Dynamic Programming (Ch. III.15)

Example 1: Assembly Line Scheduling (Ch. 15.1)

Given:

· two assembly lines, line 1 and line 2, with line index i = 1,2

· each assembly line has n stations, with station index j=1,…, n;

Example n=6, with j=1,2,…,6;

· station j, on either line, performs the same task j

· time for performing task j on line i is ai,j;

Example: s2,3 is the time for performing task 3 on line 2.

Of course the times for performing task j on different lines may be different, i.e. in general s1,j ≠s2,j
· time for entering assembly line i is ei;

· time for entering assembly line i is xi;

· after the completion of any task j on a given line, it is possible to continue the assembly on the other line; of course the part needs to get to the other line, thus it will require some transfer time;

let's denote with ti,j the time for transferring a part after completion of task j on line i to the other line.

Example: t2,3 is the transfer time from line 2 after performing task 3.

Find: The sequence of stations from lines 1 and 2 for which the assembly line time is minimal

Brute Force: Enumerate all possible substation sets. Unfortunately there are 2n subsets of a set of n elements. Thus the problem has a poisonous O(2n) time.

Main Idea for Solution:

· For each line track the fastest time for performing all tasks up to and including task j, with task j completed on this line; Along the way record the stations passed on the fastest assembly route.

· When this is done for all tasks, including task n and the corresponding exit time, the smallest time for finishing task n on a given line is the optimal solution;

· Backtrack to find the station sequence used in the optimal solution.

Illustration on the Example in Figure 1 and Generalization with the help of Figure 2 (Figures 15.2 and 15.1 in CLRS):
Let' find the fastest way for completing tasks 1, 2,…, j on line 1, and line 2.

Let's denote with f1[j] the fastest time for completing task j on line 1, and similarly with

 f2[j] the fastest time for completing task j on line 2

There is little choice at the beginning:

f1[1] = e1 + a1,1 = 2+7 = 9

f2[1] = e2 + a2,1 = 4+8 = 12

But for completing the second task we can either take the product from line 1, or from line 2 and transfer it to line 1. The fastest time is the smaller of the two possibilities:

 fastest way of completing task 1 on line 1 + a1,1 = f1[1] + a1,1 = 9+9 = 18
f1[2] = min = 18

fastest way of completing task 1 on line 2 + transfer time + a1,1 = f2[1] + t2,1 + a1,1 = 12+2+9=21

i.e. the fastest time to complete task 1 on line 1 is

f1[2] = 18 and to achieve this the previous task, here task 1, was completed on line 1.

We need to remember where the previous task was completed in order to trace back the station sequence on the fastest way.

Let's l1[j] denote the line number on the fastest way f1[j] at which the previous task, i.e. task j-1, was performed.

In general

 fastest way of completing previous task, i.e. task j-1, on line 1 + a1,j

f1[j] = min

fastest way of completing previous task, i.e. task j-1, on line 2 + transfer time + a1,j
or

 f1[j-1] + a1,j

f1[j] = min

f2[j-1] + t2,j + a1,j
and for the minimum, we save the line number where the previous task was achieved in l1[j].
Similarly

 f2[j-1] + a2,j

f2[j] = min

f1[j-1] + t1,j + a2,j
and for the minimum, we save the line number where the previous task was achieved in l2[j].
Figure 1: Assembly line with 6 stations

Figure 2: Assembly line with n stations

The fi[j] and li[j] tables below illustrates the times for the example in Figure 1

At each step in the fi[j] the minimum value and the li[j] are bold and underlined.

The fastest way for completing all tasks and exiting the assembly is denoted by f* and the exit line with l*
	i \ j
	1
	2
	3
	4
	5
	6
	exit

	f1[j]
	1: 2+7 = 9

	1: 9 +9 = 18
2: 12+2+9 = 21
	1: 18 +3 = 21

2: 16+1+3 = 20
	1: 20 +4 = 24
2: 22+2+4 = 28
	1: 24 +8 = 32
2: 25+2+8 = 35
	1: 32 +4 = 36

2: 30+1+4 = 35
	35+3 = 38

 f*, l*=1

	f2[j]
	2: 4+8 = 12
	2: 12+ 5 = 17

1: 9+2+5 = 16
	2: 16 +6 = 22
1: 18+3+6 = 27
	2: 22 +4 = 26

1: 20+1+4 = 25
	2: 25 +5 = 30
1: 24+3+5 = 32
	2: 30 +7 = 37
1: 32+4+7 = 43
	37+2 == 39

	i \ j
	2
	3
	4
	5
	6
	

	l1[j]
	1
	2
	1
	1
	2
	l*=1

	l2[j]
	1
	2
	1
	2
	2
	

	PrintStations(1,n)

i = l*

print("line i", "station" n)

for j = n downto 2

 i = li[j]

 print("line i", "station" j-1)
	i
	j
	output

	
	1 = l*
	
	line 1, station 6

	
	(i = li[j])
	6
	

	
	2
	
	line 2, station 5

	
	
	5
	

	
	2
	
	line 2, station 4

	
	
	4
	

	
	1
	
	line 1, station 3

	
	
	3
	

	
	2
	
	line 2, station 2

	
	
	2
	

	
	2
	
	line 2, station 1

4

2

2

3

4

3

1

3

2

1

2

2

1

2

5

4

6

5

8

7

8

4

3

9

7

4

t2,n-1

t1,n-1

t2,j-1

t1,j-1

t1,j

t2,j

e2

e1

t1,1

a1,2

a1,1

a2,n-1

a2,j

a2,j-1

a2,2

a2,1

a2,n

x2

x1

t1,2

t2,2

t2,1

a1,n-1

a1,j

a1,j-1 a1,1

a1,n

