supervisor architectural state (hardware)

DANA: An Example Multi-Transaction Accelerator

Dynamically Allocated Neural Network Accelerator
- An accelerator aligning with our multi transaction vision

Neural Network Transactions

A transaction encapsulates a request by a process to compute the output of a specific neural network for a provided input
What does that mean?

1. Grab a Rocket Chip RISC-V Microprocessor [1]
2. Build a RISC-V toolchain
3. Grab a copy of our X-FILES/DANA accelerator [2]
 - Implemented in Chisel [3]
4. Build an FPGA configuration for Rocket + X-FILES/DANA
5. User processes can safely throw transactions at X-FILES hardware
 - With support for feedforward and learning computation

[1] Rocket Chip git repository, UC Berkeley, Online: github.com/ucb-bar/rocket-chip
[2] X-FILES/DANA git repository, Boston University, Online (soon!): github.com/bu-icsg/xfiles-dana
X-FILES Software Components

Supervisor API
- Establishes sets of processes that can access neural network hardware
- Defines the neural networks that processes are allowed to access
- *More details on the poster!*

User API
- Works at the level of *transactions*
 - A complete request for access to neural network resources, communication of inputs, processing, and communication of outputs
- Initiating a new transaction
- Writing data
- Reading data
X-FILES/DANA Hardware

Components

- X-FILES Hardware Arbiter maintaining transaction state
- DANA to move transactions towards completion
 - With support for feedforward or learning computation

Figure: X-FILES/DANA hardware architecture
Open Source Plans

Remaining Items
- Linux kernel integration
- Support for asynchronous data transfer

Open Source Availability
- Should be ready by the end of February
- On GitHub: github.com/bu-icsg/xfiles-dana
Acknowledgments

This work was supported by the following:

- A NASA Space Technology Research Fellowship
- An NSF Graduate Research Fellowship
- NSF CAREER awards
- A Google Faculty Research Award