Quicksort

Overview:

· asymptotic times: worst ((n2); best ((n log n), average: ((n log n)

· sorts "in place": i.e. informally the elements are rearranged within the same array A; more precisely only a constant (thus we can reserve a portion of array A for intermediary rearrangements) number of elements are outside the array at any given time

· hidden constants are small

· works well even in virtual memory environments

(often the best practical choice as remarkably efficient on average

Main Idea: "divide and conquer" algorithm

· partition array around an element x, called pivot, into three regions:

· left containing all elements <= x,

· right containing elements >x, and

· the pivot x between them

· repeat procedure on the left and right region.

	A[p]
	A[p+1]
	
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	A[r-1]
	A[r]=x

	A[j] <= x
	x
	A[j] > x

QUICKSORT(A, p, r) //2d ed: p.146

if p<r

q = PARTITION(A, p, r)

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)

PARTITION(A, p, r)

x = A[r] //rightmost (highest indexed) element chosen as pivot

i = p – 1 //index for rightmost element <= x: initialized to lowest array index – 1

for j = p to r-1

if A[j] <=x

i++

exchange A[j] with A[i]

exchange A[r] with A[i+1]

return i+1

Examples in class: Using Figure 7.1 as a model trace the working of partition on the sequence 7, 21, 18, 3, 10, 5, 8, 12, 9

Loop Invariant: //principle, p.17, 2d ed; application for quicksort p.146, 2d ed

The idea is to formulate the relations between loop entities that guarantee correct performance and do not change/vary throughout the loop. The loop invariant must hold at the beginning (initialization), throughout (maintenance) and at the end of the loop (termination).

Correctness of quicksort depends on maintaining four regions throughout the loop, namely regions with (a)values smaller/equal x, (b) values greater x, (c)a region of unrestricted values that at the end of the loop should become empty, and (d) the pivot x. Thus at the beginning of each iteration of the for-loop, for any array index k (Fig.7.2, p.148, 2d ed):

	A[k] <= x
	A[k] >x
	? ? ?
	x

1. If p<= k <=i then A[k] <= x

interval [p, i]

of values <=x

2. If i+1<= k <=j-1 then A[k] > x

interval [i+1, j-1]
of values > x

3. If k=r then A[k] = x

end of loop

Initialization: i=p-1 and j=p

([p, i]= [p, p-1] empty ((a) trivially true

([i+1, j-1]= [p-1+1, p-1]= [p, p-1] empty ((b) trivially true

([j, r-1]= [p, r-1] no comparison made, i.e. unrestricted ((c) true

(pivot x = A [r] ((d) true
Maintenance: p< j <=r-1 (Fig.7.2, p.149, 2d ed): Consider the two cases in the previous iteration

	A[k] <= x
	A[k] >x
	A[j] >x
	? ? ?
	x

	A[k] <= x
	A[k] >x
	A[j] >x
	? ? ?
	x

· A[j]>x: a new element, A[j]>x, is added to [i+1, j-1] and index j incremented; after j++ A[j]>x is in position j-1 ((b) is true; and there are no other changes (loop invariant is maintained

	p
	i
	i+1
	j-1
	j
	
	r

	A[k] <= x
	>x
	A[k] >x
	A[j] <=x
	? ? ?
	x

	p
	
	i
	i+1
	j-1
	j
	r

	A[k] <= x
	<=x
	A[k] >x
	 > x
	? ? ?
	x

· A[j]<=x: A[j] swapped with A[i+1] and i and j are incremented:

a new element A[j] is added to the interval [p, i] of smaller/equal values position i+1, which has become position i after i++((a) is true. maintained

· interval [i+1, j-1] of greater values does not add a new element (only a rearrangement of elements takes place with A[i+1] going to position j), but shifts one element to the right after j++ ((b) true; and there are no other changes (loop invariant is maintained
	p
	
	i
	i+1
	j-1
	j=r

	A[k] <= x
	A[k] >x
	x

Termination: j=r, no more unrestricted values (three regions left with pivot at the end.

All we need after the loop is to put the pivot in between interval 1 and 2.

Performance of Quicksort:

worst case: after every call to PARTITION either (a) or (b) is empty, and the QUICKSORT is called on an array by only one element (the pivot) shorter than the previous one:

T(n) = T(n-1) + n = ((n2) (prove with recursion tree)

best case: after every call to PARTITION the array is evenly split

T(n) = ((n log n) (prove with recursion tree)

average case: to gain some feeling for the behavior of the average asymptotic time consider the following two questions

(a) What is the asymptotic time if PARTITION splits the array every time in a pretty bad, but constant ratio of 1:999?

(b) Is it likely that good split compensate for bad splits?

p+1

p

j = p…r-1

q

r

q = PARTITION(A, p, r)

A[j] <= x

r

p+1

p

q-1

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)

QUICKSORT(A, p, r)

p

r-1

r

j

j-1

i+1

i

(a)

(b)

(c)

(d)

i

r-1

i+1

j-1

j

r

p

r-1

i+1

j-1

j

r

p

i

Page 4 of 4
C:\Courses\566\Quicksort.doc
6/16/2002, 2:58 PM

