
1

2. Programming Fundamentals

2.1. Anatomy of a program: comments, include directives, main(), i/o,
statements.

2.2. Editors, Compilers, Debuggers, p , gg

2.3. Fundamental (Built-In) Data Types and Objects—type, name , value,
address. Identifiers and keywords

2.4. Declaration and Initialization

2.6. Expressions and Statements

2.7. Operations, Precedence and Associativity: arithmetic, Boolean, I/O

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

1

2.8. Conversion: implicit, explicit—Casts

2.9. Ranges of Fundamental Types. Overflow and Underflow

2.10. Errors

2.11. Preprocessing Directives. Namespace

2.1. Anatomy of a Program
Listing L2-1-hello.cpp

main()
function
l

// Listing L2-1-hello.cpp
// prints “Hello C++ fans!”

i l d i t

Line comment: text after //
till end of line
ignored by compiler

preprocessing directive: instructs
compiler to include file named

ithi th < > t f thalways
executed
first

include <iostream>
using namespace std;

int main()
{

std::cout << "Hello C++ fans";

within the < > as part of the source;
iostream is i/o stream header file
in namespace std

statement: line of code
ending with semicolon; here
character string "Hello C++ fanbegin/end

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

2

std::cout << "!\n";
return 0;

}

g
is inserted in output stream cou
"connected" to the screen

escape character: backslash
followed by character , representing
special characters, e.g. “\n” for newline

statement to exit
function “returning” 0
for successful completion

begin/end
of function
body

2

Listing L2-2-distance
// L2-2-distance.cpp
//computes distance traveled with a given speed and time
// starting from some initial position
#include <iostream>
using namespace std;

data object: place in memory of
certain size accessible by name
declaration of data object: specifies
name and size (type)

int main()
{

double speed, time, total;
int initial = 5;//initial position

cout << "Enter speed\n";
cin >> speed;
cout << "Enter time\n";
cin >> time;

initialization of data object:
specifies value

standard input stream cin:
takes input from keyboard

assignment statement:expression
i ht h d id f i t

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

3

cin >> time;
total = initial + speed*time;

cout << "The total distance is "<< total << endl;
return 0;

}

right hand side of assignment
operator =is stored in data object
specified on left hand side

2.2. Editors, Compilers, Debuggers

Editor: Program for creating source code file.
Example: emacs, vi in Unix

C il f t l ti d i t bj t d Ch kCompiler: program for translating source code into object code. Checks
for syntactical mistakes.
Example: gnu in Unix

Debugger: program that facilitates the identification of logic errors after
the program is compiled, i.e. in a syntactically correct program.
Example:

IDE: Integrated Development Environment that contains all of the above

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

4

g p
as well as additional features, such as documentation, visualization,
program templates.
Example: Visual Studio

3

Projects inVisual C++
File New Project or Ctrl+Shft+N – to create a new project

Choose : Win32 Console Application
Name: supply project name, e.g. welcome
Location: choose folder to save project
In Application Settings choose

File Open Project or Ctrl+Shft+O – to open an existing project

File New File or Ctrl+N
– to create a new file without adding to project

File New File or Ctrl+O
– to open an existing file without adding to project

Projects Add New Item or Ctrl+Shft+A
- to create a new C++ source file and add it to project

In Templates choose: C++ File (cpp)
Name: supply file name, e.g. hello

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

5

Location: choose folder to save file

Projects Add Existing Item or Alt+Shft+A
- to include existing file into project

To exclude a file from a project (the file is NOT deleted): right click on the file and select Remove

Compile and Run in Visual C++

Ctr + Shft + B - to build / compile the project
or
B ild B ild S l tiBuild Build Solution

Ctr + F5- to run the project outside debugger
or
Debug Start Without Debugging

F5 - to run the project intside debugger
or

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

6

Debug Start

4

2.3. Fundamental (Built-In) Data Types
Data Object (Variable)

place in memory characterized by

type name value address

int

double

initial

speed

5

10.2

&initial

&speed

• name: gives access (refers to) the object in memory

• type: determines size allotted to the object in memory and the way to
interpret its memory bits

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

7

• value: memory bits of object interpreted according to type

• address: location in main memory where object stored, fixed size for
given architecture

Identifiers

Not all strings of symbols can be used as names of objects.
Valid object names are called identifiers and must satisfy the

• Contain only letters from the alphabet (upper or
lower case: A,B, …Z,a,b,…,z), digits (0, 1,…, 9)
or underscore (_);

j f y
following rules:

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

8

• Start with a character or underscore.

5

Valid and Invalid Identifiers

sum

Valid or not? Why?

b
abc
AnneX-2
error%
lst-approximation
al_bl
$sum
t t lP d t

b
no: '-' is special character
no: ' %' is special character
no: '-' is special character
b
no: ' $ ' is special character
b d d t l

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

9

totalProduct
_simple
_s2
win?gate

band good style
b but may cause confusion...
b but may cause confusion...
no: ' ? ' is special character

Naming Rules and Styles

• Case sensitive: upper and lower case of the same letter are
different characters thusdifferent characters, thus
Count and count refer to different objects.

• Convention: begin object name with lower case letter, e.g.
speed point sum

• Convention: use upper case letters in the name to make
composite names more readable, e.g.

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

10

totalSum hourlyPay (preferred to
total_sum hourly_pay)

6

Keywords and Special Names

• Certain identifiers, called keywords, have a special meaning
and cannot be used as object namesand cannot be used as object names
int float for while do (complete list p.60 in text)

• Another set of identifiers that are not keywords are
commonly used for fixed purposes and should not be used as
as object names, e.g.
main cin cout

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

11

• Identifiers beginning with an underscore are often used by
special operating system facilities and their use as ordinary
identifiers may cause confusion.

Fundamental Data Types

Keyword

char

Defined Size

1B = 8b

Literals/Constants

'a' 'C'integral char

bool

int

float

double

1B 8b a C

true, false

2000

3.14169

integral
whole
numbers

floating
numbers
with

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

12

1.5 e-2 or 1.4E-2

double is the working data type

with
fractiona
l part

7

2.4. Declaration and Initialization

int sum; //declaration: reserves place

// for sum, no value given ??
sum

int count=0; // initialization reserves place

// and gives value 0

count

Note: The above can also be done in one line as

int sum, count=0;

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

13

Question: Where in the programs can objects be declared?

Anywhere, but it is good programming practice to declare
them close to the place they will be used.

2.6. Expressions and Statements

• Computations are done by evaluating expressions, e.g.
count + 5
speed*time

h l f h b i ill b l if d ifi• The values of the above expressions will be lost if not saved to a specific
place in memory. This is done through an assignment statement, e.g.
distance = speed*time;
More generally
<identifier> = <expression>;

• Another type of statement
cin >> speed;

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

14

cin speed;
The expression is evaluated, but its value is not interesting. What is of
interest is the side effect it produces that consists in changing the value of
the object speed to whatever is entered from the keyboard.

8

2.7. Operations

• Binary operators: operators applied on two operands
<operand1> <operand1> → <result>

Examples: addidion (+), subtraction (-), multiplication (*), division (/),
modulus (%)modulus (%)

Note:
a)The addition of two integers results in an integer, and similarly division of

two integers will yield only the integer part of the division, dropping any
existing fractional part.

b) The addition of an integer and a float results in a float, i.e. the value of the
expression takes the type of the larger size operand - type promotion or
i li it i Si il l f th ti

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

15

implicit conversion. Similarly for other operations.

• Unary operators: operators applied on a single operand

<operand> or <operand>
Examples: increment (++), decrement (--)

Precedence and Associativity

Problem: In what order should operators be executed?Problem: In what order should operators be executed?

•• Precedence:Precedence: In an expression containing different operators the order of
operation is determined by rules establishing a precedence of the operatoroperation is determined by rules establishing a precedence of the operator
relative to each other.

Highest Lowest

•• AssociativityAssociativity: In a sequence of operators of the same precedence the order

+
-

*
/

%

++
--()

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

16

yy q p p
of execution is defined either from left to right (→), called left-associative,
or from right to left (←), called right-associative

a*b* c a+b+c a = b = c+1

9

Boolean Operators: equality, relational

Boolean operandsBoolean operands: can take only two values true (1 or anything ≠0) or false (0)

Boolean operatorsBoolean operators: applied on Boolean operands and yielding true or false.

Math NotationMath Notation C++ NotationC++ Notation Associativity/PrecedenceAssociativity/Precedenceyy
Equality operators Equality operators
a = b a == b →→
a ≠ b a != b →→
Relational operatorsRelational operators
a <b a < b →→
a >b a > b →→

Same precedence

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

17

a ≤ b a <= b →→
a ≥ b a >= b →→

Same precedence

Note how similar the assignment operator (=) and the relational equality operator
(==) are and think of the confusion they may cause !

Boolean Operators: or, and, not

Logical operators Logical operators
OR: OR: operand1 operand2 operand1 || operand2

true true true
true false true
false true true
false false false

AND: AND: operand1 operand2 operand1&& operand2
true true true
true false false
false true false

binary

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

18

false false false
NOT: NOT: operand !operand

true false
false true

unary

10

Precedence Overview

()

++ -- ! unary

highest

Arithmetic

Relational

Equality

L i l

++ -- !

* / %

+ -

< <= >= >

== !=

&&

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

19

Logical

Assignment

&&

||

=

lowest

Input Streams

• Input stream cin can be taught as stream connected to the
keyboard from which it takes a sequence of characters andkeyboard from which it takes a sequence of characters and
stores them into the right hand operand of the input
operator >>

cin >> theInput;
• Multiple rhs operands

cin >> x >> y >> z;

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

20

require the user to enter multiple (here three values)
separated by whitespace, e.g.

5.1 3 7.55

11

Output Stream

• Output stream cout can be taught as a stream connected to the screen to
which it sends the value of the right hand operand of the output operator <<

is equivalent to

g p p p
cout<< theOutput;

• Output statements can be combined:
cout << "The sum of ";
cout << a << "and ";
cout << b << "is ";
cout << sum << endl;

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

21

cout << "The sum of " << a << "and " << b << "is "<< sum << endl;

Output Stream (continued)

endl vs. "\n" or '\n'

Both will start a newline
'\n' inserts a char in the output stream; nothing more
endl is a stream manipulator, i.e. it is a function used with >> and << to

change the formatting. In addition to inserting '\n\' it also empties or flushes
the buffer and displays all its content. In contrast to this while when
inserting '\n' the display may be delayed ("may" as it varies with the
architecture). However, most streams are line buffered by default, i.e. they
flush every time when seeing a '\n'—thus there will be no difference on the

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

22

y g
screen. Differences often occur when there is combined use of << and >>

It is safer to use endl with cout to ensure flushing.

12

2.8. Conversion: implicit, explicit
The type determines

what operations are applied,
e.g. double % int is illegal

and
how operations interpreted, p p ,
e.g. + can be int or floating point operation

char can be printed as char or int.

Conversion between types can be done
implicitly through promotion rules that can be stated roughly as "a
mixed type expression takes the type of the operand with the largest
memory size", e.g. char is promoted to int, int to float, float to
double

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

23

double.
Warning: does not always work - sometimes may change the value
explicitly through cast operators

Casts
The static cast operator is an unary operator that allows explicit
conversion of one data type into another

Syntax: Syntax:

static cast< type > (expression)

keyword
Angle brackets are part of syntax and
type is the new data type

_ yp (p)

e.g.: static_cast<double> (totalStudents)
precedence higher than unary + and -, same as postincrement
associativity --right right to to left (unary preleft (unary pre--fix operator)fix operator)
(See Appendix C: Operator Summary [Ho 09])

expression whose type is
changed

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

24

The remaining cast operators dynamic_cast,
reinterpret_cast, const_cast will be discussed later

13

Old Style Casts: (type)

C-like notation

(type) identifier e.g.: (double) totalStudents
Functional notation

type (identifier) e.g.: double(totalStudents)

Note: See
• L2-3-type Conversion.cpp program for examples and
• Old style casts continue to be available but can easily lead to errors

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

25

when applied to classes and thus should be used only if new styles
are not available. For more detail on differences between old and
new style casts see
http://www.cplusplus.com/doc/tutorial/typecasting.html

Examples: int, double (L2-3-typesConversion.cpp)
int i=2, j=3;
cout<<"Integer operations:\n";
cout<<"i = " << i << ", j = " << j << endl;
cout<<"(i+j)/2 = "<<(i+j)/2 <<endl;
cout<<"double value of (i+j)/2 = "<< static_cast<double> ((i+j))/2 <<endl;
cout<<"double value of (i+j)/2 = "<< double ((i+j))/2 <<endl;cout<< double value of (i+j)/2 = << double ((i+j))/2 <<endl;
cout<<"(i+j)%2 = "<<(i+j)%2 <<endl;
double x=2, y=3;
cout<<"\nDouble operations:\n";
cout<<"x = " << x << ", y = " << y << endl;
cout<<"(x+y)/2 = "<<(x+y)/2 <<endl;
//cout<<"(x+y)%2 = "<<(x+y)%2 <<endl; illegal operation

Integer operations: D bl ti

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

26

Integer operations:
i = 2, j = 3
(i+j)/2 = 2
double value of(i+j)/2 = 2.5
double value of(i+j)/2 = 2.5
(i+j)%2 = 1

Double operations:
x = 2, y = 3
(x+y)/2 = 2.5

14

Examples: char (source file L2-3-typesConversion.cpp)

char let1='a', let2='A';
cout<<"\nChar operations:\n";
cout<<"let1 = " << let1 << ", let2 = " << let2 << endl;
cout<<"int value of let1 = " << int(let1) <<

",\n int value of let2 = " << int(let2) << endl;
cout<<"(let1+let2)/2 = "<<(let1+let2)/2 <<endl;
cout<<"(let1+let2)/2 = "<<static_cast<char>((let1+let2)/2) <<endl;
cout<<"(let1+let2)/2 = "<<char((let1+let2)/2) <<endl;

Char operations:
let1 = a, let2 = A
int value of let1 = 97,
i t l f l t2 65

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

27

int value of let2 = 65
(let1+let2)/2 = 81
(let1+let2)/2 = Q
(let1+let2)/2 = Q

2.9. Ranges of Fundamental Types.

The range of numbers represented by a given data type is determined by the
number of bytes allotted to this type in memory.

This size is machine dependent and can be checked by the sizeof() operatorThis size is machine dependent and can be checked by the sizeof() operator.

Independent of the size for a specific architecture the following restrictions are
valid for all C++ implementations:

1 ≡ sizeof(char) ≤ sizeof(int) ≤ sizeof(float) ≤ sizeof(double)

The range of some basic data types can be modified through the qualifiers that

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

28

may modify the
• Modify the Size: short, long
or
• Use Sign bit differently while keeping the same byte size: unsigned, signed

15

Type Qualifiers: short, long, unsigned, signed,
Size Difference: short, long modify the size
Sign Bit Difference: numbers are represented in two's complement and the first bit

is used for the sign (0 positive, 1- negative). All integral types except char,
can be signed and unsigned. This leads to different ranges.

char can be preceded by signed, or unsigned qualifiers.
Warning: default is machine dependentWarning: default is machine dependent

int can be preceded by any combination of signed, unsigned, short, long.
Note: int can be omitted in the combination

long long can be signed (same as long long) or unsigned
double can be preceded by long

Range Restrictions (independent on implementation)

1 ≡ sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

29

Range is machine dependent and can be found in the <limits> standard
library (that of course needs to be included with #include <limits>).

sizeof(unsigned int) < sizeof(long long)

1 ≤ sizeof(bool) ≤ sizeof(long)

Type B Other Name Range
char 1 --- [-128, 127]
unsigned char 1 --- [0, 255]
short 2 short int,

signed short int
[-32,768; 32,767]

unsigned short 2 unsigned short int [0; 65,535]
int 4 signed [2 147 483 648; 2 147 483 647]int 4 signed [-2,147,483,648; 2,147,483,647]
unsigned int 4 unsigned [0; 4,294,967,295]
long 4 long int,

long signed int
[–2,147,483,648; 2,147,483,647]

unsigned long 4 unsigned long int [0; 4,294,967,295]
long long 8 --- [–9,223,372,036,854,775,808 ;

9,223,372,036,854,775,807]

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

30

float 4 --- 3.4E +/- 38 (7 significant digits)
double 8 --- 1.7E +/- 308 (15 digits)
long double 8 --- 1.7E +/- 308 (15 digits)

More details on ranges see To visualize byte values, see powers of 2 chart http://www.vaughns-1-
pagers.com/computer/powers-of-2.htm

16

Type sizes with Type sizes with sizeof() (source file: L2(source file: L2--4typeSizes.cpp)4typeSizes.cpp)

cout<<"Size of char is " << sizeof(char)<<endl;
cout<<"Size of bool is " << sizeof(bool)<<endl;
cout<<"Size of short int is " << sizeof(short)<<endl;
cout<<"Size of int is " << sizeof(int)<<endl;
cout<<"Size of long int is " << sizeof(long)<<endl;
cout<<"Size of float is " << sizeof(float)<<endl;
cout<<"Size of double is " << sizeof(double)<<endl;
cout<<"Size of long double is " << sizeof(long double)<<endl;

Size of char is 1
Size of bool is 1
Size of short int is 2
Si f i t i 4

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

31

Size of int is 4
Size of long int is 4
Size of float is 4
Size of double is 8
Size of long double is 8

char with qualifiers unsigned, signed

1. char >= 1B=8b, almost universally 1B
unit for size of other types
literals enclosed in single quotes: 'c', '\n'
range depends on whether
unsigned: 256=28 distinct values ∈[0, 255]
signed: two's complement representation
1st bit for sign, 128=27 negative and 128 positive values ∈[-128, +127]
Tip: As the default being machine dependent it is always safe to use char
in the range of [0,127]
overflow/underflow no error message given!!!

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

32

17

<limits>: C++ Libraries for Accessing Type Ranges and
Other Implementation Dependent Properties of Fundamental

defines the template class numeric_limits to access accuracy, minimum
and maximum sizes, rounding, and signaling type errors for integral and
floating point numbers
Usage:

numeric_limits<type>:: function

e.g.
numeric_limits<int>:: max()
numeric_limits<int>:: min()
numeric_limits<double>:: max()
numeric_limits<double>::round_error()

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

33

For other functions see numeric_limits members at
http://www.cplusplus.com/reference/std/limits/numeric_limits/ or
http://msdn.microsoft.com/en-us/library/ct1as7hw.aspx and more
examples at http://msdn.microsoft.com/en-
us/library/85084kd6(VS.80).aspx

<cfloat> and <climits>: C Libraries for
Accessing Type Ranges and Other Implementation

Dependent Properties of Fundamental Types
<cfloat> and <climits> (previously float.h and limits.h) define names
for the system dependent characteristics of floating and integral types
respectively:

cout<<"Smallest int value is INT_MIN = "
<< INT_MIN;

FLT_MIN, FLT_MIN float minimum, maximum
DBL_MIN, DBL_MAX double minium, maximum
LDBL_MIN, LDBL_MAX long double minimum, maximum

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

34

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

Precision or mantissa(significand) length

For other constants see http://www.cplusplus.com/reference/clibrary/cfloat/
and http://www.cplusplus.com/reference/clibrary/climits/

18

char range (source file: L2range (source file: L2--55--typeLimits.cpp)typeLimits.cpp)

#include <limits>
#include <iostream>
using namespace std;

int main()
{{

cout<<"Largest char value is CHAR_MAX = " << CHAR_MAX <<endl;
cout<<"Largest char value is numeric_limits<char>::max() = "

<< numeric_limits<char>::max() << endl;
cout<<"Smallest char value is CHAR_MIN = " << CHAR_MIN <<endl;
cout<<"Smallest char value is numeric_limits<char>::min() = "

<< numeric_limits<char>::min() <<endl;
….

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

35

Largest char value is CHAR_MAX = 127
Largest char value is numeric_limits<char>::max() = ⌂
Smallest char value is CHAR_MIN = -128
Smallest char value is numeric_limits<char>::min() = Ç

char char overflow (source file L2(source file L2--66--intOverflow.cpp)intOverflow.cpp)
cout<<"Character Overflow \n";
char c = CHAR_MAX - 2;
cout<<"char c = Char_MAX - 2 = "<<c<<endl;
cout<<"c+1 = "<<c+1<<" cast to char " << char(c+1)<<endl;
cout<<"c+2 = "<<c+2<<" cast to char " << char(c+2)<<endl;
cout<<"c+3 = "<<c+3<<" cast to char " << char(c+3)<<endl;
cout<<"c+4 = "<<c+4<<" cast to char " << char(c+4)<<endl;
cout<<"Character Underflow \n";
c = CHAR_MIN + 2;
cout<<"char c = CHAR_MIN + 2 = "<<c<<endl;
cout<<"c-1 = "<<c-1<<" cast to char " << char(c-1)<<endl;
cout<<"c-2 = "<<c-2<<" cast to char " << char(c-2)<<endl;
cout<<"c-3 = "<<c-3<<" cast to char " << char(c-3)<<endl;
cout<<"c-4 = "<<c-4<<" cast to char " << char(c-4)<<endl;

Character Overflow
char c = Char_MAX - 2 = }
c+1 = 126 cast to char ~
c+2 = 127 cast to char ⌂
c+3 = 128 cast to char Ç
c+4 = 129 cast to char ü
Character Underflow

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

36

char c = CHAR_MIN + 2 = é
c-1 = -127 cast to char ü
c-2 = -128 cast to char Ç
c-3 = -129 cast to char ⌂
c-4 = -130 cast to char ~

19

int with qualifiers with qualifiers unsigned, signed, short, long
int typically 4B (can be 2B)

literals:
decimal (radix 10) 2 63 83
octal (radix 8) prefix zero(0) 02 077 0123
hexadecimal (radix 16) prefix zero-x(0x) 0x2 0x3f 0x53
suffixes: U for unsigned, L for long: 123456789L
range depends on whether signed or unsigned
e.g. for short int of 2B:
unsigned: 65536=216 distinct values ∈[0, 65535]
signed: 32768=215 negative and 32768 non-negative(0 and 32767
positive) values

∈[- 32768, + 32767]
Warning: not a good idea to use unsigned to gain 1 more bit: it is
obliterated by promotion rules any way

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

37

obliterated by promotion rules any way.
Tip:Tip: Because of
1 ≡ sizeof(char) ≤ sizeof(short) ≤ sizeof(ints) ≤ sizeof(long)
integers are either 16 or 32 b depending on the hardware
but short are 2B and long are 4B on practically every machine
overflow no error message given!!!

int range (source file: L2range (source file: L2--55--typeLimits.cpp)typeLimits.cpp)
cout<<"\nLargest short int value is numeric_limits<short int>::max() = "

<< numeric_limits<short int>::max() << endl;
cout<<"Smallest short int value is numeric_limits<short int>::min() = "

<< numeric_limits<short int>::min() <<endl;
cout<<"\nLargest int value is INT_MAX = " << INT_MAX <<endl;
cout<<"Largest int value is numeric_limits<int>::max() = "

<< numeric limits<int>::max() <<endl; numeric_limits int ::max() endl;
cout<<"Smallest int value is INT_MIN = " << INT_MIN <<endl;
cout<<"Smallest int value is numeric_limits<int>::min() = "

<< numeric_limits<int>::min() <<endl;
cout<<"\nLargest long int value is numeric_limits<long int>::max() = "

<< numeric_limits<long int>::max() << endl;
cout<<"Smallest long int value is numeric_limits<long int>::min() = "

<< numeric_limits<long int>::min() <<endl;….
Largest short int value is numeric limits<short int>::max() = 32767

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

38

g _ ()
Smallest short int value is numeric_limits<short int>::min() = -32768
Largest int value is INT_MAX = 2147483647
Largest int value is numeric_limits<int>::max() = 2147483647
Smallest int value is INT_MIN = -2147483648
Smallest int value is numeric_limits<int>::min() = -2147483648
Largest long int value is numeric_limits<long int>::max() = 2147483647
Smallest long int value is numeric_limits<long int>::min() = -2147483648

20

int overflow (source file L2(source file L2--66--intOverflow.cpp)intOverflow.cpp)

cout<<"Integer Overflow \n";
int num = INT_MAX - 2;
cout<<"int num = INT_MAX - 2 = "<<num<<endl;
cout<<"num+1 = "<<num+1<<endl;
cout<<"num+2 = "<<num+2<<endl;;
cout<<"num+3 = "<<num+3<<endl;
cout<<"num+4 = "<<num+4<<endl;

Integer Overflow
int num = INT_MAX - 2 = 2147483645
num+1 = 2147483646
num+2 = 2147483647

3 2147483648

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

39

num+3 = -2147483648
num+4 = -2147483647

unsigned int underflow (source file L2(source file L2--66--intOverflow.cpp)intOverflow.cpp)

cout<<"Unsigned Integer Underflow \n";
unsigned int U_MIN = numeric_limits<unsigned int>::min();
unsigned int nonNegative = U_MIN + 2;
cout<<"unsigned int nonNegative = U_MIN + 2 = "<<nonNegative<<endl;
cout<<"nonNegative-1 = "<<nonNegative-1<<endl;

t<<" N ti 2 "<< N ti 2<< dlcout<<"nonNegative-2 = "<<nonNegative-2<<endl;
cout<<"nonNegative-3 = "<<nonNegative-3<<endl;
cout<<"nonNegative-4 = "<<nonNegative-4<<endl;

Unsigned Integer Underflow
unsigned int nonNegative = U_MIN + 2 = 2
nonNegative-1 = 1
nonNegative-2 = 0

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

40

nonNegative-3 = 4294967295
nonNegative-4 = 4294967294

21

Floating Point

float single precision typically 4B
double double precision – default typically 8B
long double extended precision typically 8B or 10B

literalsliterals
124 = 1.24e2 3.1415 = .31415 e 1

suffixes: f or F for float, l or L for long
2.87e-15f, 3.14159265L,

mantissa length is machine dependent,
typically 7, 15, 19 for

float, double, long double respectively
precision is determined by the mantissa length, and is not dependent of

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

41

range (see examples in precision.cpp)
range depends on exponent part,
typically[–38,+38] for float

Floating Point range (source file: L2range (source file: L2--55--typeLimits.cpp)typeLimits.cpp)
cout<<"\nLargest float value is numeric_limits<float>::max() = "

<< numeric_limits<float>::max() << endl;
cout<<"Smallest float value is numeric_limits<float>::min() = "

<< numeric_limits<float>::min() <<endl;
cout<<"\nLargest double value is numeric_limits<double>::max() = "

<< numeric_limits<double>::max() << endl;
cout<<"Smallest double value is numeric_limits<double>::min() = "

<< numeric_limits<double>::min() <<endl;
cout<<"\nLargest long double value is numeric_limits<long double>::max() = "

<< numeric_limits<long double>::max() << endl;
cout<<"Smallest long double value is numeric_limits<long double>::min() = "

<< numeric_limits<long double>::min() <<endl;
Largest float value is numeric_limits<float>::max() = 3.40282e+038
Smallest float value is numeric_limits<float>::min() = 1.17549e-038

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

42

Largest double value is numeric_limits<double>::max() = 1.79769e+308
Smallest double value is numeric_limits<double>::min() = 2.22507e-308

Largest long double value is numeric_limits<long double>::max() = 1.79769e+308
Smallest long double value is numeric_limits<long double>::min() = 2.22507e-308

22

2.10. Errors

syntax: illegal syntax, discovered at compile time, e.g. missing
semicolon, undeclared variable name, left hand assignment is not
L-value (e.g. x*y = a-b;), incompatible types, etc. Discovered at (g y ;), p yp ,
compile time.

semantic: correct syntax but faulty programming logic, e.g.
infinite loop, array index out of bound. Discovered at run time.

Correction support: error messages (compiler and at run-time)
--manual: tracing with print statements;

d b

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

43

--debugger

Unexpected but Common Error Sources
- Entering a float or a character when an integer value is required results in

program failure, e.g. program L2-7-intInput.cpp asks the user to input int
values for pennies, nickels, dimes, and quarters; if a char or float is entered
the remaining entries are considered 0 and the program terminates.

- Typing in the value of a constant, e.g. π, every time it is needed will
t ll l d t I t d it i b tt t d fi t t bj teventually lead to an error. Instead it is better to define a constant object as

is done in program L2-8-constDefinition.cpp for the volume of bottles and
cans; this has the additional benefit that if changes are needed they are done
in one single place.

- precision is determined by mantissa length, (for double typically 15,
sometimes 19) and is independent from range of the number; Thus
whenever the mantissa length is exceeded an error occurs even if the value
is well within the type range; The program in L2-9-precision.cpp shows

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

44

is well within the type range; The program in L2 9 precision.cpp shows
some examples.

- Some floating point numbers, e.g. 4. 35, do not have an exact binary
representation (similarly 1/3 does not have an exact decimal
representation_, and round-off errors can produce very strange results(see
L2-10-roundOffError.cpp for examples).

23

2.11. Preprocessing Directives. Namespace

Before the source code is given to the compiler it is processed by a
program, called the preprocessor, that adds code to the source
file or makes modifications (typically substitutions) to existing
source code.

The resulting "preprocessed" program is then passed to the
compiler.

The changes to be made by the preprocessor are specified in lines of
code, called preprocessing directives, that follow the following
rules:

1. # must be the first character on the line, followed by the
directive name (Newer compilers allow # to be the first non

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

45

directive name. (Newer compilers allow # to be the first non-
blank character on the line.)

2. The directive takes up the entire line; if it needs to continue to
the next line the previous line must end with a backslash '\'

3. Does not end with semicolon ;

#include fileName

The preprocessor takes entire file specified as the directive argument fileName
and replaces the directive with the text of the file.
Standard directory file names are enclosed in angle brackets < >:y g

include <iostream>
include <cmath>

User defined files names are enclosed in double quotes " " :

include "c:\cs563\examples\myHeaderFile.h"

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

46

24

using namespace Directive Directive identifiesidentifies the the
group (scope) to which the header files group (scope) to which the header files
belong (not a preprocessing directive)belong (not a preprocessing directive)

include <iostream>

int main(){
…
std :: cout << " Enter integer: ";

include <iostream>
using std :: cout
using std :: cin
using std :: endl

int main(){
…
cout << " Enter integer: ";

include <iostream>
using namespace std ;

int main(){

std :: cout << Enter integer: ;
std :: cin >> count;
std :: cout << " You entered " << count << endl;
…
}

cout << Enter integer: ;
cin >> count;
cout << " You entered " << count << endl;
…
}

include <iostream.h> // old style

int main(){

ends with ;

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

47

int main(){
…
cout << " Enter integer: ";
cin >> count;
cout << " You entered " << count << endl;
…
}

int main(){
…
cout << " Enter integer: ";
cin >> count;
cout << " You entered " << count << endl;
…
}

Example Programs

L2-1-hello.cpp
L2-2-distance.cpp
L2 3 t C iL2-3-typeConversion.cpp
L2-4-typeSizes.cpp
L2-5-typeLimits.cpp
L2-6-intOverflow.cpp
L2-7-intInput.cpp
L2-8-constDefinition.cpp
L2-9-precision.cpp

1/15/2010 MET CS 563--Spring 2010
2. Programming Fundamentals

48

L2-10-roundOffError.cpp

