1. Consider a Walrasian economy with L goods, I identical households each with excess demand function $z(p)$, and J identical firms each with a constant returns to scale production set $Y \in \mathbb{R}^L$. Show that the Walrasian equilibrium aggregate production vector $\Sigma_{j=1}^J y^j$ is unique.

2. Verify the Slutsky equation for excess demand function $Z_i(p, W_i)$ of a given household i whose wealth equals the sum of the value of its commodity endowments p, ω_i and lumpsum income W_i:

$$\frac{\partial Z_{il}}{\partial p_k} = S_{lk}^i - Z_{ki} \frac{\partial Z_{ik}}{\partial W_i}$$

where p_k denotes the price of good k, and S_{lk}^i denotes the Slutsky substitution effect between goods l and k. (You can invoke the relevant Slutsky equation for the optimal consumption demand of household i.)

3. Suppose that each household i has a homothetic utility function, resulting in unit income elasticity of demand for every good (i.e., its optimal consumption demand vector can be expressed as $X_i = x_i(p)[p, \omega_i + W_i]$). If in addition if each household’s endowment vector ω_i is proportional to the economy wide endowment vector $\omega \equiv \sum_I \omega_i$ (i.e., there exists a scalar $\alpha_i \in (0, 1)$ such that $\omega_i = \alpha_i \omega$; then (using (1)) show that the Jacobian matrix of the aggregate excess demand function of the economy is negative definite at every price vector.

Additional (Optional) Problem

4. Consider an economy with an excess demand function $Z(p; q)$ for the first $L-1$ goods, where p is the vector of prices of these goods relative to the L-th good, and q is a real number that enters as an exogenous parameter in the demand function. Suppose that this function is continuously differentiable in both p and q, and that its Jacobian with respect to p is negative definite at every p, q. Suppose in addition that at some parameter value q^*,
\[\frac{\partial Z_k(p, q^*)}{\partial q} \] is strictly positive for some commodity \(k = l \), and zero for all other commodities \(k \neq l \). Show that a local increase in \(q \) from \(q^* \) must increase the equilibrium price of commodity \(l \).