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Abstract

We give conditions under which the number of events which occur in a sequence of
m-dependent events is stochastically smaller than a suitably defined compound Poisson
random variable. The results are applied to counts of sequence pattern appearances and
to system reliability. We also provide a numerical example.
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1. Introduction

Given a sequence of m-dependent indicator variables X1, X2, . . . , Xn, we study the distribu-
tion of the sum S = ∑n

i=1 Xi and give conditions under which S is stochastically smaller than
a suitably defined compound Poisson random variable. A variable Y is stochastically smaller
than a variable Z, written Y ≤st Z, if P(Y ≥ k) ≤ P(Z ≥ k) for all k. A variable C has a
compound Poisson distribution if it can be written as

C =
N∑

i=1

Ai,

where N is a Poisson random variable with mean λ, and A1, A2, . . . are independent random
variables each having the same distribution as the random variable A. We use the notation
CP(λ, A) to denote this compound Poisson distribution. Random variables X1, X2, . . . , Xn are
m-dependent if the vector (Xi1 , Xi2 , . . . , Xia ) is independent of the vector (Xj1 , Xj2 , . . . , Xjb

)

for all a and b and for all i· and j· such that

1 ≤ i1 < i2 < · · · < ia ≤ ia + m < j1 < j2 < · · · < jb ≤ n.

There is an extensive literature on Poisson and compound Poisson approximations for sums of
variables. A Poisson approximation for the sum of independent indicator variables was studied
by Le Cam (1960), and there have subsequently been many papers on assessing the accuracy
of Poisson approximations for dependent indicator variables using the Stein–Chen method; see
the survey by Barbour et al. (1992). Compound Poisson approximations, whose wide scope
of applicability was surveyed by Aldous (1989), tend to be appropriate when positive values
of the variables tend to occur in ‘clumps’. There has also been much recent research directed
towards assessing the accuracy of compound Poisson approximations using Stein’s method;
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see, for example, Barbour and Månsson (2002) and Barbour and Chryssaphinou (2001). These
approaches generally give upper bounds on the total variation distance

dTV(S, C) = sup
A

| P(S ∈ A) − P(C ∈ A)|,

when C has either an appropriate Poisson or compound Poisson distribution.
In this paper, in contrast, we study conditions under which S ≤st C, for an approximating

compound Poisson variable C. Upper bounds on tail probabilities of S can thus, in theory, be
obtained by computing the tail probabilities of C using standard techniques; see, for example,
Peköz and Ross (2004) for techniques for computing probabilities for the compound Poisson
distribution. To get the stochastic inequality we must have P(S > 0) ≤ P(C > 0), and so
computing the Poisson parameter for the approximating compound Poisson distribution may
be complicated in practice. It is important to note that the approximating distributions we use
are thus not necessarily the same as the ones studied above in the setting of total variation error
bounds.

Some upper bounds for tail probabilities were given in terms of the tail probabilities of
an approximating Poisson distribution in Barbour et al. (1992, p. 43) in the case of sums of
negatively related indicators (variables are negatively related if increasing functions of disjoint
sets of the variables are negatively correlated). Klass and Nowicki (2003) also gave a tail
inequality for a Poisson approximation in the special case where the indicator variables are
certain functions of independent or conditionally independent variables. Here, in contrast, we
give results in the more general setting of the compound Poisson approximation.

The organization of this paper is as follows. In Section 2, we present the main result and
its proof and, in Section 3, we present applications of the main result to the distribution of the
number of overlapping or non-overlapping patterns occurring in a sequence of coin flips, and
the reliability of the m-consecutive-k-of-n system. In Section 4, we give a numerical example
illustrating the approximations.

2. Main result

Here we present our main result.

Theorem 1. Given an m-dependent sequence of nonnegative random variables

X1, X2, . . . , Xn

and a random variable Y , called the ‘clump size’variable, independent of all else and satisfying

( n∑
i=k

Xi

∣∣∣∣ Xk > 0, X1, . . . , Xk−1

)
≤st Y +

n∑
i=k+m+1

Xi, for all k > 0, (1)

we have S ≤st C, where S = ∑n
i=1 Xi and C has the compound Poisson distribution

CP(− ln P(S = 0), Y ) as defined above.

Remark 1. Notice that this choice of the parameter λ = − ln P(S = 0) for the compound
Poisson distribution gives

P(C = 0) = eln P(S=0) = P(S = 0);
thus, it is the smallest value of λ that could possibly be used and still have the stochastic
inequality S ≤st C.
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Remark 2. We can think of a ‘clump’ as beginning whenever a positive value appears in the
sequence, and continuing until a situation arises where no additional positive value can occur
within m subsequent positions. Condition (1) says that the sum of the values occurring during
a ‘clump’ is stochastically smaller than Y . Note that the left-hand side of (1) represents the
conditional distribution of

∑n
i=k Xi , given the values of X1, . . . , Xk−1 and the fact that Xk > 0.

Before we prove the main result we need the following lemma about the compound Poisson
distribution.

Lemma 1. Let C(λ) have the distribution CP(λ, Y ), and let U be a uniform(0, 1) random
variable independent of all else. Then, for k > 0, we obtain

P(C(λ) ≥ k) = P(U ≥ e−λ, C(λ + ln U) ≥ k − Y ).

Proof. Consider a unit-rate Poisson process on the interval (0, λ), where each Poisson event
is marked with an independent draw from the distribution Y . Construct C(λ) by equating it to
the sum of all the marks. The result follows by conditioning on the time of the first event, and
by noting that − ln U has an exponential distribution with mean 1.

Next we prove the main result.

Proof of Theorem 1. Let C(λ) be a random variable with the CP(λ, Y ) distribution, and let

Sj =
n∑

i=j

Xi.

We show, by backwards induction on j , that Sj ≤st C(− ln P(Sj = 0)), for all j , and thus
prove our main result, S ≤st C.

The cases where j > n − m − 1 are immediate from (1). Then, given some j < n − m − 1,
we assume as our induction hypothesis that, for all i > j , Si ≤st C(− ln P(Si = 0)). Picking
any i such that j ≤ i + 1 < n − m − 1 and letting T = min{k ≥ j : Xk > 0}, we obtain

P(Si+1 = 0) = P(Sj = 0, Si+1 = 0) + P(Sj > 0, Si+1 = 0)

= P(Sj = 0) + P(Si+1 = 0, T ≤ i)

≥ P(Sj = 0) + P(Si+1 = 0, T ≤ i − m)

= P(Sj = 0) + P(Si+1 = 0) P(T ≤ i − m),

where the fourth line follows from the fact that the variables are m-dependent. By rearranging
this equation, we obtain

P(Si+1 = 0) ≥ P(Sj = 0)

1 − P(T ≤ i − m)
= P(Sj = 0)

1 − F(i − m)
, (2)

where we construct the function F(x) = P(T − U ≤ x) using U , a uniform(0, 1) random
variable which is independent of all else.



A compound Poisson approximation inequality 285

Letting λ = − ln P(Sj = 0) and letting Y be independent of all else, we have, for k > 0,

P(Sj ≥ k) ≤ P(Y + ST +m+1 ≥ k, T ≤ n)

≤ P(C(− ln P(ST +m+1 = 0)) ≥ k − Y, T ≤ n)

≤ P(C(λ + ln(1 − F(T ))) ≥ k − Y, F (T ) ≤ F(n))

≤ P(C(λ + ln(1 − F(T − U)) ≥ k − Y, F (T − U) ≤ F(n))

= P(C(λ + ln U ≥ k − Y, 1 − U ≤ 1 − e−λ)

= P(C(λ + ln U) ≥ k − Y, U ≥ e−λ), (3)

where the first line follows from (1), the second line from the induction hypothesis after
conditioning on Y and T , the third line from (2), and the fourth line from the fact that C(λ) is
stochastically increasing in λ. The last two lines follow from the fact that T −U is a continuous
random variable with continuous cumulative distribution function F(x), and that, for any x,
0 ≤ x ≤ 1, we have P(F (T − U) ≤ x) = x and, thus, the pair of variables F(T − U) and
1 − F(T − U) have the same joint distribution as the pair 1 − U and U . We also use the
fact that, by the definition of λ, 1 − F(n) = e−λ. By applying Lemma 1 to (3), we obtain
Sj ≤st C(− ln P(Sj = 0)), and so the induction is complete and the theorem is proved.

3. Applications

In this section, we apply Theorem 1 to counts of sequence patterns and the reliability of the
m-consecutive-k-of-n system.

Suppose that a coin for which the probability of heads is equal to p is flipped n times. Let
S denote the number of times a given pattern appears as a run, including overlapping runs.
For example, the pattern HHHH (i.e. four heads) appears twice in the sequence HHHHH. The
study of approximations for this classical problem goes back at least to von Mises (1921), and
is often used to test the effectiveness of Poisson or compound Poisson approximations; see,
for example, Barbour et al. (1992), Arratia et al. (1989), Erhardsson (2000), Chryssaphinou
et al. (2001), Chryssaphinou and Papastavridis (1988), and Geske et al. (1995). There is also
an extensive literature on this type of problem in the context of reliability; see the survey by
Chang et al. (2000). In the reliability setting, this is called the m-consecutive-k-of-n system, a
system of n independent components which fails if there are at least m runs of at least k failed
components. Some approximations for this problem in the case m = 1 were studied in Peköz
(1996), and an exact formula was given in Peköz and Ross (1995).

Corollary 1. If a coin for which the probability of heads is equal to p is flipped n times, and
S denotes the number of times k heads appear in a row (including overlapping runs), then
S ≤st C, where C has a CP(− ln P(S = 0), Y ) distribution, and Y has a geometric distribution
with parameter 1 − p.

Proof. Let Xi = 1 if a run of length k ends with flip number i, and let S = ∑n
i=1 Xi . It

is clear that the indicator variables are (k − 1)-dependent. Given that a run appears at some
position, the number of subsequent overlapping runs plus the initial run follows a geometric
distribution with parameter 1−p. After the first tails appears, no subsequent run can appear for
at least k additional flips. Thus, it is clear that the choice of the geometric(1 − p) distribution
for the clump size Y will satisfy (1). The result then follows from Theorem 1.

Theorem 1 also applies to non-overlapping patterns.
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Corollary 2. If a coin for which the probability of heads is equal to p is flipped n times, and
S denotes the number of times a given pattern, which cannot overlap with itself, appears (e.g.
TTTH), then S ≤st C, where C has a Poisson distribution with parameter λ = − ln P(S = 0).

Proof. Again let Xi = 1 if the pattern ends with flip number i, and let S = ∑n
i=1 Xi . Given

a pattern appearance, no other pattern can appear for at least k additional flips. Thus, it is clear
that Y = 1 will satisfy (1) and, since CP(λ, 1) is a Poisson(λ) distribution, the result follows
from Theorem 1.

A similar result applies to any pattern which can overlap with itself. The clump size variable
is still geometric, but with a different parameter. For concreteness, we consider the pattern
HTHT.

Corollary 3. If a coin for which the probability of heads is equal to p is flipped n times,
and S denotes the number of times the pattern HTHT appears, then S ≤st C, where C has a
CP(− ln P(S = 0), Y ) distribution and Y has a geometric distribution with parameter 1/(1+p).

Proof. Let Xi = 1 if the pattern ends with flip number i, and let S = ∑n
i=1 Xi . Suppose

that the pattern HTHT has just appeared; let Y be equal to the total number of times HTHT
appears (including this initial one) before two tails in a row (TT) appears. Once the pattern TT
appears, the next appearance of HTHT cannot overlap with it and cannot appear for at least
four additional flips. It can be seen that Y satisfies

Y
d=

⎧⎪⎨
⎪⎩

1 if the next flip is T,

1 + Y if the next two flips are HT,

Y if the next two flips are HH,

where ‘
d=’ denotes equality in distribution. This gives the moment generating function

�(t) = E[etY ]
= (1 − p)et + p(1 − p)et�(t) + p2�(t)

= (1/(1 + p))et

1 − (1 − 1/(1 + p))et
,

which is the moment generating function of a geometric random variable with parameter
1/(1 + p).

4. A numerical example

Here we give a numerical example and compare the approximations obtained to the exact
values. Let S be equal to the number of times four heads appear in a row in ten flips of a fair coin.
Let C1 have the compound Poisson distribution CP(− ln P(S = 0), geometric( 1

2 )), which is our
approximation from Theorem 1. For the parameter we calculated that − ln P(S = 0) = 0.281.

For the purposes of comparison, we also compute the usual compound Poisson approxima-
tion used in the literature in the context of Stein’s method. For this type of problem, Erhardsson
(2000, Theorem 3.1) used the CP(λ, geometric( 1

2 )) distribution with

λ = (n − r + 1)pr(1 − p) = 0.219,

where n = 10, r = 4, and p = 1
2 . This approximation used the ‘declumping’ idea, i.e. that the

appearances of the pattern THHHH should approximately follow a Poisson process; thus, the
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Table 1: Distribution of S, C1, and C2.

k P(S = k) P(C1 = k) P(C2 = k)

0 0.7549 0.7549 0.8035
1 0.1328 0.1061 0.0879
2 0.0635 0.0605 0.0487
3 0.0293 0.0343 0.0270
4 0.0117 0.0194 0.0149
5 0.0049 0.0109 0.0082
6 0.0020 0.0061 0.0045
7 0.0010 0.0034 0.0025
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Figure 1: Cumulative distribution function of S, C1, and C2.

subsequent appearances of the pattern (the clump size) should have a geometric distribution
with parameter 1

2 . We let C2 have this compound Poisson distribution.
We use EXCEL® to calculate the exact distribution of S, C1, and C2; the results are displayed

in Table 1. There S has the exact distribution, C1 is our (stochastically larger) approximation,
and C2 is the usual approximation given in the literature. It can be seen that our approximation
is better at the low end of the distribution, while the usual approximation is better further out in
the tail of the distribution. In Figure 1, we plot the cumulative distribution functions of these
three distributions, and see that the cumulative distribution function for our approximation C1,
as expected, goes below the ones for C2 and S. This indicates, as expected from Theorem 1,
that C1 is stochastically larger than C2 and S.
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