Heaps (Ch. 6)

Overview: 

· heap, heapsort: ((nlgn) worst case (like mergesort, unlike insertion) and sorts in place (like insertion, unlike mergesort).  

· priority queues: heap operations ((height=lgn)

Review of prerequisite material: Trees (Appendix B.5, p.1085) rooted & ordered trees; height & depth of a node/tree; binary trees, full & complete binary trees 
What is a heap and what is it good for?

Goal: Find a data organization/structure that is "sorting friendly"

Story time:  A powerful magician owes you a favor. He waives his wand and there appears a large heap of diamonds of various sizes.  You can choose and keep any but only one diamond and have 5 s do take it. Where would you like the largest diamond to be placed?

As we are the ones designing the data structure why not fulfill our wish?

Heap ideas: 

-  the largest value always on top of structure (root of tree, first element in array), thus can be extracted in constant time O(1). ( value property

-  Also it would be nice to have a structure that is simple and that we know well, say a binary tree, and that we can construct unambiguously from a programming language data type, say array. To switch from the tree to the array unambiguously let's make the tree as complete as possible, i.e. complete except possibly for the last row where we may not have enough elements. (Draw example tree structure on board)

Now let's work out the formalism cleanly:

Definition: Heap: data structure that has a 

(1) structural property: nearly/almost/essentially complete binary tree, i.e. (ordered) binary complete tree except for the last level which is partially filled left to right 

and 

(2) value property, called heap property: value(parent) >= value(child)  for all nodes ( max-heap

or

value(parent) <= value(child)  for all nodes ( min-heap

Examples of heaps and not-heaps:



Heap Sort: Informal Intro for n element to sort or initial heap-size=n

(1) Get largest item from top and exchange it with the last array element (rightmost leaf in last row); now the largest element is in its proper place, and we do not have to bother with it anymore, thus reducing the heap size by 1.


(2) Restore the heap structure for the remaining n-1 elements ( Heapify(root)

Repeat (1) and (2) until only two elements left, or heap-size=2 (they should be ok, as we had heap).

Draw example: heap-size=n=6,  array-size=8

	1
	2
	3
	4
	5
	6
	7
	8

	
	
	
	
	
	
	
	



	1
	2
	3
	4
	5
	6
	7
	8

	7
	15
	10
	11
	3
	20
	
	





heap-size=6-1=5

Nice idea, but how do we restore the heap property for array A[1..5]?

And this is the nicest and crucial property of the heap: the violation occurs only in one single node, and can be easily corrected:  we compare the offending "7" value with its children, and, if smaller, exchange it with the larger of its children, thus sifting it down to its proper place.

The worst case time will be of the order of the longest possible path traversed, i.e. of the height of the tree ((h)
Obviously we need to get from parent to child and vice versa, so would be nice to have some comfort, i.e. easy formula how to do this.  

For some node i






Examples

Parent(i) = floor(i/2)




Parent(5)=floor(2.5)=2








Parent(4)=floor(2)   =2

Left(i) = 2i
= binary-left-shift(i)


Left(3)=left-shift(011)=100=6








Left(5)=left-shift(101)=1010=10

Rigt(i) = 2i + 1= binary-left-shift(i) + 1

Right(3)= left-shift(011)+1=111=7








Right(4)= left-shift(100)+1=1001=9

Recall of some useful formulae for complete binary trees

level

#leaves at level
(Draw tree here)
total #nodes in tree of height k


0 1=20
1 


= 20+1 - 1

1 21
20 + 21 

= 21+1 - 1

2
22
20 + 21 + 22

= 22+1 - 1

.

.

k
2k
20 + 21 + …
+2k
= 2k+1 - 1

What is the height h of an almost complete binary tree with n nodes?

nmin <= n <= nmax
nmin occurs when there is only one leaf at the last level, i.e. 

nmin = #nodes-tree-of-height-(h-1) + 1= 2h – 1+1

nmax occurs when the tree is complete, i.e. 

nmin = #nodes-tree-of-height-h = 2h+1 – 1

2h <= n <= 2h+1 – 1

h   <= log n <= log(2h+1 – 1) < log 2h+1 = h+1 
h   <= log n < h+1 , or

log n - 1 <  h   <= log n

i.e. h equal log n or smaller log n by less than 1 (  h = floor(log n)

Restoring the Heap Property: Assume violation in node i of heap array A 

Max-Heapify(A, i)    referred to as just Heapify(A, i) in the following //(p. 130)
Informal Time analysis for Heapify on a heap of n elements: as already mentioned the worse case occurs when i is the root and the offending node value must sift all the way down to become a leaf.  Thus the length of the path is at most the height of the entire heap tree, which for n nodes is 



h=floor(lg n)    
 thus  ((h) = (( floor(lg n) )

A formal proof can be obtained by formulating a then solving the recurrence for the Heapify algorithm (p. 132).



T(n) <= T(2n/3) + ((h)

Building a Heap: 
1. First (trivial) try: add one element at a time and Heapify. Trivially a one element array is a heap and by adding one element at a time and heapifying there will always be only one violation:

SlowBuildHeap(A[1..n]) //n element array to be arranged in heap

for i=2 to n


Heapify(A[1..i], i)


What is the asymptotic time for SlowBuildHeap? 

2. Second & cleverer try: start with rightmost parent of height 1 and heapify moving right-left, bottom up till you reach the root.  This way the already traversed portion is a heap and moving to the next node can introduce at most one violation

BuildMaxHeap(A) //p.133 simplified: length(A)=n element array

for i = floor(n/2) downto 1


Heapify(A, i)

	1
	6
	9
	2
	7
	5
	2
	7
	4
	10


Example on board 

Asymptotic time for BuildHeap:     ((n)

Assuming that at every loop traversal the path length for Heapify is O(lgn) – a quite generous assumption – we can derive a trivial asymptotic upper bound of O(nlgn).

A more precise analysis, however, shows that in the worst case BuildHeap has a tight linear bound  ((n).
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Appendix A.1, p.1061:
1 + x + x2 +…+ xk +…= 
[image: image6.wmf]å

¥

=

1

k

xk = 
[image: image7.wmf]x

-

1

1

 
, for  |x| < 1

differentiate with respect to x and multiply by x

1 + x + 2x +…+ kx +…= 
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reached its final destination


removed from heap, but, of course, stays in array
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