Dynamic Programming (Ch. III.15)
Problem Addressed:

Find the "best" , in some sense, solution among many possible

Brute Force Approach:
Compute all possible solutions, compare, find optimal

Approach:
similar to divide and conquer in that

· problem decomposed in subproblems

· subproblems solved

· solutions combined for general solution

different in that when there are repeating/overlapping subproblems dynamic programming makes sure that

· every subproblem is solved only once
Dynamic programming steps:

1. Characterize structure of optimal solution, i.e. clearly formulate what the optimal solution is.

2. Recursively define optimal solution.

3. Compute all subproblems needed for optimal solution.

4. Construct optimal solution.

Example 1: Assembly Line Scheduling (Ch. 15.1)
Example 2: Matrix Chain Multiplication (Ch. 15.2)
Motivation: Matrix multiplication is expensive operation even for two matrices: Given two matrices

A

and
 B

with product C=AB

with sizes

(p x q)

and
(q x r)

(p x r)

where

p = rows[A]

= rows[C]

q = columns[A] = rows[B]

r = columns[B]

= columns[C]

The product C is computed through

C[i,j]= A[i,1]B[1,j] + A[i,2]B[2,j] +…+ A[i,k]B[k,j] +….+ A[i,q]B[q,j]

with i = 1,2,…,p; k = 1,2,…,q; j = 1,2,…,r, which requires three nested loops as shown in box; thus the number of operations for computing the product C is

O(pqr) = O(rows[A]*columns[A]*columns[B])

Of course, it becomes worse when we multiply a sequence or chain of matrices A1, A2, …,An. The question arises:

is there a cheapest way of performing the matrix chain multiplication?

We know we can not switch matrices (matrix multiplication is not commutative). However we can group the matrices in different ways (matrix multiplication is associative), e.g. the product

 A3 A4 A5
can be computed as either

((A3 A4)(A5))
or

((A3)(A4A5))

If different groupings have different times, and we can figure out how to determine the grouping with the minimal time (before performing the matrix multiplication, of course), we'll achieve a better performance.

At this time it is worthwhile to experiment on examples and find whether there is a difference, and, if yes, how substantial it is.

Numerical Example:

A3

A4

A5

 have dimensions

(100 x 3)(3 x 50)(50 x 10)

- ((A3
 A4) (A5))

(i) A3A4:
(((100 x 3)(3 x 50))
 (50 x 10))

(100 *3* 50)
= 15,000 operations for the product (A3 A4) denoted with A34 for short

(ii) A34 A5: (
A34

(A5)
)

((100 x 50)
 (50 x 10))

(100 *50* 10)
= 50,000 operations for the product A34 A5 denoted with A35 for short

total
= 65,000
- ((A3) (A4 A5))

(i) A4A5:
((100 x 3) ((3 x 50)(50 x 10)))

(3* 50*10)
= 1,500 operations for the product (A4 A5) denoted with A45 for short

(ii) A3 A45: (
A3

(A45)
)

((100 x 3)
 (3 x 10))

(100 *3* 10)

= 3,000 operations for the product A3 A45 denoted which is again A35

total

= 4,500

Informally this indicates that different groupings lead to different times and there is substantial difference between the times. It is worthwhile figuring out how to predict which grouping of the matrices gives us the minimum or optimal time for the multiplication. A grouping is fully defined if we set the parentheses so that they uniquely and unambiguously define order in which the matrix multiplications occur.

More formally: we want to find the full parenthesization (defined as either a single matrix or the product of two fully parenthesized matrix chains, see p. 331 for examples) of the matrix chain

<A1, A2, …,Ai,…,Aj,…,An>

where matrix Ai has dimensions
(pi-1 x pi):

pi-1 = rows[Ai]

pi
 = columns[Ai]

for which the number of operations of the matrix chain multiplication is minimal/optimal.

Is it possible to find the answer by simply enumerating all possible parenthesizations? Unfortunately, the answer is NO, as the number of parenthesizations grows exponentially (see eq.(15.11), p.333). Thus we proceed to analyze the structure of the solution.

1. Characterize structure of optimal solution, i.e. clearly formulate what the optimal solution is.

From the example above it is clear that must evaluate the number of operations for computing the products of different sub-chains, such as A45 and A35. Thus it is worthwhile introducing some general shorthand notations:

Let the product of the sub-chain starting with Ai and ending with Aj be denoted as

Ai..j = Ai Ai+1…Aj

with i <= j

Examples: A2..7 = A2A3A4A5A6A7
;
A1..4 = A1A2A3A3A4

Taking into account that the dimensions of any matrix Ai are (pi-1 x pi) , (i=1,…,n), the

dimensions of the product matrix Ai..j are (pi-1 x pj):

rows[Ai..j] = pi-1
columns[Ai..j] = pj
Full parenthesization requires splitting the Ai..j products into two factors. There are j-i ways to choose the place of the split for a product Ai..j. Of course, the two products must themselves be fully parenthesized, thus we need to remember where exactly the parentheses are placed. We'll keep track of the place of the split through the index of the preceding matrix, and denote it with k, i.e. k= i, i+1, …,j-1

A1..4 = A1 A2 A3 A4

k=1: (A1)(A2 A3 A4)

k=2: (A1 A2)(A3 A4)

k=3: (A1 A2 A3)(A4)

In general

Ai..j = Ai Ai+1 Ai+2 ….Aj-1 Aj

Ai..j = (Ai Ai+1… Ak)(Ak+1 ….Aj-1 Aj)

The cost for computing the product Ai..j is then

cost(Ai..j)
= cost(Ai..k) + cost(Ak+1..j) + cost(Ai..k Ak+1..j)

= cost(Ai..k) + cost(Ak+1..j) + rows[Ai..k]* columns[Ai..k]*columns[Ak+1..j]

To obtain the minimal cost for a given k, me must make sure that we take the minimal cost for the first two terms:

min-cost(Ai..j)–through-k = min-cost(Ai..k) + min-cost(Ak+1..j) + rows[Ai..k]* columns[Ai..k]*columns[Ak+1..j]

This shows that the optimal solution must be constructed out of optimal solutions to subproblems, i.e. the problem has optimal substructure. However, this is the minimum cost for the product for a given k; in order to have the minimum for any split we must consider all possible splits, i.e. the above expression for all possible values of k:

 min-cost(Ai..j) = min { min-cost(Ai..k) + min-cost(Ak+1..j) + rows[Ai..k]* columns[Ai..k]*columns[Ak+1..j] , for k = i,…,j-1 }

2. Recursively define optimal solution.

The optimal solution for the entire problem, i.e. for a matrix chain product A1..n, is obtained from the above expression for i=1, j=n. We introduce the following short hand notation:

m[i, j] = min-cost(Ai..j)
Let p be the vector of the matrix dimensions: p = <p0, p0, …,pi-1, pi,…, pn> . Taking into consideration that the dimensions of Ai..j are (pi-1 x pj):
rows[Ai..k]

= pi-1
columns[Ai..k]

= pk
columns[Ak+1..j]
= pj
we obtain

0

if i=j

m[i, j] =

min { m[i, k] + m[k+1, j] + pi-1* pk * pj , for k = i,…,j-1 }
if i < j

With 1 <= i <= k < j<=n, there are
[image: image1.wmf]÷

ø

ö

ç

è

æ

n

2

ways to choose two distinct values for i and j, and another n for i=j:

[image: image2.wmf])

(

2

2

n

n

n

Q

=

+

÷

ø

ö

ç

è

æ

With the recursive formula for the minimal cost m[i,j] it is straight forward to write a recursive procedure for computing the optimal parenthesization:

RECURSIVE-MATRIX-CHAIN(p, i, j) //p.345: depth-first, (top-down, left-right) computation

To get a feel for the computation let's trace it on the example of A1..4 , i.e. RECURSIVE-MATRIX-CHAIN(p, 1, 4) (Figure 15.5, p.345).

The recursive procedure follows a depth-first traversal of the tree (write down the depth-first traversal) and we can clearly see that many subproblems are computed repeatedly – not a good sign for effectiveness.

Indeed, it can be shown that the number of references to subproblems grows exponentially with the problem size n (we encountered the same situation in the assembly line problem). In other words we have recursively characterized the optimal solution as constructed from optimal solutions to subproblems, and established the problem has optimal substructure, but, implementing the recursive relation literally, is no better than the brute force approach of an exhaustive check.

Thus we need to find a way for computing the optimal solution while making sure the optimal solution to any subproblem is computed only once.

One way to do this is to tabulate the solution of each subproblem as it is solved in the depth-first traversal, and when the subproblem reoccurs to look up the solution from the table. This method builds the solution in a top-down fashion and is known as memoization (Ch.15.3, p.347).

Another approach is to proceed in a bottom-up fashion – solve the subproblems and then build the overall solution. To be able to do this we need to know precisely what subproblems need to be solved and in what order.

2. Compute (only once!) all subproblems needed for optimal solution in a bottom-up fashion.

Again let's look at the example for A1..4 : to compute m[1,4] we need the optimal cost m[i,j] of all subproblems of the matrix chain A1..4, i.e. we need the optimal cost of all matrix sub-chains with length less than length of A1..4 .

Thus if we compute the m[i,j] of all matrix sub-chains with increasing length, staring with length

1: single matrix, no cost computation:

m[i,i]=0

with
i=1,…,n

a total of
n subproblems

2: two-matrix product

m[i, i+1]

with
i=1,…,n-1

a total of
n-1 subproblems

3: three-matrix product

m[i, i+2]

with
i=1,…,n-2

a total of
n-2 subproblems

…through some length

 l: l- matrix product

m[i, i+(l-1)]

with
i=1,…,n-(l-1)
a total of
n-(l-1) subproblems

… and progressing to length

n : n- matrix product overall solution:
m[i, i+(n-1)]=m[1,n]

with
i=1

a total of
n-1 subproblems

after each iteration of the "length-loop" we will have all subproblem solutions needed for computing the next largest matrix product.

Consistently with the preceding analysis the number of subproblems is

[image: image3.wmf])

(

2

2

)

1

(

#

2

1

1

n

n

n

n

n

k

l

length

of

products

n

l

n

k

Q

=

+

÷

ø

ö

ç

è

æ

=

+

=

=

-

-

-

å

å

=

=

The bonus of the optimal substructure is that from all possible solutions of a given subproblem we need to store only the optimal one the others being irrelevant for the overall solution. Of course we need to remember where the optimal split occurs, i.e. along the bottom-up computation of the m[i,j] we need to keep track of the k value of the optimal split. We introduce the matrix s with

s[i,j] = k-value for optimal split for product Ai..j

and are ready for the algorithm

MATRIX-CHAIN-ORDER(p) //p.336, bottom-up computation of m[1,n], s[1,n]
3. Construct optimal solution

Once matrix s is computed the optimal solution is easily constructed by following the place of the optimal split in a top-down fashion:

 1
[image: image4.wmf]£

 s[1,n]

 < n :

(A1A2

…

…
 As[1,n]) (As[1,n]+1 … …. An)

then

1
[image: image5.wmf]£

 s[1, s[1,n]] < s[1,n]
[image: image6.wmf]£

 s[s[1,n]+1,n]
 < n :

(A1A2 …As[1,s[1,n]]) (A s[1,s[1,n]] +1 … As[1,n]) (As[1,n]+1 … As[s[1,n]+1,n])(As[s[1,n]+1,n]+1 … An)
etc.

For the example in Figure 15.3

s[1,6] = 3

(A1 A2 A3)(A4 A5 A6)

s[1,3]=1 s[4,6]=5

((A1) (A2 A3))((A4 A5)(A6))
The algorithm for computing the product Ai..j is given by

MATRIX-CHAIN-MULTIPLY(A, s, i, j)

if (j > i)

X = MATRIX-CHAIN-MULTIPLY(A, s, i, s[i,j])

Y = MATRIX-CHAIN-MULTIPLY(A, s, s[i,j]+1, j)

else

return Ai

and the overall solution is obtained for i=1, j=n

Example: Trace the recursive calls for the example in Figure 15.3.

m[2,2]

m[4,4]

m[3,3]

k=1

k=2

k=3

k=3

m[4,4]

m[3,3]

k=2

m[3,3]

m[2,2]

length 2

length 2

length 1

length 1

length 1

length 1

length 1

length 1

length 1

length 2

length 2

length 2

k=3

m[4,4]

m[2,3]

m[2,2]

m[1,1]

k=1

m[4,4]

m[3,3]

k=3

k=1

m[2,3]

m[1,1]

k=2

m[3,4]

m[2,2]

m[3,4]

m[1,2]

k=2

length 1

length 1

length 3

length 2

length 2

length 3

length 1

length 3

m[2,4]

m[1,1]

m[4,4]

m[1,3]

m[3,4]

m[1,2]

k=3

k=1

k=2

length 4

m[1,4]

criterion

optimal

j-i = 4-1=3 ways to choose split

k = 1,2,3

for (i = 1 to p)

	for (j = 1 to r)

		C[i, j] = 0

		for (k = 1 to q)

			C[i, j] = C[i, j] + A[i,k]*B[k,j]

Ak+1..j

Ai..k

j - i ways to choose split

k = i, i+1, …,j-1

m[3,3]

m[1,1]

m[2,2]

length 1…

Page 9 of 9
C:\Courses\566\DynamicProgramming.doc
7/30/2002, 9:59 PM

_1089541747.unknown

_1089546811.unknown

_1089546869.unknown

_1089542631.unknown

_1089541587.unknown

