
1

MET CS 563 MET CS 563
Software Development with C++ for Software Development with C++ for

Mathematical FinanceMathematical Finance

Dr. Tanya Zlateva
MET Computer Science Department
755 Commonwealth Ave., Room 103

Boston, MA 02215
phone: 617-353-2568phone: 617 353 2568

e-mail: “lastname-at-bu-dot-edu”

MET CS 563 MET CS 563 Software Development with C++ for Software Development with C++ for
Mathematical FinanceMathematical Finance

Goals:
(i) provide knowledge and skills for designing and developing modular,

scalable, maintainable programs in the C++ programming language
using object oriented methods;using object-oriented methods;

(ii) discuss finite differences solutions for the basic models of financial
derivatives; and

(iii) apply the knowledge in programming and numerical methods to design
and develop software for modeling financial derivatives

Prerequisites:
• CAS MA 226 or equivalent knowledge of differential equations
• Prior programming experience in high level language recommendedPrior programming experience in high level language recommended

NOTE: NO credit towards the MS in Computer Science

1/15/2010 MET CS 563--Spring 2010
1. Introduction

2

2

The science of computing The science of computing ––
ancient algorithmic roots & latest technologiesancient algorithmic roots & latest technologies
Computer science is unique in that it
• Traces its intellectual roots as far back as the 3d

millennium BC, when the scribes of ancient
Mesopotamia recorded computing recipes - or
algorithms as we will call them today - on clay
tablets;

• Implements algorithms in the latest technologies,
e.g. giga and tera flop supercomputers, optical
computing.

1/15/2010 MET CS 563--Spring 2010
1. Introduction

3

Computing through the ages with “pencil and paper” Computing through the ages with “pencil and paper” --
softwaresoftware

• Computing recipes in ancient Mesopotamia and Egypt on clay
tablets (4th - 3d millennium BC);

• Euclid formulates the first formal algorithm that finds the greatest
common devisor of two integers (ca 300 BC);common devisor of two integers (ca. 300 BC);

• 9th century AD: Al-Khwarizmi writes textbooks on computing
with

• Modern computing and software evolved through parallel and
intersecting paths with contributions from mathematical logic

formulas
algebra

finite sequence of steps
algorithm

intersecting paths with contributions from mathematical logic,
numerical methods, symbolic computation, language and automata
theory, software engineering. For a quick overview and timeline
see http://plato.stanford.edu/entries/computing-history/ and
http://www.computer.org/cms/Computer.org/Publications/timeline.p
df

1/15/2010 MET CS 563--Spring 2010
1. Introduction

4

3

Computing through the ages with different “mechanical” Computing through the ages with different “mechanical”
devices devices -- hardwarehardware

• abacus, invented some 5,000 years ago in Asia, performs digital
computations (used in Asia through the 20th century);

• mechanical calculators in the 17th century: Wilhelm Schickard
(Germany), Blaise Pascal (France), Gottfried Wilhelm Leibnitz
(Germany);(Germany);

• analog devices: slide rule, analog computers for special purpose
computations.

• person, called computer till the mid 20th century, performing
computations according to a given algorithm (sometimes several
people each performing an given operation corresponding to the steps
of the algorithm)

1/15/2010 MET CS 563--Spring 2010
1. Introduction

5

Blaise Pascal; Pascal's mechanical calculator;
Wilhelm Schickard

Modern General Purpose ComputersModern General Purpose Computers
The key difference of today’s computers to their precursors is that they are

general purpose computing devices
i.e. they are not limited to solving a specific class of problems, such as
arithmetic operations, differential equations, predicting tides, but can perform

any computation specified in a way the computer understands/acceptsany computation specified in a way the computer understands/accepts.
This generality led to the development of
• a new concept of computation and
• formal computer languages
Historical Notes:
• 1938: Zuse built the first working general-purpose program-controlled

digital computer in Germany,
• First fully functioning electronic digital computer was Colossus, used by the

Bletchley Park (UK) cryptanalysts from February 1944.
• 1948 Neumann formulates the concept of a stored program
• 1951 Grace Murray Hopper builds first compiler at Harvard.

1/15/2010 MET CS 563--Spring 2010
1. Introduction

6

4

computation

numerical3.1415*2.1*2.1

text

symbolic

logicaltrue and false = false

∫ = 22xxdx

“hello” ≠ “password”

1/15/2010 MET CS 563--Spring 2010
1. Introduction

7

any other data…,
even the brain
“computes”…

Computer Languages: high level vs. machineComputer Languages: high level vs. machine

Compiler

Source code: program in a
high level language: independent of the specific computer

architecture, e.g. Pascal, C, C++, Java

Object code: translation of source code into another language,
typically
machine language that is specific for a given architecture

Linker Library Files : additional code needed to run the
program such as input/output , standard functions.

1/15/2010 MET CS 563--Spring 2010
1. Introduction

8

Executable code: additional code needed to run the
program such as input/output , standard functions.

5

Computer Languages: imperative vs. object orientedComputer Languages: imperative vs. object oriented

do action-1 on data-object-1 c=a+b
do action-2 on data-object -1 f=d*e
…

do action-n on data-object -n print c f
C

Imperative or Procedural: specify
• sequence of actions on
• data (objects)

Object Oriented: bundle actions &
data together into

objects, (e.g. date, place, person) with
• data or attributes; and
• behavior or actions object can do
Objects can

do action-n on data-object -n print c,f

C++

object today
attributes/data:

day 18

month 09

1/15/2010 MET CS 563--Spring 2010
1. Introduction

9

• interact with each other
• change each other,
• create new objects and
thus ultimately producing the desired

result

behavior:
advance
tellMo/tellDay/tellYear

year 2008

Type, Operations, ObjectsType, Operations, Objects——Procedural Procedural

Formal specifications for:
(i) type and

operations (actions)
on data

(ii) data objects with
unique value of type size
assigned in memory

(iii) applying
operations to data

int defines memory
size for storing,
interpreting, and
modifying int objects

c=a+b

&a 5
a

int_size

address value/content

name &b 10
b

int size

1/15/2010 MET CS 563--Spring 2010
1. Introduction

10

+ (int) addition

value/content
int_size

_

&c 15
c

int_size

6

Type, Operations, ObjectsType, Operations, Objects——Object OrientedObject Oriented

(ii) defining objects (iii) applying
actions on
objects

Formal specifications for:

(i) data are bundled with
their operations

D t t d j

today.advance()
today.tellMo()
today.tellDay()
today.tellYear()

Date
attributes/data:

behavior:
advance()

month

day

year

today
attributes/data:

behavior:
advance()

month 01
day 19

year 2010

1/15/2010 MET CS 563--Spring 2010
1. Introduction

11

advance()
tellMo()
tellDay()
tellYear()

advance()
tellMo()
tellDay()
tellYear()

Similarities and Differences of Type, Objects, Operations Similarities and Differences of Type, Objects, Operations
in Proceduralin Procedural vs. vs. ObjectObject--OrientedOriented

(ii) objects (iii) operations on
objects

(i) type and
operations

a 5 b 10 c 15int c=a+b

today.advance()
today.tellMo()
today.tellDay()
today.tellYear()

Date
attributes/data:

behavior:

month

day

year

today
attributes/data:

behavior:

month 9
day 8

year 200
8

1/15/2010 MET CS 563--Spring 2010
1. Introduction

12

advance()
tellMo()
tellDay()
tellYear()

advance()
tellMo()
tellDay()
tellYear()

7

Why C++?Why C++?

• Remains the dominant programming language for large numeric
software applications in engineering, finance, and science.

E i t f l b f ft k itt i i C d• Existence of large number of software packages written in in C and
C++

• Expressive
• Efficient
• Flexible—allows your own memory

• Complex

• Difficult to learn

• Dangerous—allows your

Cons:Cons:Pros:Pros:

1/15/2010 MET CS 563--Spring 2010
1. Introduction

13

management
• Downward compatible with C
• Inherited C tool support.

• Dangerous—allows your
own memory
management

