Search Trees (Ch. III.12-13)

Binary Search Trees

Goal: Support dynamic set operations, such as

SEARCH

SUCCESSOR

MAXIMUM

DELETE

PREDECESSOR

MINIMUM

Θ(height-of-tree)

INSERT

Main Idea: At any node of the tree we know in what direction to search for smaller elements, e.g. to the left, and in what direction to search for larger elements, e.g. to the right.

More formally:

 Let any node x have the structure:

Binary tree property: for any node x

	ptr

	key: key[x]

	ptr
	ptr

	

	key[x]

	
	

Example:

Note that as opposed to the heap there are no restrictions on the structure of the BST. Thus an array implementation will have "holes" when children are missing (as in right array above) and is not practical.
Recall: tree walks

in-order(tree with root) := in-order(left-subtree) --- root --- in-order(right-subtree)

pre-order(tree with root) := root --- pre-order(left-subtree) --- pre-order(right-subtree)

post-order(tree with root) := post-order(left-subtree) --- post-order(right-subtree) --- root

INORDER-TREE-WALK(x) //p.235 see also iterative version

if x <> NIL

INORDER-TREE-WALK(left[x])

else

INORDER-TREE-WALK(right[x])

Example: in-order tree walk for the examples above.

· What is the result of an in-order tree walk ? –

array sorted in nondescending or monotonically increasing order

(can be proved by induction).
· What is the running time?

Θ(#elements) = Θ(n)

Operations: SEARCH and INSERT (Ch. 12.2, 12.3)

TREE-SEARCH(tree-rooted-in-x, for key k) = TREE-SEARCH(x, k) (Ch. 12.2, p.257)
Main Idea: compare k with key[x] and based on this go in appropriate direction

The tree insert is practically the same, except that it adds the new element as a leaf node:

TREE-INSERT(in tree T, element z) = TREE- INSERT (x, z) (Ch. 12.3, p.261)

//define "trailing pointer" to keep track of direction one came from:

//here = parent of currently examined node

y = NIL

x = root[T]
//currently examined root node
while (x < > NIL)

y = x //trailing pointer set to current root, that will subsequently change to a child node

if (key[z] < key[x])

x = left[x]

else

x = right[x]

//leaf level reached: element z can be added, i..e. pointers from/ to z to tree must be set

//pointers from leaf z: parent[z] = y

p[z] = y

// pointers to leaf z: z is root if tree empty, or left/right child of y depending on key value
if (y == NIL)

root[T] = z //T is empty and z, as its first node, is its root

else
if (key[z] < key[y])

left[y] = z

else

right[y] = z

Example: in above trees insert 34, 18, M, H respectively

Running time search and insert: Θ(height-of-tree), with worst case Θ(n) when the tree is a chain

To think about: problem 12.3-3, p.264: Sorting with BST by inserting the elements and then performing a in order tree walk. Compare and contrast with quicksort. (Hint: trace sorting through insertion on an example, (e.g. 4,2,9,1,8,7,3) and after each insertion consider which elements end up in the right and which ones in the left subtree.)

Operations: MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR (Ch. 12.2)

TREE-MINIMUM(of tree rooted in x)

TREE- MAXIMUM(of tree rooted in x)

go always left till leaf reached

go always right till leaf reached

TREE-MINIMUM(x)

TREE- MAXIMUM(x)

while(left[x]<>NIL)

while(right[x]<>NIL)

x = left[x]

x = right[x]

return x

return x

Recall: successor (predecessor) of a node x is the node with the smallest (largest) key larger (smaller) than the key of the node:

TREE-SUCCESSOR(of tree rooted in x)

Example: in above graphs identify successor of nodes 35, 10, 25, N respectively

TREE-SUCCESSOR(x)

if (right[x] <>NIL)

TREE-MINIMUM(right[x]) //right subtree nonempty
//define trailing pointer to keep track of direction

y = p[x]

while (y <> NIL and x==right[y]) //out of loop if we either hit the root or take first right turn

x = y;

y = p[x]

return y

TREE-DELETE(from tree T, node z)
(Ch. 12.3, p.262)
After deleting a node z we must reattach its children:

· no problem if z has 0 children – just set the corresponding child pointer of parent[z] to nil

· if z has 1 child: reattach this child to parent of z depending on whether z was left/right child

· if z has 2 children its place should be taken by its successor; the node that structurally disappears from the tree, i.e. the node y that is "spliced out" from the tree is the successor[z] node, not z itself as in the first two cases; here we need to reattach the child of the successor[z] and simply replace the key of z with the key of its successor.

If we differentiate between the node z to be deleted, and the node y to be spliced out, the procedure for all three cases is:

· determine y

· reset pointers between parent of y and child x of y

· replace key[z] (and assorted satellite data) if y <> z

More formally: Let

z – node to be deleted

y – node to be "spliced out",

x – non-NIL child of y, i.e. the node that needs to be reattached to the tree

reset link (both directions)

Similarly for case with y right child

See the code for

TREE-DELETE(T,z) //p.262

and retrace it for

Example: Figure 12.4, p. 263

Red Black Trees (Ch.13)

BST have a good average time of Θ(lg n) for the basic dynamic set operation; and also support easy algorithm coding. Still the worst case time remains at Θ(n) not better than a simple linked list. The question arises: How can we retain the good properties of the BST, but avoid the disastrous worst time. A first answer is a red-black tree that controls the height of the tree.

Goals:

· Guarantee a worst case of Θ(lg n =height-of-tree) instead of the worst case of Θ(n);

· Retain BST advantages.
Main Ideas:

· The tree with the smallest height among binary trees with a total of n nodes is a "balanced" binary tree with height = log n. Taking it as model we will

· Generalize the BST by constraining the height of the tree, so that the height remains equal to log n up to a constant factor, i.e. height-of-tree = Θ(log n);
· The constraints on the tree height are enforced by a structural property that can be checked locally (global checks are obviously expensive)

Thus the idea is to keep the BST and add to it, or "augment" it ((augmenting data structure Ch.), with a scheme that keeps the tree length in check.

The key idea for the RB structure:

· we start with a basic structure that is a complete binary tree, and mark all its nodes as black nodes indicate their belonging to the basic structure: obviously the black height is log(#black nodes).

· we allow at most one additional non-black nod, a red node, to sneak in between two black nodes – this way the height of the tree is at most 2*black-height, i.e. a log(#nodes) times a constant factor.

More formally:

definition: RB tree is a binary search tree that satisfies the following properties:

1. Every node has an additional attribute color and is either black (B) or red (R);

2. The root is black

3. Every leaf is a NIL black node, and does not carry a key value; or
4. If a node is red both its children are black;

This is the local property that will enforce the following global property:
5. For any node all simple paths from a node to a leaf contain the same number of black nodes.
Example: Figure 13.1 a, p.275 shows a RB tree

The number of black nodes in any path from a given node to a leaf is constant and plays a key role in keeping the tree balanced: thus it deserves a special name:

black height of a node x, denoted by bh(x): the number of black nodes on any path from the node, but not including the node to the leaf.

black height of tree, denoted by bh(T): = bh(root)

Example: Figure 13.1 a, p.275 shows a the black height next to the nodes.

The total length of a path from a node to a leaf is at most twice the black height of that node, as by property 5, there is at most one red node in between two black nodes.

length(node-to-leaf) <= 2* bh(node)

or any path from a node to a leaf is at most twice as long as any other (as the black height is the same for any path from node to leaf).

Thus the height of the tree is at most twice the black height

height(T) <= 2* bh(T)
or the black height bh(T) of a RB tree T is at lest half the height of the tree height(T):

bh(T) >= height(T)/2

Note:

· In a RB tree a leaf (or external node) is a node like any other node in the tree, with its color field set to black and all its remaining fields set to arbitrary values; when a parent or child does not exist the corresponding field contains a pointer to the leaf. Contrast this with BST where in the absence of a child or parent the corresponding field simply has the value NIL

	

	NIL
	

	

	
	

· Thus a RB tree is a full binary tree (any node has 0 or 2 children) as any internal node has always two children (with possibly one or two nil[T] child(ren)).

· As only internal nodes carry key values the leafs are only implementation constructs to check path boundaries, but not interesting from an application point of view. Then surly there is no need to provide every node with its very own NIL child(ren); instead one can provide a single nil[T] node object, and point to it whenever needed. The NIL children can them be omitted.

Figure 13.1 a, b, c (p.275) illustrates the concept.
Lemma 13.1, p.274: A red-black tree with n internal nodes has height at most 2*lg(n+1).

Proof: For a given black height bh the tree with the smallest number of nodes is a complete binary tree with black nodes only. Any other tree with the same black height bh will have more nodes as it will retain all the black nodes of the smallest RB tree and add some red nodes in-between the black nodes and some black leafs for the red nodes where needed.

For any RB tree T of height(T) and black height bh(T)

#internal nodes of T
[image: image1.wmf]³

 #internal nodes of complete binary tree with height bh(T)

[image: image2.wmf]1

2

(

-

³

bh

n

with bh >= height(T)/2

[image: image3.wmf]1

2

1

2

2

/

)

(

)

(

-

³

-

³

T

height

T

bh

n

[image: image4.wmf]2

)

(

)

1

lg(

T

height

n

³

+

For a proof with induction see p. 274

Thus all dynamic set operations run in Θ(lg n) time

As we saw in the discussion of BST, inserting elements into the tree can lead to a very unbalanced tree, that may degenerate into a chain; certainly the tree insert does not yield an RB tree. Thus we must generalize the algorithm by providing a fix-up algorithm after the insertion that will restore the RB properties. We can anticipate that the fix-up algorithm will require recoloring of nodes to satisfy property 4, and some restructuring algorithms to restore property 5 to disbalanced subtrees. In order to be more efficient the restructuring algorithms should be local, i.e. they should work just on the subtree distorted after the insertion without changing the rest of the RB tree. The restructuring operation needed consist in rotating the subtree around a node x to the left or to the right without changing the in-order traversal of the nodes. Below is the left rotation(shown for x left child) with the corresponding code:

LEFT-ROTATE(T, x)

1
y = right[x]

//set y

2
right[x]=left[y]

3
parent[left[x]]=x

4
parent [y] =parent [x]

5
if (parent [x] == nil[T])

6

root[T] = y

7
else if (x == left[parent[x]])

8

left[parent [x]] = y

9
else
right[parent [x]] = y

10
left[y] = x

11
parent [x] = y

RB-INSERT(in tree T, element z) = RB - INSERT (x, z) (Ch. 13.3, p.280)

//modified from the BST insert algorithm

//define "trailing pointer" that keeps track where one came from: here = parent of current node

y = nil[T] // as opposed NIL BST
x = root[T] //currently examined root node
while (x < > nil[T])

y = x //trailing pointer set to current root, that will subsequently change to a child node

if (key[z] < key[x])

x = left[x]

else

x = right[x]

//leaf level reached, thus element z can be added as a new leaf with parent y

//all we need to determine is whether it is a left or right child of y, or root if T empty

p[z] = y

if (y == nil[T])

root[T] = z //T is empty and z, as its first node, is its root

else
if (key[z] < key[y])

left[y] = z

else

right[y] = z

left[z] = nil[T]

right[z] = nil[T]

color[z] = RED

RB-INSERT-FIXUP(T,z)

Trace example for RB-INSERT-FIXUP(T,z)
for any node v in right subtree

key[v]=>key[x]

left

for any node u in left subtree

key[u]<=key[x]

x

right

p(arent)

	z, 			if z has 0 or 1 child

y =

SUCCESSOR[z], 	if z has 2 children

Dictionary operations

<=

=>

27

15

35

7

19

3

10

17

25

28

40

30

37

100

40

D

B

I

C

F

G

N

L

k : key[x]

return x

TREE-SEARCH(left[x],k)

TREE-SEARCH(right[x],k)

=

<

>

right subtree non-empty

right[x] < > NIL

go up the tree (starts always to the left)

until first turn right (first greater key)

and stop

mimimum of

right subtree

False

True

parent [y]

z has 0 children:

y = z 	→ x= NIL

left [parent[y]]=NIL=x, y left child

 or

 right[parent[y]]=NIL=x, y right child

z has 1 child:

y = z with	→

 x = left [y] or right [y]

left [parent[y]]=x , y left child

 or

 right[parent[y]] =x , y right child

z has 2 children:

y = SUCCESSOR[z] 	→

 x= right [y]

(show successor can have only single right child)

left[parent[y]]= x , y left child

 or

 right[parent[y]] =x , y right child

key[z] = key[y]

z

y

parent [y]

parent[y]

z = y

parent[y]

NILEL

z = y

x

z = y

parent [y]

NILEL

x

parent [y]

z = y

parent[y]

x

parent [y]

x

parent[z]

z

y = SUCCESSOR[z]

x

parent [y]

parent [y]

x

nil[T]T]

parent[z]

k

k

k

NIL

p[x]

p[x]

right[x]

NIL

right[x]

set pointers to/from β subtree

set pointers from/to y

set pointers between x and y

as z has nil[T] children

Priority queues operations

z : key[y]

 & satellite data

x

left[y]

β

α

γ

y

parent[x]

left[y]

γ

β

α

y

x

parent[x]

LEFT-ROTATE(T, x)

(4-9)

(10-11)

(2-3)

Page 11 of 11
C:\Courses\566\SearchTrees.doc
7/21/2002, 12:47 AM

_1088715530.unknown

_1088715547.unknown

_1088715566.unknown

_1088715171.unknown

