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Econometrica, Vol. 57, No. 4 (July, 1989), 937-969 

SUBSTITUTION, RISK AVERSION, AND THE TEMPORAL 
BEHAVIOR OF CONSUMPTION AND ASSET RETURNS: A 

THEORETICAL FRAMEWORK1 

BY LARRY G. EPSTEIN AND STANLEY E. ZIN 

This paper develops a class of recursive, but not necessarily expected utility, preferences 
over intertemporal consumption lotteries. An important feature of these general prefer- 
ences is that they permit risk attitudes to be disentangled from the degree of intertemporal 
substitutability. Moreover, in an infinite horizon, representative agent context these prefer- 
ence specifications lead to a model of asset returns in which appropriate versions of both 
the atemporal CAPM and the intertemporal consumption-CAPM are nested as special 
cases. In our general model, systematic risk of an asset is determined by covariance with 
both the return to the market portfolio and consumption growth, while in each of the 
existing models only one of these factors plays a role. This result is achieved despite the 
homotheticity of preferences and the separability of consumption and portfolio decisions. 
Two other auxiliary analytical contributions which are of independent interest are the 
proofs of (i) the existence of recursive intertemporal utility functions, and (ii) the existence 
of optima to corresponding optimization problems. In proving (i), it is necessary to define a 
suitable domain for utility functions. This is achieved by extending the formulation of the 
space of temporal lotteries in Kreps and Porteus (1978) to an infinite horizon framework. 

A final contribution is the integration into a temporal setting of a broad class of 
atemporal non-expected utility theories. For homogeneous members of the class due to 
Chew (1985) and Dekel (1986), the corresponding intertemporal asset pricing model is 
derived. 

KEYwoRDs: Intertemporal substitution, risk aversion, asset returns, recursive utility, 
non-expected utility theory, temporal lotteries. 

1. INTRODUCTION 

THIS PAPER DEVELOPS a class of recursive, but not necessarily expected utility, 
preferences over intertemporal consumption lotteries. An important feature of 
these general preferences is that they permit risk attitudes to be disentangled 
from the degree of intertemporal substitutability. Moreover, in an infinite hori- 
zon, representative agent context these preference specifications lead to a model 
of asset returns in which appropriate versions of both the temporal CAPM and 
the intertemporal consumption-CAPM are nested as special cases. In our general 
model, systematic risk of an asset is determined by covariance with both the 
return to the market portfolio and consumption growth, while in each of the 
existing models only one of these factors plays a role. This result is achieved 
despite the homotheticity of preferences and the separability of consumption and 
portfolio decisions. Two other auxiliary analytical contributions which are of 
independent interest are the proofs of (i) the existence of recursive intertemporal 
utility functions, and (ii) the existence of optima to corresponding optimization 
problems. In proving (i), it is necessary to define a suitable domain for utility 

1 Three referees provided detailed and helpful comments. We have also benefited from discussions 
with Chew Soo Hong, Roger Farmer, and Angelo Melino. The first author gratefully acknowledges 
the financial support of the Social Sciences and Humanities Research Council of Canada. 
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938 LARRY G. EPSTEIN AND STANLEY E. ZIN 

functions. This is achieved by extending the formulation of the space of temporal 
lotteries in Kreps and Porteus (1978) to an infinite horizon framework. 

Our general class of preferences contains three noteworthy subclasses. In 
increasing order of generality, they are: (a)-expected utility preferences with an 
intertemporally additive and homogeneous von Neumann-Morgenstern utility 
index; (b)-an infinite horizon extension of homogeneous versions of the Kreps 
and Porteus (1978, 1979a, 1979b) structure; and (c)-a further generalization 
which embeds the atemporal non-expected utility theory of Chew (1989) and 
Dekel (1986) into a multiperiod framework. An unattractive feature of the 
standard specification (a) is that the two distinct aspects of preference, intertem- 
poral substitutability and relative risk aversion, are intertwined; indeed the 
elasticity of substitution and the risk aversion parameter are reciprocals of one 
another. In contrast, our specifications, including (b) and (c), are sufficiently 
flexible to permit those two aspects of preference to be separated. 

The advantage of such a separation has been highlighted by the empirical 
literature on the behavior of asset returns and consumption over time. Expected 
utility, representative agent, optimizing models have not performed well empiri- 
cally (Hansen and Singleton (1983), Mehra and Prescott (1985)). One possible 
explanation for this poor performance is the above noted inflexibility of the 
expected utility specification. Grossman and Shiller (1981), Hall (1985), and Zin 
(1987) have made this suggestion and the latter two papers have attempted to 
remedy the specification problem by adopting Selden's (1978) OCE preferences. 
But the latter are intertemporally inconsistent and the equations estimated by 
these authors are applicable only to a naive consumer who continually ignores 
the fact that plans formulated at any given time will generally not be carried out 
in the future. In contrast, all utility functions considered in this paper are based 
on a recursive structure and so are intertemporally consistent. The empirical 
performance of our recursive utility specifications is explored in Epstein and Zin 
(1989). 

Apart from the empirical literature noted above, a second primary motivation 
for this paper is provided by the recent literature on non-expected utility theories 
of preference. (See Machina (1982) for a survey and Dekel (1986) and Yaari 
(1987) for recent contributions.) These theories and the surrounding applications 
have been formulated largely in atemporal frameworks. Moreover, empirical 
support for them has been based exclusively on behavioral-experimental evi- 
dence, e.g., they can explain the Allais paradox. (See Machina (1982) for a 
discussion of this evidence and for an argument that violations of the indepen- 
dence axiom of expected utility theory are both widespread and systematic.) In 
contrast, this paper integrates a broad class of these non-expected utility theories, 
including the homogeneous members of the Chew-Dekel class, into a recursive 
temporal framework and derives their implications for the structure of asset 
returns and the temporal behavior of consumption. Moreover, our companion 
paper (1988) shows that the resulting model, in the Chew-Dekel case, can be 
estimated by available econometric techniques. In particular, we can test statisti- 
cally whether the Chew-Dekel generalization of expected utility provides a 
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significant improvement in the explanation of asset returns. We suspect that 
many economists would view this as a more relevant test of the importance of 
this generalization of expected utility. It is thus hoped that this pair of papers will 
convince skeptical readers that some of the recently formulated non-expected 
utility theories have empirical content and that their usefulness in explaining 
market data could and should be explored. 

An unusual feature of our preference orderings that merits some attention in 
these opening remarks is that they generally imply nonindifference to the way in 
which uncertainty about consumption resolves over time, where temporal resolu- 
tion is intended in the sense of Kreps and Porteus (1978). (These authors are 
henceforth KP.) It is recognized (KP (1979a), Machina (1984)) that early resolu- 
tion is generally preferable when considering a preference ordering for random 
income streams induced from preference for consumption streams, since in such 
contexts earlier resolution can improve planning. But the case for nonindifference 
to timing is not clear at the primitive level of consumption. Indeed, indifference is 
generally assumed, since it is implied by the usual expected utility specifications. 
On the other hand, we offer three comments in defense of our approach. First, it 
is perfectly "rational" to care about the way in which consumption uncertainty 
resolves over time. (See Chew and Epstein (1989) for some elaboration and 
examples; see also KP (1979a, p. 82).) One could attempt to employ introspection 
to determine whether such nonindifference is present and whether it is likely to 
be empirically significant. But clearly a preferable route to resolving the issue is 
to let the data speak. Thus, our second point is that we can test (see Epstein and 
Zin (1989)) whether nonindifference is revealed by the data to be statistically 
significant. Finally, note that if indifference to timing and the intertemporal 
consistency of preferences are both assumed, then (Chew and Epstein (1989)) an 
expected utility ordering is implied. One of these axioms must be weakened in 
light of the empirical evidence cited earlier and in light of the difficulty of 
separating risk aversion from substitution within the expected utility framework. 
For elaboration on the latter point, see Section 4 below and also Chew and 
Epstein (1987). The option of weakening consistency is pursued in the latter 
paper. 

The paper proceeds as follows: The consumption space and recursive utility 
functions are formulated in Sections 2 and 3 respectively. The central properties 
of utility functions are considered next. Section 5 treats the consumption-port- 
folio choice problem for an agent with recursive utility. In Section 6, the 
corresponding Euler equations are employed to infer equilibrium relations for 
asset returns in a representative agent model. Some concluding remarks on 
potential applications and extensions are offered in Section 7. Proofs are rele- 
gated to appendices. 

2. CONSUMPTION PROGRAMS 

This section defines the consumption space. It will be important to model 
carefully the information structure facing our agent, or in other words, the way in 
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which consumption uncertainty is resolved over time. A formal structure which 
includes such detail is the space of temporal lotteries defined by KP (1978). Their 
definition is restricted to a finite horizon framework. Here (and in Appendix 1) 
we describe an extension to an infinite horizon.2 

For the benefit of those readers who are anxious to move on to the structure of 
utility functions and the behavioral analysis, we present first an informal descrip- 
tion of the space of temporal lotteries, which description extends to (2.5) below. 
The remainder of this section and Appendix 1 complete the definition of the 
consumption space but are not essential to the understanding of the crux of the 
paper. 

The following notation is adopted: For any metric space X denote by B(X) 
the Borel a-algebra and by M(X) the space of Borel probability measures on X 
endowed with the weak convergence topology. The probability measure which 
assigns unit mass to { x } is denoted Ax. 

Each temporal lottery d can be pictured as an infinite probability tree in which 
each branch corresponds to a deterministic consumption stream y E R?+. Denote 
by D the space of such lotteries endowed with some metric. The lottery d can be 
identified with a pair (co, m) where co > 0 denotes the nonstochastic period 0 
level of consumption and m is a probability measure over the set of t = 1 nodes 
in the tree. But each such node may be identified with the probability tree 
emanating from it. Thus m can be thought of as an element of M(D). We 
conclude that the space of temporal lotteries should satisfy 

(2.1) D is homeomorphic to R+X M(D). 

The construction of D, described in detail below, is based on the following 
intuition: Picture an infinite probability tree d and for each t imagine "collaps- 
ing" everything beyond t in the sense that all uncertainty which in d resolves at t 
or later is now completely resolved at t. This transformation generates a new tree 
dt,. As t increases, dt provides a better approximation to the initial tree d and the 
approximation error vanishes asymptotically. Thus the infinite sequence of such 
approximations (dl,..., dt, ... ) accurately represents the infinite horizon lottery d 
and we identify d with the infinite sequence. The dt's prescribe a common period 
0 consumption level co and they induce the same probability distribution for 
consumption in period 1 and beyond. They differ only in the way in which the 
uncertainty about future consumption is resolved over time. In particular, given 
d = (dl, .. ., d, ... ), then d1 = (co, ml) where ml E M(R+) and all uncertainty in 
d1 is resolved in period 1. Refer to ml as representing the atemporal distribution 
of uncertain future consumption. 

The space D is too broad to serve as a domain for the class of utility functions 
of interest here; e.g., the uncertainty regarding future consumption need not be 
limited to bounded support for any normal definition of boundedness. Thus we 

2After completion of this paper we learned of a very similar mathematical construction by Mertens 
and Zamir (1985) for the space of infinite hierarchy of beliefs in the context of Bayesian games. See 
also Myerson (1985). 
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will proceed to define a subspace of D which will serve as a domain for utility 
functions. 

First, for any b ) 1 and 1> 0 define the set of deterministic consumption 
sequences 

(.) Y(b;1)--y = (co, cl,...) ER+:sup c,lb' < I b< oc, 

Y(0; 1) R+. 

(Endow these sets, as well as RO, with the metrizable product topology.) Of 
course, b bounds the rate of growth of consumption while / bounds consumption 
levels. We take the consumption space to be D(b) c D consisting of those 
temporal lotteries in which the atemporal distribution of future consumption is 
represented by some ml in Mb(RO) U I>0M(Y(b; I)), i.e., 

(2.3) D(b) {dE D: d1 = (co, in), ml e Mb(RO)}. 

Elements of D(b) may be called consumption programs as well as temporal 
lotteries. 

This definition of the consumption space satisfies two desiderata. First, by 
construction, each ml has compact support. Second, the homeomorphism (2.1) 
survives in the modified form whereby 

(2.4) D(b) is homeomorphic to R+x M(D(b)), 
A 

where M(D(b)) is a subspace of M(D(b)) defined precisely below. Thus each 
d e D(b) can be identified with a pair (co, m) where co > 0 is period 0 consump- 
tion and m e M(D(b)) represents the uncertain future. The significance of (2.4) 
is that as one moves along a probability tree corresponding to a lottery in D(b), 
the subtree emanating from any intermediate node necessarily lies in the domain 
D(b). Such "stationarity" of the choice space is essential for the investigation of 
recursive (and hence also stationary) utility functions. The parallel requirement 
for a domain Y c R+ in a deterministic analysis would be that 

09C19C29... -) 
e Y== (C1cC29.) E .. 

Finally, we will also be interested in subspaces of the form 

(2.5) D(b; 1) (d e D: d1 = (co, m), ml e M(Y(b; 1))), 

i.e., the subspace of temporal lotteries in which the atemporal distribution of 
consumption has support in Y(b; 1). Choice sets in the optimization problems 
below will be contained in some D(b; 1) and the latter lies in D(b), the domain 
of utility functions. 

Some readers may wish at this point to skip to Section 3. We continue here 
with a more thorough and formal analysis. We adopt the following conventions: 
X is identified as a subspace of M( X) in the usual fashion. We write X c X' if X 
is homeomorphic to a (Borel) subspace of X'. In that case, we can identify M( X) 
with a subspace of M(X') via the map which takes m E M(X) into m' E M(X'), 
m'(B) m(B nl X) for all Borel subsets B of X'. 
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y deD2c D,d=(co,m) 

m= c6(c d) 
+ 

(1C a(c1,d) 
co y 

1-a d1 =(c1, f ( + (l-f)&)?DI 

(1-) d' =(c1'4V. + (1-fV)&-)eD1 

y,,y' andy'eRR 

(c1,y) 

cr3 (c1,y ) (co,mI) eD1, ml f(m), 

co f defined in (2.7) 

(1-a)(1-f 3) 

FIGURE 1 

For t > 1 define the spaces D, inductively as follows: 

(2.6) D1 R xM(R+), Dt=-R+xM(Dt_), t> 2. 

For each t, Dt can be interpreted as the set of (temporal) consumption lotteries in 
which all uncertainty is resolved at or before time t. KP show how elements of Dt 
can be represented by probability trees (see Figure 1). Since R+ c Dl, one can 
show by induction that Dtc Dt+1 for all t> 1. Each Dt is a separable metric 
space (Parthasarathy (1967, Theorem 6.2, p. 43)). Denote by Bt the Borel 
a-algebra for Dt (t >? 1). 

We wish to define formally what it means for dtc e Dt and dt+1 e Dt+1 to 
induce the identical probability measure on Rx and thus to differ only in the 
temporal resolution of the common uncertainty. For that purpose define f: 
M(R+x M(R+)) -- M(R+) by 

(2.7) f (m)(B) EmTB(-, ), BeB(RO+), 

where 

TB: R+X M(R) -*R+, 

TB(c, v)-v{yERo: (c, y) EB}. 
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For each "two-stage lottery" m, f(m) is the probability measure induced on R+ 
by having all uncertainty resolve at the "first stage." 

Define the functions 

ft: 
M(Dt) -*M(Dt_) 

DoR+ 

gt: Dt + 1- Dt, t > 1, 

inductively as follows: 

fl =f, 

(2 .8) gt (co, m ) =(co, Mt(m )), t >, 1, 

ft(m)(B) =m(gt-1 (B)), VB E Bt_l t >, 2. 

Then for any dt+1 E Dt+?1, gt(dt+? ) E Dt induces the same uncertainty regarding 
(c1, C2,...) as does dt+1 but the uncertainty is resolved earlier. (See Figure 1 
again.) Therefore, if in dt+1 all uncertainty is resolved by period t, then the 
operation of gt has no effect. In fact, 

(2.9) gt dt+l) = dt+1 dt+1 E Dt. 

We are now ready to define the space of temporal lotteries D. The intuition, 
provided above, that each infinite probability tree can be identified with the 
infinite sequence of the "collapsed" finite horizon trees, leads to the following 
formal definition: 

(2.10) D = {(dl,..., dt,... ): dt E Dt and dt = gt(dt+1) Vt 2 I 

(This construction is an inverse limit in the sense of Parthasarathy (p. 135).) The 
topology of D is that induced by the product topology on the Cartesian product 
Dx ... xDtx - . 

Each Dt is embedded in D by the map which takes dt 
(dl. , dt_1, dt, dt,.), where di = g1(d,+1) for i = 1.., t - 1. Given the prod- 
uct topology on D it is clear that U0 DT is dense in D. This denseness 
corresponds to the fact that for lotteries in D all uncertainty is resolved 
asymptotically. 

We can now prove the following Theorem (see Appendix 1): 

THEOREM 2.1: The space D defined by (2.10) is a separable metric space and D 
is homeomorphic to R+x M(D). Moreover, U'Dt is dense in D. 

For the reasons given above, we define the consumption space to be the 
subspace D(b) from (2.3). To state the counterpart of Theorem 2.1 for D(b), as 
well as for later uses, it is convenient to introduce some further notation. For 
each t, let vt: D -* D, be the projection map. Denote by Bt the Borel a-algebra 
for D, and by q7t-l(Bt) the family ( 7t-l(Bt): Bt E Bt} of subsets of D. The 
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projection maps induce, for each t > 1, the map 

(2-11) Pt+1: M(D) -+M(D,), Pt+ lm (B,-m (7,t- Bt), VBt,c-Bt. 

Finally, let Dt(b) Dt n D(b) be the set of consumption programs in which all 
uncertainty is resolved by period t. Then Dt(b) C Dt?,(b) and U?ODt(b) c D(b) 
is the set of consumption programs in which all uncertainty is resolved in finite 
time. 

THEOREM 2.2: The space D(b) defined by (2.3) is a separable metric space which 
is homeomorphic to R+X M(D(b)), where 

M(D(b)) = {m E M(D(b)): f (m2) E U M(Y(b;l)), m2 = P2m. 
I>0 

Moreover, U?OD(b) is dense in D(b). 

The interpretation of the Theorem is evident in light of the preceding discus- 
sion. (The difference between M(D(b)) and M(D(b)) is clarified in Appendix 1 
following the proof of the theorem.) 

3. RECURSIVE UTILITY 

All utility functions are defined on D(b) and are recursive there. It may be 
helpful, therefore, to begin by considering briefly the structure of recursive utility 
over deterministic consumption streams. If V is such a utility function, then 
(Koopmans (1960)) in the obvious notation 

(3.1) V(cO, cl, ... ) = W(cO, V(c1, c2, ... )), 

for some function W. This structure has been explored also by Lucas and Stokey 
(1984) and Boyd (1987) where W is termed an aggregator, as it combines current 
consumption and future utility to determine current utility. 

In contemplating an extension of (3.1) to the stochastic case we note that 
future utility is random. It seems natural, in that case, to compute a certainty 
equivalent for random future utility and then to combine the certainty equivalent 
utility level with co via an aggregator. Thus we are led to consider certainty 
equivalent (or generalized mean value) functionals ,u. Each such mean value is a 
map, 

,u: dom ,uic M(R +) - R +, 

which is consistent with first and second degree stochastic dominance and 
satisfies 

(3.2) p (8J )=x VX eR+, 

i.e., if a gamble yields the outcome x with certainty, then x is the certainty 
equivalent of the gamble. 

Given a utility function V: D(b) -- R+ and (co, m) E D(b), denote by V[m] 
the probability measure for future utility implied by V and m E M(D(b)) C 
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a cl 
~~~~~~~~~~~~temporal lottery d, 

a ci~~~~~~~ 
cO C ~~~~~~~~~m and mb ?M(D) 

cb~~~ 

temporal lottery d, 

cCO 
- a dW_b (l-a)~~~~~~~~~ m and m e,M(,D) 

_b_~~~b C1 m 

Consistency: (,) e (c 1m ) i=a,b 

=> d )* d 

FIGURE 2 

M(D(b)), i.e., 

(3.3) V[m](Q) =m{dED: V(d) EQ}, QEB(R,). 

The utility function V is called recursive if it satisfies the following equation on 
its domain: 

(3.4) V(co, m) = W(co, ti(V[m])) 

for some increasing aggregator function W: R24- R + and some certainty equiva- 
lent ,. 

This relation is the cornerstone of our analysis. Of course, it generalizes the 
more familiar structure (3.1). Note also that the recursive structure immediately 
implies the intertemporal consistency of preference (in the sense of Johnsen and 
Donaldson (1985) or Figure 2) and the stationarity of preference (in the sense of 
Koopmans (1960), for example). 
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The question which immediately arises is whether and under what circum- 
stances there exist utility functions V satisfying (3.4).3 To answer this question we 
restrict the admissible aggregators and certainty equivalents. First, we require 
that W have the CES form 

(3.5) W(C Z) = [co + ZO]1/P, O +p < , O < < l. 

(The p = 0 case is ignored for simplicity.) In conjunction with (3.1), this implies 
that when restricted to deterministic consumption programs, V is an intertempo- 
ral CES utility function with elasticity of substitution a= (1 - p)-. Though 
restrictive, the CES specification for W is still sufficiently flexible to permit the 
issue of separation of substitutability from risk aversion to be addressed. 

In contrast, a broad class of mean value functionals will be allowed. In this 
section they will be required to satisfy the following: 

MV.1: If {p } and p are in M([O, a]) c M(R), then 

(a) lim fdp = fdp Vf: R --+R+ increasing 

= limI(pn) = ,u(p), and 

(b) limsup ffdpn < ffdp for all f: R +- R increasing 

=* him sUPIL(Pn) < IL( P)* 

MV.1 is a form of continuity. The convergence criteria implicit in the hypothe- 
ses of (a) and (b) are stringent in the sense that the functions f are not required 
to be bounded or continuous, but MV.1(a) (resp. (b)) is not comparable with the 
assumption that ,u is continuous (resp. u.s.c.) on M(R+).4 

We can now prove the existence of recursive utility functions. 

THEOREM 3.1: Let W be defined by (3.5) and let jm be a mean value functional 
satisfying MV.1. Then there exists a solution V to (3.4) if (a) p > 0 and /8bP < 1, in 
which case V is defined on D(b) and u.s.c. on D(b; 1) for all 1 > 0; (b) p < 0, in 
which case V is defined on D(oo) and is u.s.c. on any D(b; 1). 

When p < 0, W(co, 0) = 0 for all co so that the zero function solves (3.4). The 
solution V provided by the theorem is nontrivial. In particular, on U1Y(b; 1), 

3 Thus our approach, similar to that followed by Lucas and Stokey (1984), is to begin with W and 
,t and to show that a utility function is implied. It would be interesting also to work in the opposite 
direction of specifying axioms for intertemporal utility and deriving W and I.t. A related axiomatic 
analysis in a finite horizon framework may be found in Chew and Epstein (1989). 

4Sequences in M(R+) satisfying the hypothesis in MV.1(b) arise here in the following way: Let 
mn - m in M(D), g: D -3 R+ u.s.c. and bounded above. Then Lemma A2.1 implies that 
limsupff(g(.))dm"(.) <Jf(g(*)) dm(-) for all increasing f since f(g(*)) is u.s.c. and bounded 
above on D. See Case 2 in the proof of Theorem 3.1 for the role played by MV.1(a). It essentially 
ensures that y satisfies an extension of the monotone convergence theorem of integration. 
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which is a subspace of D(b), V coincides with the common specification 
[E,i8cPj]l/P This coincidence applies also if p > 0. 

A proof of the theorem is provided in Appendix 3 but some comments are in 
order here. In deterministic frameworks the existence of recursive utility func- 
tions has been proven by application of the Contraction Mapping Theorem 
(Lucas and Stokey (1984)). The commonly used form of this theorem requires 
bounded utility and aggregator functions, which is violated by (3.5). Thus we 
apply a Weighted Contraction Theorem developed by Boyd (1987) to deal with 
unbounded aggregators. His theorem does not apply in all cases below since the 
stochastic structure introduces some complications. Nevertheless, for those cases 
where the contraction mapping technique fails, we are able to prove existence of 
recursive utility by means of a " partial sum" or " monotone convergence" 
technique which is also adapted from Boyd. 

Turn now to some subclasses of recursive utility functions based on particular 
specifications for the certainty equivalent functional. We argue at the end of 
Section 4 that each of these subclasses is of theoretical interest and not merely a 
parametric example of a recursive utility function. 

In all of the subclasses to follow IL satisfies MV.1 and the homogeneity 
property MV.2. 

MV.2: IL(pPX) = XIL(p.) for all X > 0, where pAX and p. are probability 
measures in dom IL corresponding to the random variables x and Ax- respectively. 

This homogeneity plays a large role in the behavioral analysis below; particu- 
larly in the derivation of equilibrium asset return relations which involve only 
market, and thus presumably observable, variables. 

CLASS 1 (Expected Utility): Let 

IL ( p)-- =|EPXP dp ( X)) -(EXG)l pE M( R ) 

where p is the parameter appearing in the aggregator (3.5). This specification for 
,u leads to the common intertemporal utility function 

-0 t 1-/p (3.6) V(co, m) = c +EmlEA3tP fj 

where ml denotes the temporal probability measure on consumption streams 
induced by m as described in Section 2. (More precisely, (c0, ml) = vl(d) 
71(c0, m) where vi is defined prior to Theorem 2.2.) 

CLASS 2 (Kreps/Porteus): Let 

(3.7) tL( p)-(Ep.V)l/ a p E M(R+), 

where 0 0 a < 1, in which case V satisfies the recursive relation 

(3.8) V(c05, m) = cP + f3(EmVa(*))P/) I 1/P 
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(The ax = 0 case is ignored for simplicity.) The previous class is obtained by the 
parametric restriction a = p.5 

We can rewrite (3.8) in the form 

(3.9) U(co, m) = H(co, EmU(.)), 

where U Va/a is ordinally equivalent to V and where 

H(c, z) [CP + (az)/J a/P 

The recursive relation (3.9) is a special case (due to the particular specification of 
H) of the structures studied by KP (1978). Those authors point out that the 
utility functions defined by (3.9) conform with expected utility theory when 
ranking timeless gambles, i.e., those in which uncertainty is resolved before 
further consumption takes place. In fact, for ranking wealth gambles which are 
timeless and whose outcomes reveal nothing regarding future asset rates of 
return, an agent with recursive utility would use the objective function tu(pt), 
where x is random wealth. (See the end of Section 5.) Thus the certainty 
equivalent functional ,u which was introduced to evaluate utility distributions is 
also relevant for evaluating timeless wealth lotteries. In particular, if ,u is 
specified by (3.7), then timeless wealth gambles are ranked by an expected utility 
ordering. Since the bulk of the experimental evidence against expected utility 
theory is based on choices amongst timeless gambles, the KP specification (3.8) is 
inconsistent with that evidence. Thus we are led to seek non-expected utility 
based mean value functions and consequently generalizations of the KP intertem- 
poral utility specifications. 

CLASS 3 (Chew/Dekel): The mean value functional ,u is defined on M(R+) 
implicitly by an equation of the form 

(3.10) F(x, (p)) dp(x) = O, p E M(R+) 

where F: R 2 -+R is continuous, increasing (decreasing) in its first (second) 
argument, F(., z) is concave, and F(x, x) 0. Chew (1989) and Dekel (1986) 
show that such a functional ,u is consistent with first and second degree stochastic 
dominance and can explain the Allais paradox.6 Condition (3.2) is immediate. In 
Appendix 2 we show that such a functional ,u satisfies MV.1. In order that ,u 
satisfy the homogeneity condition MV.2 we require that F be linearly homoge- 
neous. In that case, by defining +(x) F(x, 1), we can rewrite (3.10) in the form 

(3.11) f4(x/tL(p)) dp(x) = O, p E M(R++). 

SFarmer (1987) employs the a = 1 specialization of (3.8) adapted to a finite horizon framework. 
Also, Weil (1987a, 1987b) has independently proposed functional forms similar to (3.8). But their 
presentation is not based upon the general recursive structure (3.4). Moreover, his papers do not 
contain any of the analysis provided here. 

6 See also Chew (1983) which deals with the case F(x, z) = w(x)[v(x) - v(z)], where the explicit 
representation ,u(p) = v-{ Ep[w(-)v(.)]/Epw(.)} exists. In general, however, (3.10) does not admit 
an explicit solution for ,t(p). 
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Then 4 is continuous, increasing, concave, and p(1) = 0. Note that if 

(3.12) +(x)=(xa-1)/a, 00a<1, 

then ,u(p) reduces to the expected utility based certainty equivalent (3.7). But, of 
course, other specifications for p are possible. For example, one that is investi- 
gated empirically in Epstein and Zin (1989) is 

(3.13) p(x)=(xa-1)/a+a(x-1), 0O a<1, a>0. 

If the functional ,u defined in (3.11) is substituted into (3.4) then a recursive 
relation is obtained for intertemporal utility V. Theorem 3.1 may be applied to 
establish the existence of V. Since (3.11) generalizes (3.7), the class of Chew-Dekel 
based intertemporal utility functions generalizes the KP class. An appeal of this 
generalization is that it can potentially provide a unified explanation of both 
market consumption and asset return data (via the representative agent frame- 
work described below) and experimental data. With regard to the latter, Machina 
(1982) formulates a property of functionals ,u, called Hypothesis II, which he 
argues is both sufficient and in a sense also necessary for an explanation of Allais 
and other paradoxes. In terms of (3.11), Hypothesis II is equivalent to the 
straightforward restriction on 4 that -x+"(x)/+'(x) is (strictly) decreasing. This 
restriction can be readily incorporated into specifications for p, e.g., it is satisfied 
by (3.13) if a > O. 

The above examples do not exhaust the class of recursive intertemporal utility 
functions covered by Theorem 3.1. Other specifications for ,u, taken from the 
atemporal non-expected utility literature for example, could be adopted if the 
seemingly mild continuity condition MV.1 is satisfied. Thus Theorem 3.1 should 
permit the integration into a temporal setting of a substantial portion of the 
non-expected utility literature. 

4. SUBSTITUTION, RISK AVERSION, AND TIMING 

The key properties of recursive utility functionals will be discussed here. 
It has already been noted that the specification (3.5) for the aggregator implies 

that deterministic consumption sequences are ranked by an intertemporal CES 
utility function with elasticity of substitution a = (1 - p)-'. Thus we interpret p 
as a parameter reflecting substitutability. 

Next turn to risk aversion and in particular to comparative risk aversion. Let V 
and V* be two recursive utility functions with possibly distinct aggregators W 
and W* conforming to (3.5).7 We wish to define what it means for V* to be more 
risk averse than V. To do that, define c = X(m) for any (c0, m) by 

V(c0, m) = V(c0, c, c, * * 

7 The ensuing discussion could be carried out without restricting aggregators to conform with (3.5). 
But such generality would complicate the exposition somewhat for the following reason: If V is 
recursive with aggregator W and certainty equivalent functional ,u, then any monotonic transform of 
V, say h(V), is also recursive with aggregator W, W(c, z) - hW(c, h- (z)) and certainty equivalent 
functional ,u, ji(p ) = h { u(ph-1(5))}. Thus a given preference ordering of temporal lotteries can be 
represented by many (W, ,t) pairs. By fixing the representation (3.5) for the aggregator, we avoid the 
need to refer to the entire class of "equivalent" (W, ,t) pairs. 
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Interpret the "nearly" constant and deterministic path (co, c, c,...) which is 
indifferent to (co, m) as the certainty equivalent for the latter. (Note that c 
depends only on m and not on co.) The path (co, X*(m), A*(m),...) is defined 
analogously given V*. It is natural to say that V* is more risk averse than V if and 
only if X*(m) < X(m) for all (co, m) in some common domain for V and V*. 

Evidently, if V and V* are comparable in the above sense, then they must rank 
nonstochastic consumption programs identically, i.e., W= W* or equivalently, 
p = p* and / = /3*. Moreover, V* is more risk averse than V if and only if 
W= W* and 

(4.1) u*(-)<M(.) 

on the appropriate domain. (Necessity of these conditions is obvious. For 
sufficiency, note that they imply, given the construction in the proof of Theorem 
3.1, that V*(-) < V(-).) Thus the certainty equivalent functional determines the 
degree of risk aversion of the corresponding intertemporal utility function, at 
least for comparative purposes. Further support for this interpretation of ,u is 
provided at the end of Section 5. 

Since, by assumption, mean value functionals 4* exhibit risk aversion in the 
sense of second degree stochastic dominance, it follows that 

z*(-) < E(.), 

where E(-) denotes the expected value operator. Thus the least risk averse 
intertemporal utility function is the one for which ,u(*) = E(-). Moreover, there is 
a sense in which the latter specification implies risk neutrality, e.g., in the context 
of timeless wealth gambles or in the portfolio choice context described at the end 
of Section 5. It is apparent, therefore, that "low" or "moderate" risk aversion can 
coexist with a small elasticity of substitution, which is impossible in the expected 
utility specification. 

In the case of KP functionals (3.8), the condition (4.1) is equivalent to a* < a. 
Thus we interpret a as a measure of risk aversion for comparative purposes with 
smaller a's indicating greater risk aversion. A separation between the risk 
aversion parameter (a) and the substitution parameter (p) is achieved. 

For the Chew-Dekel class based on (3.11), (4.1) is equivalent to 

0*//( *)/*(p */ () < "*)/'*) 

This is satisfied in the parametric class defined by (3.13) if a* < a and a* < a. 
A comparable separation between risk aversion and substitution does not 

appear possible within the expected utility model. To see this, consider consump- 
tion programs (co, m), with m E M(Y(b; 1)) c M(R+) and let 

V(co, m) = Em{CiP/p + t/p), 

which is ordinally equivalent to (3.6). The general multicommodity analysis of 
Kihlstrom and Mirman (1974) suggests that we take a monotonic transform h of 
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the von Neumann-Morgenstem utility index and define 

(4.2) V*(co, m) = Emh[chP/p + j3CP/p] 

Then V* is more risk averse than V in the sense defined above, or equivalently in 
the sense of Kihlstrom and Mirman (1974), if and only if h is concave. 

At first glance, therefore, it would seem that comparative risk aversion analysis 
is feasible within an expected utility framework. But in a temporal setting, this 
familiar approach encounters serious difficulties. To see this, consider an individ- 
ual with the utility function (4.2) who arrives at period T and contemplates the 
remaining future. If past consumption levels were c0, ... I cT_1, then the utility 
function for the remaining future is presumably8 

(4.3) V*T(C,m c,, _1 

=Emh[/t5 E p ? IT(CP + EIt-Tj)p] 

Thus the preference ordering at T depends upon past consumption values unless 
h has constant absolute risk aversion. Dependence upon the past is in principle 
sensible but the form which this dependence takes above is implausible, since 
(4.3) and 0 <,8 < 1 imply that the dependence on past consumption is greater as 
the past becomes more distant. (For example, denote by H(CO,..., CT- 1; 
CT, CT+1 ...) the von Neumann-Morgenstern utility index on the right side of 
(4.3). If derivatives are evaluated at a point where c0 = C1= T1, then 

d-Tl (-HCTlCT+/HCT+1) = 
T-1 

(-HcT+cT+1/HCT+l). 

Thus the risk premium for a small gamble in period (T + 1) consumption is 
affected more by a small change in c0 than by a small change in CT- _1) On the 
other hand, if h (z) = - exp( -Az), A > 0, then the nonstationarity of prefer- 
ences is implied as period T preferences are represented by VT(CT, m) = Em - 
exp(-A13Tu(CT, cT?1, ... )), where u is the additive functional EfotcP/P. Declin- 
ing risk aversion with T is imposed a priori. Though such a "changing tastes" 
specification may be appropriate in some modelling exercises, it would appear to 
be a hindrance rather than a help to exploring the questions outlined in the 
introduction and in Section 7. More importantly, if attitudes towards future 
gambles are changing with the passage of time as above, then plans will generally 

8Otherwise tastes are changing through time. This is unappealing as an a priori specification and, 
moreover, implies that preferences are intertemporally inconsistent. Hall's (1981) specification suffers 
from these problems. 
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not be intertemporally consistent. The above unappealing features of the familiar 
Kihlstrom and Mirman approach to comparative risk aversion are not restricted 
to the case where the von Neumann-Morgenstern utility index is additively 
separable. For example, they may be confirmed also for the nonadditive indices 
axiomatized in Epstein (1983) which feature variable discount rates. 

Finally, with regard to attitudes towards the timing of the resolution of 
uncertainty, see Figure 3. The two temporal lotteries portrayed there differ 
precisely in the timing of the resolution of uncertainty as defined by KP (1978). A 
recursive utility function is indifferent to the timing of resolution (in all such 
pairs of lotteries) if and only if it is an expected utility functional such as (3.6). 
(This follows by a straightforward extension of the finite horizon arguments in 
Chew and Epstein (1989).) In particular, for the KP class, the curvature of 
H(co,-) defined in (3.9) is the determinant of attitudes towards timing with 
indifference towards timing prevailing only if H(co, ) is linear (KP (1978)). We 
can conclude, in fact, that given (3.8) early (late) resolution is preferred if 
a < (>)P 

For more general recursive utility functions, we have not found a characteriza- 
tion in terms of W and it of the conditions under which early or late resolution is 
preferred. But the characterization for the KP class raises an issue which we 
suspect is relevant more generally and which calls for some attention. We have 
interpreted a as a risk aversion parameter. But with p fixed, a reduction in a not 
only increases risk aversion but also may transform a preference for late resolu- 
tion into a preference for early resolution. One is left wondering how to interpret 
the comparative statics effects of a change in a. Similarly, a change in p for given 
a affects both substitutability and attitudes towards timing. Thus the latter aspect 
of preference seems intertwined with both substitutability and risk aversion. 
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We offer three comments in response. First, from the perspective of potential 
empirical applications, the specifications (3.8) and a fortiori (3.4) are still more 
flexible than the common expected utility functional form. Second, the behavioral 
analysis in the next section will provide further support for our interpretation of 
a, or more generally ,u, as a risk aversion parameter since a or ,u will determine 
the degree of risk taking in certain portfolio choice problems. Finally, we suspect 
that the lack of separation noted above reflects the inherent inseparability of 
these three aspects of preference rather than a deficiency of our theoretical 
framework. Further study of this issue is required. 

To conclude this section, we observe that attitudes towards timing can be used 
to distinguish, within the family of recursive utility functions, each of the three 
subclasses defined in Section 3. It has already been pointed out that timing 
indifference implies an expected utility ordering. Next consider the Chew-Dekel 
subclass. Suppose that V is such that the lotteries in Figure 3 are indifferent to 
one another whenever V(d) = V(e); that is, the timing of resolution is a matter 
of indifference if the two future prospects regarding which information is being 
provided, are themselves indifferent. Refer to this property as quasi-timing 
indifference (QTI). A straightforward extension of the finite horizon arguments in 
Chew and Epstein (1989) shows that the only recursive utility functions satisfying 
QTI are those based on (3.10). If an appropriate homotheticity assumption is 
imposed on V, then ,u must satisfy MV.2 and (3.11) is obtained. (See Chew and 
Epstein (1989) for the basis for a comparable argument for the KP class (3.8) and 
for discussion of QTI. An alternative basis for an axiomatization of KP prefer- 
ences may be found in KP (1978).) Thus a theoretical case can be made for 
interest in the KP and Chew-Dekel subclasses of recursive utility functions. 
Accordingly, we do not apologize for the fact that some of the discussion of the 
asset pricing implications of our framework is limited to these subclasses. 

5. THE REPRESENTATIVE AGENT 

The remainder of this paper derives relations between aggregate consumption 
and real rates of return which must hold in a competitive equilibrium. The 
procedure adopted is that of the rational expectations literature on aggregate 
consumption (Hall (1978)). In this section we determine the optimal consumption 
and portfolio behavior of an individual who faces exogenous rates of return to 
saving. Then, in the next section, we take the individual to be a representative 
agent in the economy so that the Euler equations corresponding to his intertem- 
poral plan define relations between aggregate consumption and rates of return 
that must hold in equilibrium. We deviate from earlier literature in the specifica- 
tion of a recursive (but not necessarily expected utility) specification for prefer- 
ences. Consequently, the derivation of the Euler equations is nonstandard. 

Our representative agent operates in a standard environment. There are K 
assets. The gross return to holding the k th asset between t and (t + 1) is 
described by the random variable Pk,, - oo < t < oo, where each rkt has support 
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in [r, r], r > 0. Let r? = (v,K..., rKt). We assume that (5, Zt)??o is a stationary 
stochastic process. The role of zt E Rz is to provide information regarding the 
future. It is assumed that (5, E,) is observed at the start of period (t + 1), just 
prior to the time at which period (t + 1) consumption and portfolio decisions are 
made. Without loss of generality we may take the underlying probability space to 
be (Q, B(Q), 'I) where S2 is the set of doubly infinite sequences with tth 
component (rt, zt) and B(2) is the (product) Borel a-algebra. 

The state of the world at time t is defined by the existing wealth level xt and 
by the history of realized past values of (Pi, 2i)'s. Thus let 

t-l 

Qt = [, oo)X X ([ r KXRZ)[0, oo) x It 

where the (product) Borel a-algebra is adopted for It and St. A consumption- 
portfolio plan (from t = 0 onwards) is a sequence (ho,..., ht.... ) of measurable 
functions ht: St 

_ [0, o0) X SK, where SK is the unit simplex in RK. The 
interpretation of ht(xt, It) = (ct, wt) is that given period t wealth xt and history 
It E It, the agent consumes ct and invests the proportion Wkt in the kth asset, 
Wt= (Wlt ..WKt)- 

A plan is homogeneous if Vt > 0 and V(x, It) e Pt ht(l, It) = (ct, wt) => 

ht(x, It) = (ctx, wt). Because of the homotheticity of preferences and the linearity 
of "technology," it is natural to restrict oneself to homogeneous plans which are 
henceforth simply plans. 

A plan is stationary if 3h such that ht = h Vt. Finally, a plan is feasible if 
Vt > 0 and V(xt, It) E Pt, ct < xt where ct is the first component of ht(xt, It) and 
where wealth evolves according to 

(5.1)~ X= (Xt_- i-Ct_ J Wt' iFt- 1,1 

xo > 0 given.9 
Each plan implies an infinite probability tree in consumption levels. Moreover, 

if the plan is feasible, then the corresponding probability tree itself corresponds 
to a temporal lottery in D(r; xo) c D(r). Formally, denote by FP the set of 
feasible plans for a given (xo, IO). Appendix 4 shows that FP can be embedded in 
a "natural fashion" in D(r) by the map e. Moreover, D(r) is a subspace of D(b) 
for any b > r. Thus, if V is defined on D(b), the problem 

(5.2) J(Io, xo) sup{ V(d): d E e (FP)} 

is well-defined if r < b. The conditions under which the supremum is attained are 
specified in the next theorem. 

THEOREM 5.1: Let V be the recursive utility function constructed in Theorem 3.1, 
defined on D(b) and having aggregator (3.5) and a mean value functional satisfying 

9 This budget constraint excludes exogenous sources of income and labor income. This exclusion is 
important for the homogeneity property (5.4) below and subsequently for our derivation of Euler 
equations. Some discussion of the modifications necessary to accommodate these sources of income 
may be found in Epstein and Zin (1989). 
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MV.1 and MV.2. Then (5.2) possesses a maximum, achieved by a stationary and 
homogeneous plan if (a) p > 0, and r < b, or (b) p < 0 and fPrP < 1. In either case, 
J>0. 

Note that the homogeneity of A (MV.2) has been added as an assumption. 
Also note that the strict positivity of the value function of J is used below. 

We now turn to the implications of optimality and more particularly to the 
appropriate set of Euler equations for interior optima. The recursive structure of 
utility functions immediately implies the "Bellman equation" 

(5.3) (i,x)= max [cp +1/ i(I, x) 
=C0>0 W0E_sK E ? ,BY[PJ(I.(XO-C0)W0,F0)11o] 

where the argument of A is the probability measure for J(Ih,(xO-cO)wj'F0) 
conditional on Io. Moreover, the maximizing values of co and wo correspond to 
the utility maximizing plan in the customary fashion. 

It is evident from the homotheticity of utility, that J can be expressed in the 
form 

(5.4) J(I, x) =A(I)x. 

Thus (5.3) can be written 

(5.5) A(IO)xo= max c[CopfP(XO-C0) PP [PA(y1)W/I0]]17p 
co>O, woEsK 

An immediate implication is the portfolio separation property and more particu- 
larly that the portfolio decision is determined by the solution to 

(5.6) max 4 [PA(Ii)wOOIIo] - 
WOS 

Write c * = a x0, where an asterisk denotes the maximizing value. Substitution 
into (5.5) yields 

AP(Io) = aP + /(l - ao)Pp*P, 

and the first order condition for consumption in (5.5) yields 

(5.7) aP-1 = (1 -ao)p l#A*P. 

These last two equations can be combined to yield A(IO) = a P-1 = 
(c*/xo)(P-1)IP. From the stationarity of the problem and the recursivity of 
utility, it follows that 

(5.8) A(h,) = (cl /.i)(P 1)/P. 

Substitute (5.8) and (5.1) into (5.7), write Mo for the market portfolio return wo'Fo 
and suppress asterisks to deduce that 

(5.9) I3lptt [P(AF/co)p- 0)/p41/p/I0] = 1, 

which is the first order condition for consumption expressed in terms of presum- 
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ably observable market variables. Finally, use (5.8) to rewrite (5.6) in the form 

(5.10) max t tP(e1R0)(P- l)P(W6rO)1I0. 

The relations (5.9) and (5.10) are the principal implications of intertemporally 
optimizing behavior and are the basis for the model's predictions regarding the 
temporal behavior of aggregate consumption and asset returns. (See Section 6.) 
To conclude this section we provide justification for two assertions made earlier 
in the paper. 

First, we show that the above behavioral analysis provides further support for 
our interpretation of the mean value functional jt as the embodiment of risk 
aversion. Consider an environment where the F's are independently and identi- 
cally distributed and the z2t's are absent. Then J(I, x) is independent of I and 
from (5.6) we see that the portfolio decision is determined by 

max It(Pw0,F)- 
WO SK 

The latter is an atemporal portfolio choice problem with the utility of wealth 
distributions being given by jt. We see that the specification in which jt equals the 
expected value operator implies risk neutral behavior in this i.i.d. environment. In 
fact, even in the more general environment the specification t(-) = E(-) implies a 
form of risk neutrality since then the objective function in the appropriate form 
of (5.6) is linear in w and thus assets are perfect substitutes. 

It was asserted in Section 3 in the discussion of KP utility functionals, that the 
functional ,u is relevant to the ranking of timeless wealth lotteries. We can now 
explain why, and in what sense, this assertion is valid. The consumption pro- 
grams underlying timeless wealth gambles have co random while we have defined 
utility functions only for lotteries where co is deterministic. But the domain of 
recursive utility functions is extended in a natural fashion by using jt to compute 
the certainty equivalent utility value associated with any m e M(R ? x M(D)). 
An agent with this extended utility function would use the objective function 

p(PJ(0,j X)) = I,(PA(f0)j) to rank timeless wealth gambles, where x is random 
wealth. If the outcome of the wealth lottery provides no information regarding 
future asset rates of return, then A(lo) is a constant in t(-) and, by the 
homogeneity property MV.2, it can be taken outside. This leaves tt(pz) as the 
basis for evaluating the timeless wealth lottery corresponding to the random 
variable x. 

6. CONSUMPTION AND ASSET RETURNS 

Assume the existence of a representative agent for our economy. (Since 
preferences are homothetic, if they are common to all consumers and if con- 
sumers are similar in all other respects with the possible exception of differing 
wealths, then the representative agent assumption can be justified in the usual 
way.) Then the Euler equations generated by the agent's intertemporal optimiza- 
tion problem imply equilibrium relations between aggregate consumption and 
asset returns. These relations will be now considered. 
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Apply the analysis of last section to the representative agent. Then, if (5.10) 
were replaced by its first order conditions, we would obtain a complete set of 
"Euler equations" for the intertemporal optimization problem. Moreover, the 
first order conditions emanating from (5.10) would contain a model of asset 
returns. One feature of that model which is evident from (5.10) even without 
specifying the model in detail, is that both consumption cl and the return to the 
market portfolio will play a role in explaining differences in the expected returns 
to any two assets. This is in contrast to both the static CAPM, where covariance 
with the market portfolio alone determines the systematic risk of any asset, and 
also to the consumption-based CAPM where systematic risk is measured by 
covariance with consumption. 

To derive first order conditions for (5.10) some smoothness properties must be 
assumed for A, e.g. Frechet differentiability as in Machina (1982). We leave it to 
the interested reader to analyze (5.10) further using Machina's local utility 
functions. Here we proceed under the assumption of Chew-Dekel preferences. 
They are not necessarily Frechet differentiable but they satisfy a weaker smooth- 
ness property (Chew, Epstein, and Zilcha (1988)) which suffices for our purposes. 

We adopt the following argument: Denote by A* the maximum value in (5.6). 
When A is given by (3.11), the solution of (5.6) also solvesl0 

max E [c(A(Ij)wo/'F0/i*)/I0]. 
WOE sK 

The first order conditions for this problem are 

(6.1) E [f(A(Il)AMo/7t*)-A(Il)*(Fko-rlo)/IoI = 0, 

k= 2,..., K. From (5.7), 

= -a-/ 
Substitute into (6.1) tO] obtai aO ~ ~ ~~~a 

i (p - l)/p 

_ci 

Substitute into (6.1) to obtain 

(.) E ii [/pCp i = Cl 

k=2, ...K. 

10 Let S be a set of probability measures and ,u* - max{,u(p): p e S} where it is given by (3.10). 
Then ,* = ,u(p*) pp* solves max(EpF(., ,L*): p e S}. See Epstein (1986, Section 3). 
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Also, substitute (5.9) into (3.11) to deduce 

(6.3) E[( 1/P[C ] 1/P) 101=0. 

Equations (6.2) and (6.3) constitute the Euler equations for the model based on 
Chew-Dekel preferences. The former reveal more clearly than (5.10) the joint role 
played by consumption and the market return in determining systematic risk. 

A further specialization to KP preferences is obtained by imposing (3.12). The 
resulting Euler equations take the form 

a(p- l)/p 

(6.4) E Lco -( - PVP .rOrO/O (k =29 .., K), 

a(p - l)/p/ 

(6.5) IEP/le co l- /p Io]= 1. 

Alternatively, these equations are equivalent to 

[- a(p- l)/p 

(6.6) IEP/a Lc 1 I M(P)/PF /p = 1 (k =1,... K). 

If the further specialization a = p is adopted, then we obtain 

(6.7) /E [[ rkO = (k 0 l K1), 

which are the familiar Euler equations of the expected utility model (see Hansen 
and Singleton (1983), for example). 

Earlier we pointed out that one consequence of the generalization from 
expected utility to recursive utility is the emergence of the market return as a 
factor in explaining excess mean returns. The significance of the market return is 
apparent from (6.4), which can be rewritten 

c a(p- l)/p 

E[kO-FlO/I] E[]-cov MO, ta( -)/ P]Zr,O_ IO 

kO~~~~~~~~ 1 o(p - )/p 

E cl o()/P/IO 

Thus both consumption and the market return enter into the covariance that 
defines systematic risk. The consumption-CAPM is obtained if a = p. But if the 
substitution a = 0 is adopted instead, then covariance with the market return 
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alone determines systematic risk which is the prediction of the static CAPM.11 
(Though a = 0 lies outside the scope of our formal analysis, one can show that 
the a = 0 version of (6.4) is the model of mean excess returns that corresponds to 
the a = 0 version of KP preferences.) 

Another specialization of (6.4) which yields the market based CAPM model is 
p = 1, or infinite elasticity of substitution. This case was excluded from the 
preceding analysis because it would generally rule out interior optima for 
consumption (see (5.5)). But the appropriate form of (6.4) is still valid. Intu- 
itively, the emergence of the static CAPM here is presumably due to the perfect 
substitutability of consumption across time. 

We have described some relations between aggregate consumption and asset 
returns which must hold in a competitive equilibrium, but we have not demon- 
strated the consistency of our analysis with a general equilibrium framework such 
as Lucas' (1978) stochastic pure endowment economy. Such an extension would 
need to confront the questions of existence and uniqueness of equilibrium asset 
prices. Moreover, Lucas' contraction mapping techniques would not suffice for 
the same reasons that those techniques were inadequate in establishing Theorem 
3.1. Thus we leave such an extension to a separate paper. However, we conclude 
this section by describing some asset pricing implications of our analysis which 
are valid for any general equilibrium extension. 

For simplicity, consider KP preferences, though comparable formulae may be 
derived for Chew-Dekel preferences. Consider an asset which pays the dividend 

qt_ in period t. The real gross return to holding the asset during period 0 is 
(P1 + qj)/P0, where PO and P1 denote the current and random period 1 prices 
respectively. Then substitution into (6.6) implies that the asset price satisfies the 
recursive relation 

a(p -))/p 

PO = /PE Ai, M(e - P)/P ( 1+ 1)I 

which has a solution 

a(p - )/p 

Lt=1 LcoJ M 

if the right-hand side is finite. Price equals the discounted expected value of 

1' The p = 0 version of the expected utility model, i.e., logarithmic within period utility function, 
leads to E[Mo1 (k0 -FjO)/IOI = O Vk, a CAPM model. But then it is also true that 

E[Cj(i ko -Flo) Io01 Vk 

so that the consumption-CAPM also applies. In contrast, our specialization a = 0 implies that only 
the market return determines systematic risk. A related observation is that we generate a CAPM 
model without restricting the intertemporal elasticity of substitution in consumption. See Grossman 
and Laroque (1987) for an alternative intertemporal model which leads to the static CAPM. 
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future dividends where the discount factors involve both consumption and 
market returns. 

In the case of a one-period pure discount bond, 4l-1 and 4t-0 for t > 1, 

a(p- l)/p 
Po = Pa/PE 

cl M )/o. 

Given fixed marginal distributions for cl and M0, the bond price increases with 
the covariance between cJ(P-1)/P and p(a-p)/P. The two exponents have the 
same signs if and only if 0 < a < p or p < a < 0. In those cases, the bond price 
increases as consumption cl and the market return Mo become more correlated.12 
Otherwise, the bond price falls in response to an increase in correlation. 

7. CONCLUDING REMARKS 

The intertemporal utility functions we have formulated have three very appeal- 
ing features: (1) intertemporal substitution and risk aversion are disentangled; (2) 
they integrate atemporal non-expected utility theories into a temporal frame- 
work; and (3) they generate implications for the temporal behavior of con- 
sumption and asset returns. Moreover, these implications may be investigated 
empirically by existing econometric techniques as demonstrated in Epstein and 
Zin (1989). 

Some empirical work is done in the latter paper but further empirical investiga- 
tion, exploring alternative data sets and functional forms, would be worthwhile. 
A promising application on the theoretical front is to recursive dynamic GE 
modelling (Sargent (1987)). For example, we have already mentioned the need to 
integrate our model into a general equilibrium framework such as Lucas' (1978). 
Because of the inseparability of substitution and risk aversion in his expected 
utility model, Lucas is unable to provide a clear interpretation for some of his 
comparative statics results. Our utility functions should clarify those results and 
thus provide a clearer understanding of the determinants of asset prices. (See 
Epstein (1988) for such a comparative statics analysis in a stochastic pure 
endowment economy where endowments are i.i.d.). In addition, the separation 
which they provide should make them useful in exploring the role played by 
differences in risk aversion in influencing the distribution of wealth across agents. 
Such an investigation would complement existing theories of distribution that are 
based on differences in time preference (Epstein (1987)). 

In these and other theoretical developments, the specific functional form (3.5) 
for the aggregator could be useful in providing some initial insights. Indeed many 
of the early multiperiod expected utility models of consumption/portfolio behav- 
ior are based on the homogeneous parameterization (3.6). But it would clearly be 
desirable to generalize to a larger class of recursive utility functions. It is hoped 
that several elements of this paper, such as the proofs of Theorems 3.1 and 5.1 

12A notion of "greater correlation" that-suffices here is described in Epstein and Tanny (1980). 
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and especially our formalization of the space of infinite horizon temporal 
lotteries, will be useful in developing such generalizations. 
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APPENDIX 1 

In this appendix we prove Theorems 2.1 and 2.2. The notation of Section 2 is adopted. 

LEMMA Al.1: The function f defined in (2.7) is continuous. 

PROOF: By Parthasarathy (1967, Theorem 6.1, p. 40) it suffices to show that 

mn -*m = f (Mn)(B) --f (m)(B) 

VB E B(R+) such that f(m)(aB) = 0. But the latter condition implies v{y E R+: (co, y) C dB} = 0 
a.e. [m] and hence (Billingsley (1968, Theorem 5.5)) that TB is continuous a.e. [m]. By Billingsley 
(1968, Theorem 5.1), Em TB EmTB as desired. Q.E.D. 

LEMMA A1.2: For all t > 1 the functions f, and gt defined in (2.8) are continuous and satisfy (2.9). 

PROOF: Continuity follows from Lemma A1.1 and Billingsley (1968, p. 29). Condition (2.9) is 
readily verified. Q.E.D. 

Recall the projection maps ST, defined in Section 2. 

LEMMA A1.3: (a) For each t > 1 and B 
E= 

Bt, s77- 1 (B ) = t-('l (gBt)). (b) 17t- [ (B ) C (Bt + l), 
t> 1. (c) U 7 'fr-'(Be) is an algebra. (d) B = a(U [ 17-l(B,)) the smallest a-algebra containing 
Ul qrt- 1 (Bt4) 

PROOF: (a)-(c) are evident. (d) follows from Parthasarathy (Theorem 1.10, p. 6). Q.E.D. 

PROOF OF THEOREM 2.1: If d = (d1,..., di,...) E D, dt = (cO, mt), 3 unique m E M(D) such that 

(Al.1) m (,ff,- Bt ) = m+ 1( Bt ) VBt (= Bt, t > 1. 

(To see this, argue as follows: Use (Al.1) to define m on UT71 ' (Be). m is well-defined and countably 
additive in the latter algebra by Lemma A1.3. By part (d) of that lemma and by the extension theorem 
(Billingsley (1979, Theorem 3.1)) m can be extended uniquely to an element of M(D).) 

Define 9: D -R+ X M(D) by setting 9(d) = (co, m). 
9 is one-to-one: If 9(d) = 9(d'), then c0 = co and by (Al.1) m = m et > 2. But ml =f(m2) = 

f(ml) = ml and so m, = m' Vt > 1. Thus d = d'. 
9 maps D onto R+ X M(D): obvious. 
9 is open: follows from the nature of weak convergence (Parathasarathy (Theorem 6.1, p. 40)). 
9 is continuous: If dn -- d, then mn - mM Vt) 1 and so by (Al.1) mn(A)-*m(A) for any 

A GU 1 -l(B,) such that m(aA)=0. 
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But the algebra U7 IT'(Be) is convergence determining in the sense of Billingsley (1968, exercise 7, 
p. 22) and thus m' -- m in M(D). 

This proves that 9 is a homeomorphism. 
D is a metric space by construction. It is also a closed subspace of the separable space X1 D, by 

the continuity of the g 's. Thus D is separable. Finally, the desired denseness is immediate. Q.E.D. 

PROOF OF THEOREM 2.2: One can show using Billingsley (1968, Theorems 6.2 and 6.4) that D(b; 1) 
from (2.5) is a compact metric space and hence separable. Moreover, D(b) = U1D(b; 1) and so D(b) 
is separable. 

It remains to prove the asserted homeomorphism. Let 9 be the map constructed in the proof of 
Theorem 2.1. We need to show that 

e(D(b)) 5 R+X M(D(b)), 

or equivalently, that m C M(D) defined in (All) satisfies m(D(b)) = 1. 
Let d = (d.,* , dt .... ) c D(b), dt = (co, mt) Vt. It suffices to show that 

(A1.2) mt+1(D,(b)) =1 Vlt>1. 

Since d C D(b), we know that 

(A1.3) mic UM(Y(b;1)) and ft(mt+?)=mt Vt>1. 

Prove the t= 1 version of (A1.2), i.e., 

(A1.4) m2( R+ X Mb( R+)) = 1. 

Of course, m2 C M(R +X M(R+)) is given. By (A1.3) and the definition (2.7) of f, there exists 1> 0 
such that 

A(M2)(Y(b; 1))= 1 

v{ycR+:(c,y)cY(b;l)}=1 a.e.[m2] 

m2{(c,vp) CR+XM(R+): J{yER+: (c,y) E Y(b; 1)) =1) =1 

m2{ (c, ) E= R+X M(R+): v(Y(b; bi)) = 1} = 1 

m2(R+XM(Y(b;bi)))=1 (A.1.4). 

In a similar fashion (A1.2) can be proven by induction. 
Finally, note that the subspace M(D(b)) in the statement of the theorem satisfies 

e (D(b)) = R+x M(D(b)). Q.E.D. 

To clarify the difference between M(D(b)) and M(D(b)), consider the following: Let Do(b) 
{(co, y): co > 0, y E U,>0Y(b; 1)}, which can be identified with a subspace of D(b). Then a given 
m E M(Do(b)) c M(D(b)) will also lie in M(D(b)) if and only if 31> 0 for which the support of m 
lies in Y(b; I), i.e., m E M(Y(b; 1)). That will not generally be the case for the same reason that 
U,>0 M(Y(b; 1)) is a proper subset of M(Ul>0Y(b; 1)). 

APPENDIX 2 

Two lemmas are provided here. The first is used in the proof of Theorem 3.1 and the second 
establishes that the Chew-Dekel mean value (3.10) satisfies M.1. 

LEMMA A2.1: Let X be a metric space and mn -* m in M( X). Then im sup ffdmn < f dm for all f: 
X-- R u.s.c. and bounded above. 
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PROOF: When f is bounded below, see Billingsley (1968, exercise 7, p. 17). In general, for each 
integer K < 0, define 

JK(x) -- max{f(x), K}. 

Then f K is bounded and u.s.c. Thus (by above) OkK: M( X) -- R is u.s.c. where ckK(p) j jf K dp. Since 
f K(x Kf (X), (p) ffdp = inf K(p) and so 4 is u.s.c. Q.E.D. 

LEMMA A2.2: The implicit weighted functional ,u in (3.10) satisfies MV.1. 

PROOF: (a) Let pn = j(p&), ji = p(p). The j,'s and ,u all lie in [0, a]. Suppose (for some 
subsequence) jn -- 8. Then since F is uniformly continuous on [0, 1]2, 

JIF(,ELn)-F(,86)IdPn <E Vn>N(E). 

Since F(x, z) is increasing in x, 

fF(., 8)dP-fF(., 8) dp. 

It follows that 0 = JF(-, p,) dpn -* fF(., 8) dp, which implies 0 = ,- JF(., 8) dp. But then 8 = I 
since F(x, z) is decreasing in z. 

Similarly for (b). Q.E.D. 

APPENDIX 3 

We prove Theorem 3.1 regarding the existence of recursive utility functions. 
Denote by S+(D(b)) the set of functions from D(b) into R+. Let h = S+(D(b)) be strictly 

positive and define 

Sh+ (D(b))- v c- S+ (D(b)): 11VIlh=-sup v (d )/h (d ) < oo 

With the norm IIllh, Sh+(D(b)) is a complete metric space. A transformation T: Sh+(D(b)) 
Sh+(D(b)) is a strict contraction if IITv - TuIIh S 9IIV - UIIh with 9 < 1. Every strict contraction on a 
complete metric space has a unique fixed point. The following is an immediate corollary which is 
adapted from Boyd. 

WEIGHTED CONTRACTION MAPPING THEOREM (WCMT): Let T: Sh,(D(b)) -* S+(D(b)) be such 
that (WCM.1) u S v =* T(u) S T(v); (WCM.2) T(O) E Sh,(D); (WCM.3) T(u + Ah) S T(u) + 1Ah 
for some constant 9 < 1 and VA > 0. Then T has a unique fixed point v*. Moreover, TNO * v* in 
Sh, (D). 

We are able to base the following proof on WCMT in the KP case when a and p have identical 
signs. An advantage of such a proof is that it leads to the uniqueness of the solution to (3.4) and also 
to stronger continuity properties for V than described in the theorem. Moreover, it facilitates the 
proof of existence of optimal plans. But we could not find a way to apply WCMT to the remaining 
cases for the KP functional or to more general specifications for ,u. Thus we use it below only where 
absolutely necessary, namely in Case 1, and otherwise we present a shorter, simpler argument. 

PROOF OF THEOREM 3.1: CASE 1: KP functional, 0 < p S a = 1, f3bP < 1. Define h: D(b) -R+ 
by 

00 1P 

where X ((0,1) is to be determined below and d= (co, m), ml1 =f(P2m). (See (2.3) or (2.7) and 
(2.11); ml is the "atemporal" probability measure on future consumption induced by m.) The above 
expected value exists since E' X(c1/b') is bounded on each Y(b; 1) and since ml E U,> 0M(Y(b; 1)). 
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Rewrite (3.8) in terms of U= VP/p as follows: 

U(co, m) =H(co, [Em(pU(*))Y]1/P) 
(A3.1) p 

H(co, z) _-+ /3z, y-l/p > 1. 

Use (A3.1) to define the transformation T: Sh+(D(b)) S+(D(b)), where 

Tu (co, m)-H(co, [ Emu-y(-)]/) 

(Note that 

[ Emu-y( *)111y 1< IlUllh *[Emh7(* l/ 

if u E Sh+ (D(b)). Moreover, 

00 

Emh7() = 1 + Co + Em LXF/bt 
1 

which is finite for the same reasons provided above for the finiteness of h(d).) 
We wish to prove that T has a fixed point and so we verify the conditions of WCMT. The first two 

conditions are immediate. For the third, note that 

T(u + Ah)(co, m) = H(co, [Em(u() +Ah(-))y] 1/Y) 

< H( co,[Em u7( *)] l/7) +#/A [Em hy( . )] l/7 

(by Minkowski's inequality and y > 1) 

-Tu(co,m)+flA[Emg(-)]l/y (g=hy) 

<Tu(co,m)+fl-A[Emg(co,*)]l/y (XPg(d)<bPg(co,d)) 

= Tu(co, m) + flAA[g(co, m)] /7 

(g(c, *) satisfies the independence axiom on M( D(b))) 

= Tu(c, m) + fbPAh(co, m)/XP. 

Thus WCM.3 is satisfied with e = f3bP/XP if X is any number such that fbP < AP. 
By WCMT, TNO __ U= VP/p in the 1- ,h topology on Sh+(D(b)). Moreover, h is bounded on any 

D(b; 1). Thus sup {ITNO(d)- U(d)I: d D(b; l)} -*0 as N-- o0. Each TNO(.) is continuous on 
D(b; 1). Thus U and V are continuous there. 

It can be shown that D(b; 1) is compact. Thus 

(A3.2) max{ V(d): d E D(b; l )} < oo, 

a fact which is used below. 
CASE 2: General ,u, p > 0, fbP < 1. Refer to the previous case and let v* be the corresponding 

utility functional which satisfies 

(A3.3) v*(co, m) = W(co, Emv*(*)). 

Define T: Sh+(D(b)) S-* S((D(b)) by 

Tv (cO, m) = W( cO, L (v [m])) 

(See the notation introduced in (3.3).) Then TNv* > 0 so the sequence { TNv*(co, m)} is bounded 
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below. It is also declining in N: 

Tv*(co, m) 6 W(cO, Emv*()) (since F is risk averse) 

=v*(co, m) (by (A3.3)). 

By induction, Tv*(co, m) < TNLv*(com) VN > 1. Define V(co, m)-lim TNv*(co, m). 
It remains to show that V solves (3.4). Since 

TNv*(co, m) = W(co,t(T NlV*[m])) 

and the left side converges to V(co, m), it suffices to show that 

k( TN- IV* [ m]) . tL( V [m]) . 

But this is true by (A2.2), MV.1, and the monotone convergence theorem (Billingsley (1979, p. 179)), 
the latter of which implies 

ff (TNL-v*(.)) dm( ) - ff( V()) dm(*) for all increasing . 

Since v* was shown to be continuous, on D(b; l) each TNv* is continuous there by induction. 
Thus, as the infimum of continuous functions, V is u.s.c. 

CASE 3: General i, p < 0. Define the sequence { u" } of nonpositive extended real valued functions 
on D(oo) inductively: 

ul(co,m cg/p, 

u' (co, m) = co/p + (P/p)tP (( pu'')I'/P[m]), n > 2. 

(Recall that (pu" -1)l/P[m] denotes the distribution of (pu"- 1(.))l/P induced by m. Define y = 00 if 
there is positive probability that (pUn- l)l/P = oo.) Then u" < u" l. So the extended real valued 
function U, U(d) -lim u(d), is well-defined. Let V solve VP = pU. That V solves (3.4) is demon- 
strated as in Case 2. 

Each u" is u.s.c. on D(b; l) by recursive applications of Lemma A2.1 and MV.1(b). Thus the same 
is true of the infimum. Q. E.D. 

APPENDIX 4 

This appendix defines the map e employed in (5.2) and then proves Theorem 5.1. 
Denote by F,+ the a-algebra generated by (5i, 2; )'. We assume that associated with the stochastic 

process (F, z; )?' are conditional probability measures I( -I7) satisfying, for each t > 0, B C Ft+ 
and I, c I,, 

(A4.1) *( II7 ) is a probability measure on (,Q, F,+) and 

(A4.2) I'( B/ ) is F,_-measurable. 

The fact that ' does not vary with t reflects the assumed stationarity of the process. 
Each plan, in conjunction with the wealth accumulation equation, defines a random variable (r.v.) 

y: Q2 - Y(b)U, U 0Y(b; l) such that = (Jo,..., ...) and j, is measurable with respect to F,_, the 
a-algebra generated by ( 1, )'=,. For given Io and xo, jo is nonstochastic and is written simply co. 
Feasibility implies that 

00 (A4.3) YJ,1r' < xo a.e ]. 

For given IO and xo, we associate with each feasible r.v. consumption program y a temporal 
lottery d = (dl,. . , d,,... ), d, = (co, m,), m, E M(D, l1) for t > 2 and ml e M(Y(F; xo)). Each such 
d E D(r; xo) C D(b; xo) c D(b) Vb > r. Roughly speaking, the association from y to d is as follows. 
The measure ml is that implied by the function y and the probability distribution for (r,, z)O by 
treating all of the latter as though they were realized at t = 1. In this way one obtains a consumption 
lottery in which all uncertainty is resolved by t = 1, i.e., ml E- M(Y( r; xo)) C M( R+ ). Similarly, if we 
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recognize that (PO, 10) is realized at t = 1 and regard (r,, z,), t > 1, as being realized at t = 2, we 
obtain m2 E M(R+ x M(R+)) = M(D1); and so on for the other m,'s. These measures differ only in 
the way the (common) uncertainty regarding future consumption is resolved through time. Thus an 
element d E D is obtained. 

Formally, define ml by 

ml(Q/IO)-'(( {w ED Q (W) E Q }/IO), Q E B( R+). 

By (A4.3), ml E M(Y(r; xo)). 
Suppose that we have constructed m,( -I,) E M( D,_) for some t > 1. (Actually, for t= 1, 

ml(-/IO) E M(R+).) Then m,+1(-/I) is defined by 

Here, w0 = (ro, zo) and (I, w0) represents realized history at t = 1. In this way 

d = ((co, ml),...,(co, m,),..) E D(r; xo) 

is constructed. 
The desired map e: FP -+ D(r; xo) is the composition: plan -- r.v. consumption program 

temporal lottery. 

PROOF OF THEOREM 5.1: Define Cases 1-3 as in the proof of Theorem 3.1. In those cases where a 
contraction mapping is applicable, existence follows in the customary fashion. For the remaining 
cases we employ parallel arguments to those in the proof of Theorem 3.1. 

An alternative route would be to prove the compactness of e(FP) and apply the u.s.c. of utility. 
But we were able to show only that the closure of e(FP) is compact and not that e(FP) is closed. 
Thus only the finiteness of the supremum in (5.2) could be inferred in this way. 

CASE 1: Since WCMT applies, the existence of a maximum follows from Denardo (1967). That it 
can be achieved by a stationary plan follows from Sobel (1975). Clearly, J> 0 since co = xo is 
feasible and yields utility = xo. 

CASE 2: Let v* and J* be the utility and value functions respectively for Case 1. Because of the 
homotheticity of preferences we may write J*(I, x) = A*(I)x. A*(.) is bounded above since v* is 
bounded on D(r; xo) (see (A3.2)). Moreover, we have just seen that J* a xo. We conclude that 

(A4.4) 1 6A*(-)6a<oo ondomA*. 

Let 

(A4.5) (FA*)(I)- max W( a, (1- a ) ' [PA*(i 1) W-'/II ) , 
a E-[O, 1], W E-SKI 

and (FNA*)(.) =F FN- IA*)(.) for N > 2. (Apply (A4.4) and the Lebesgue dominated convergence 
theorem (Billingsley (1979, p. 180)) to deduce that the objective function in (A4.5) is u.s.c. in w and 
ultimately that the maximum exists.) Since ft is risk averse, 

(FA*)(I) 6 max 
K W((a,(l- a)E[A*(Ii)w /I]), 

which in turn equals A*(IO) by the definition of A*. Thus 

( FA*) (I) 6 A*(I). 

By induction, prove that FNA*(I) I in N. Since the sequence is bounded below by 0, 

A(I) lim FNA*(I) 
N- oo 

is well-defined. 
We now show that A(Io)xo is at least as large as the supremum in (5.2): For any feasible lottery 

(co, m), v*(co, m) 6 A*(Io)xo. By induction, T v*(co, m) 6 FNA*(Io)xo, where T is defined follow- 
ing (A3.3). Thus taking limits yields V(co, m) 6 A(IO)xo. 

We need to show that the supremum is attained. For any plan h = (ho,...,ht,...) denote by 
e(h; Io, xo) the temporal lottery in D(b), where e is defined above and its dependence on Io and xo 
is made explicit. Then V(e(h; IO, xo)) is the utility of the plan h given initial conditions (IO, xo). By 
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homogeneity, 

(A4.6) V(e(h; Io, xo)) = H(Io)xo. 

Let h** be any (not necessarily feasible) plan such that e(h**; Io, xo) E D(b; 1) for some 1 > 0 and 

V(e(h**; Io,xo)) =A*(Io)xo. 

(Note that h** is not the optimal plan of Case 1 since the utility function V is not the utility function 
of Case 1.) For example, h** could be the plan in which co = A*(Io)xo and consumption is set equal 
to zero in all subsequent periods. Denote by (ao(I; H), wo(I; H)) the solution to (A4.5) when A*(.) 
in the maximand is replaced by H( ). 

Define the transformation of plans G by 

G(ho,..., h,,--) = (ho, ho... ht 

where ho(I, x) = (xao(I; H), wo(I; H)) and H is defined in (A4.6). Consider the sequence of plans 
{GN(h**); N > 1}. Following is a list of facts regarding this sequence. Write GN(h**)- 

(h[Nf. .., hN,...) and h N = (hCN, hpfN). 
FACT 1: V(e(GN(h**): Io, xo)) = FNA*(Io) * xo . A(Io)xo. 
FACT 2: For each t and N > t + 1, hcN(.) is increasing in N if p > 0 and decreasing if p < 0. In 

either case, hc,(*) lim hcN(-) exists. 
FACT 3: For each t, I and N t+ 1, 

hptN(I) = wo(I; FN-t-lA*( )) , wo(I; A(.))- hp(I). 

FACT 4: The plan h = ((hco, hpo),... (hc,, hp,),...) is feasible and stationary. 
FACT 5: e(GN(h**); IO, xo) -- e(h; IO, xo) in D(b; 1). 
(To prove the latter use the fact that a.e. pointwise convergence of a sequence of random variables 

implies the weak convergence of the corresponding sequence of probability measures.) 
Combine Facts 1, 5, and the u.s.c. of utility to conclude that 

V( e( h; Io, xo)) > A (Io)xo. 

But A(Io)xo is no smaller than the utility supremum over feasible paths. Thus by Fact 4, equality 
must prevail and the supremum is achieved. 

The positivity of J is clear as in Case 1. 
The argument for Case 3 is similar to that for Case 2. To prove positivity when p < 0, note that 

there exists X > 1 and a sufficiently small 9 > 0 such that the plan of consuming 6) . (r/X)' in each t 
(and making any portfolio decisions whatsoever) is feasible. This plan yields utility 

*0 ??,/p 

E (fl(r/x) P) >0o 
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