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Abstract

We discuss estimation of the di�erentiated products demand system of Berry et al.

(1995) (BLP) by maximum likelihood estimation (MLE). We derive the maximum like-

lihood estimator in the case where prices are endogenously generated by �rms that set

prices in Bertrand-Nash equilibrium. In Monte Carlo simulations the MLE estimator

outperforms the best-practice GMM estimator on both bias and mean squared error

when the model is correctly speci�ed. This remains true under some forms of misspec-

i�cation. In our simulations, the coverage of the ML estimator is close to its nominal

level, whereas the GMM estimator tends to under-cover. We conclude the paper by

estimating BLP on the car data used in the original Berry et al. (1995) paper, obtaining

similar estimates with considerably tighter standard errors.

*Corresponding author. Email: ozaltun@mit.edu. We are grateful to Ariel Pakes for useful conversations
early on in this project, and to Surya Ierokomos for excellent research assistance.
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1 Introduction

Demand estimation is a fundamental tool in applied economics. One widely used demand

model for di�erentiated goods markets is Berry et al. (1995) (BLP), which builds on the ear-

lier work of McFadden (1986) concerning the mixed logit. The BLP model is traditionally

estimated by generalized method of moments (GMM), but the estimates are often impre-

cise. It has long been known that the estimation performance is dramatically improved by

adding a model of the supply side, typically one in which �rms engage in Bertrand-Nash

pricing. A small but in�uential literature has documented other ways of improving estima-

tion performance: replacing a step that inverts from market shares to mean utilities with a

set of constraints on the di�erence between actual and predicted market shares (the MPEC

approach of Dubé et al. (2012)), using empirical likelihood instead of GMM (Conlon, 2013)),

choosing the right instruments (Reynaert and Verboven (2014); Gandhi and Houde (2019))

and using high-quality software (Conlon and Gortmaker (2020)).

This paper adds to this literature by revisiting an old idea: estimating BLP by maximum

likelihood. The theoretical advantages of doing so are clear. First, maximum likelihood

is statistically e�cient, which translates into more precise estimates. Second, maximum

likelihood does not require the researcher to choose their instruments. In fact, provided the

model is correctly speci�ed, one can think of MLE as a magical procedure that automatically

performs GMM with the optimal instruments. This may be important in practice, for two

reasons. First, choosing good instruments can be hard, as attested to by the papers on this

topic cited above. Second, BLP is often used for demand analysis in merger cases, and in

such cases any degrees of freedom, such as instrument choice, can be exploited by competing

expert witnesses in their analysis of the case.

There are, however, some drawbacks. Both price and quantity are endogenous, and so a

well-speci�ed likelihood requires modeling how both price and quantity arise, necessitating

models of both demand and supply. This requires committing to some model of pricing.

Moreover, the researcher needs to specify a distribution for the demand and cost shocks.

We investigate these trade o�s here.

The paper proceeds in three parts. First, we outline the BLP model and derive the

maximum likelihood estimator (MLE) under Bertrand-Nash pricing. Somewhat surprisingly,

this appears to be new, as the prior literature we review below has assumed that the demand

error enters the pricing equation linearly, which is inconsistent with Bertrand-Nash.

The second part of the paper investigates the performance of the MLE relative to the

best practice in implementing GMM (for best practice, we follow Conlon and Gortmaker

(2020)). We start with a variety of well-speci�ed scenarios, in which we would expect MLE

2



to outperform GMM. We �nd that it does, and quite handily - bias and mean squared error

are smaller, standard errors are tighter, and coverage is more precise. We then consider three

scenarios in which the model is wrong in some way. The �rst tests the robustness of MLE

to a di�erent error structure, namely Laplace errors. We �nd that the MLE continues to

outperform the GMM benchmark. The second considers a misspeci�ed supply side, where

estimation assumes costs are log-linear rather than linear in characteristics. Here we �nd that

both GMM and MLE perform poorly in estimating the demand parameters, as expected,

but MLE performs worse. Finally, we consider a case where the ownership matrix is mis-

speci�ed, which we intend as reduced form shorthand for a mis-speci�cation of the game

being played on the supply side. The results of GMM and MLE are comparable in this case.

In the �nal part of the paper, we replicate BLP, using their original data, and building on

the replication exercise done in Andrews et al. (2017) (AGS). We compare the MLE estimates

to a series of benchmarks: the original estimates in BLP, the replication results of AGS, and

the best practice estimates of Conlon and Gortmaker (2020) (CG). The MLE estimates are

very similar to the GMM estimates both in terms of the parameters and implied own price

elasticities. Notably, the price coe�cient estimate is close to the best practice of CG, unlike

BLP and AGS. In addition the standard errors are substantially smaller; often less than 25%

on a typical parameter estimate. This performance is �out of the box�; unlike the GMM

estimators, we didn't have to choose our set of instruments.

Much of the work in this paper lies in the details. The likelihood requires computation

of a Jacobian term, a large matrix which we analytically derive in the appendix using the

implicit function theorem. The Jacobian of the likelihood in turn includes terms from the

Hessian of the share function. Because numerical errors can easily accumulate we take extra

care to implement state of the art computational methods. We do this by utilizing the

PyTorch framework developed in Paszke et al. (2019). One particular feature of PyTorch

that helps with optimizing is Automatic Di�erentiation (AD). For optimizing the objective,

�nite di�erence methods can lack speed and reliability compared to analytic derivatives.

AD exploits the chain rule and the fact that computer code is made up of elementary

mathematical operations to compute gradients that are as precise as analytically derived

gradients.

Taken together, these simulation and replication exercises suggest that MLE is a useful

addition to the set of tools available to estimate BLP, allowing researchers to avoid choosing

moment conditions, and having a substantial advantage in statistical precision, at least where

the researcher is willing to commit to a model of the supply side.
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Related literature. The idea of estimating di�erentiated products demand systems by

maximum likelihood is by no means new. With individual choice data, it is in fact common

(see e.g. Honka et al. (2017) and Abaluck and Adams-Prassl (2021) for more recent exam-

ples). The marketing literature has also considered using maximum likelihood with aggregate

data. Jiang et al. (2009) suggests a Bayesian Markov Chain Monte Carlo (MCMC) approach

for demand estimation in the absence of endogenous prices. They �nd in simulations that

their estimates have lower mean squared error. In an extension of their main model, they

add a linear supply side pricing equation and suggest how instrumental variables may be

used in the presence of endogeneity. Park and Gupta (2009) perform a similar analysis, using

maximum likelihood rather than a Bayesian approach, and again insisting on a linear pricing

equation and bivariate normal errors. Finally, in an appendix to their paper, Dubé et al.

(2012) once again employ a linear pricing equation when considering the performance of a

maximum likelihood estimator of BLP. Our paper di�ers from these prior contributions in

that we set up the supply-side pricing equation to be consistent with Bertrand-Nash pricing,

leading to an equation in which the demand error enters non-linearly.

2 Model

Our model closely follows Berry et al. (1995). Our exposition is deliberately concise, and we

refer the reader to Berry et al. (1995) for additional details. We use i to index individuals,

j for products, and t for markets. We present our full notation in Table 1.

Utility. An individual i buying product j in market t obtains utility equal to:

uijt = x′
jtβi − αpjt + ξjt + ϵijt, (1)

where xjt represents the observable characteristics of a product, pjt is the associated price

of a product, ξjt is a scalar unobservable product characteristic, δjt is the product's mean

utility, and ϵijt is an idiosyncratic shock that is i.i.d. and follows a type-1 extreme value

distribution. Product characteristics are allowed to have heterogeneous e�ects on individuals'

utilities through βi. Each observable characteristic coe�cient k follows βik = βk+ β̃ik, where

β̃ik is an i.i.d. random variable drawn from N(0, σβ). Mean (across consumers) utility takes

the form:

δjt = x′
jtβ − αpjt + ξjt, (2)

4



and thus individual utility can be re-written as:

uijt = δjt + x′
jtβ̃i + ϵijt. (3)

Demand. Individual consumers make product choices that maximize their utility. The

observed market-level shares of each product are the result of aggregating these individual-

level decisions. The assumption on the idiosyncratic shock ϵijt and the existence of an outside

option where u0t = 0 yields market shares:

sjt =

∫
eδjt+x′

jtβ̃i

1 +
∑

j′∈Jt
e
δj′t+x′

j′tβ̃i

dF (β̃i|σβ). (4)

Supply. For the supply side of the market, we assume a marginal cost structure of:

cjt = w′
jtγ + ujt, (5)

where cjt is the marginal cost of producing a product, wjt is a vector of characteristics and

ujt is a latent scalar supply side cost shock. Firm pro�ts are given by:

πft = max
pft

∑
j ∈ Jft

(pjt − cjt)sjt. (6)

As in BLP, we assume that �rms have the objective of maximizing their pro�ts in a given

market across all of their products. This leads to the following �rst order conditions (FOCs):

∂πft

∂pjt
= sjt +

∑
j′ ∈ Jft

(pj′t − cj′t)
∂sj′t
∂pjt

, (7)

where πft is the pro�t of �rm f in market t. This can be written in matrix form as:

ct = pj − (OtJ
s,p
t )−1st, (8)

where Js,p
t [j, j′] =

∂sj′

∂pj
and Ot is the ownership matrix:

Ot =

1 if j ∧ j′ ∈ Jft,

0 otherwise.
(9)

Given {pt, sjt} and a set of parameters, Eq. 7 can be used to estimate marginal costs.
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These marginal costs can be used to estimate the parameters of Eq. 5:

ct = pt − (OtJ
s,p
t )−1st = wtγ + ut. (10)

3 Estimation

This section presents the two main estimation procedures for this model: �rst, we provide a

brief discussion of estimation using Generalized Method of Moments (GMM), and then we

provide a more elaborate description of the MLE estimator. We will use notation similar to

prior literature: Θ = {θ, β, γ} represents all linear and non-linear parameters in the model.

The parameters (β, γ) enter the mean utility and cost equations linearly, and we refer to

them as the linear parameters. We refer to the remaining parameters θ = {α, σβ} as the

non-linear parameters.

3.1 Generalized Method of Moments

For GMM estimation, the supply and demand residuals are used to form the moment condi-

tions using valid instruments. Identi�cation relies on �nding such valid instruments, which

typically arise from exclusion restrictions, i.e., observables that enter only one of the demand

and supply equations. For a given set of parameters Θ, Equations 2 and 5 imply the following

residuals:

ut(Θ) = ct(θ)−wtγ, (11)

ξt(Θ) = δt(θ)− xtβ + αpt. (12)

As Berry (1994) shows, the share equation 4 is invertible in the sense that given the data

{xt,pt, st} and non-linear parameters θ, there is a unique value of the mean utilities δjt that

rationalize the observed market shares. We denote this by δt(θ). Then as seen in the �rst

equality of Equation 10, the implied costs can be recovered from the prices, ownership matrix

and the Jacobian of the shares with respect to prices. Notice that these also depend only on

the non-linear parameters, and we write the implied costs as a function ct(θ).

The GMM estimator requires demand-side instruments Zd
jt and supply-side instruments

Zs
jt that satisfy the moment conditions E[ξjtZ

d
jt] = 0 and E[ujtZ

s
jt] = 0. Prior work suggests

various ways to construct these instruments (Berry et al., 1995; Gandhi and Houde, 2019;

Conlon and Gortmaker, 2020). Given instruments, one can form the empirical analogs of
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the moment conditions:

ĝ(θ) =
1

N

∑
t

∑
j∈Jt

[
ujt(θ)Z

s
jt

ξjt(θ)Z
d
jt

]
= 0, (13)

and proceed to minimize the GMM objective:

θ̂ = argmin
θ

ĝ(θ)Ψ̂ĝ(θ), (14)

where Ψ is a positive de�nite weighting matrix. In most cases, GMM estimation proceeds in

two steps. In the �rst step, Ψ is typically set to either the identity matrix, or two-stage least

squares (2SLS) weighting matrix.1 In the second step Ψ is replaced with a heteroscedasticity

robust weighting matrix that uses the �rst-step estimates. More details on this estimation

routine can be found in BLP, AGS, and CG.2

Optimization We follow common practice and structure the optimization problem as an

outer loop that searches over non-linear parameters, and an inner loop that recovers the

optimal linear parameters given the non-linear parameters from the outer loop. As noted

above, for any guess of the non-linear parameters θ we can generate the implied mean utilities

δt(θ) and marginal costs ct(θ). We may then concentrate out the linear parameters (β, γ) by

setting them to the values that minimize the GMM objective for that θ, a process referred

to as the �inner loop�. The inner loop has an analytic solution, using an IV-GMM estimator,

as described in CG among other references.

Standard Errors We use the standard formula for heteroskedasticity robust standard

errors in GMM. In practice the estimated standard errors depend on how one estimates

the gradient of the GMM objective: either by �nite di�erences, automatic di�erentiation, or

using an analytic expression for the gradient. We primarily rely on automatic di�erentiation.

3.2 Maximum Likelihood Estimation

In this section, we outline our maximum likelihood estimation (MLE) procedure. In this

context MLE requires a parametric speci�cation of the joint distribution of the error terms,

ξ and u. If this assumption holds, MLE is the most statistically e�cient estimation procedure

available. The identi�cation requirements for MLE are otherwise the same as for GMM: the

researcher should have access to a cost shifter to identify the mean price coe�cient, and

1In our simulations and replication exercise, we initialize Ψ using the 2SLS weighting matrix as in Conlon
and Gortmaker (2020).

2CG succinctly outlines the estimation procedure in their Algorithm 1.
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choice set variation to identify the distribution of random coe�cients.3 Thus MLE requires

demand and supply-side instruments just as GMM does, but doesn't require the explicit

construction of moment conditions. Since MLE can be thought of as GMM with optimal

instruments (the �rst order conditions of the likelihood in the parameters), one can think of

MLE as automatically picking the best instruments. This is distinct from the optimal GMM

instruments of Chamberlain (1987), which are only semi-parametrically optimal, since that

procedure makes no distributional assumptions on the distribution of the residuals.4

The likelihood will depend on the joint density of the observed and endogenous variables

in the model: shares (st) and prices (pt). As mentioned previously, to estimate the likeli-

hood, we make distributional assumptions. Particularly, we assume that the residuals of the

demand and supply unobserved characteristics are i.i.d. (homoskedasticity of the residuals)

and follow a joint normal distribution:[
ξjt

ujt

]
∼ N(0,Σ) , where Σ =

[
σ2
ξ σξ,u

σξ,u σ2
u

]
. (15)

The conditional density of interest is f(st,pt|xt,wt;Θ), where f(·) is probability density

function. We can re-write this density by using multi-variate change of variables and the

Inverse Function Theorem:

f(st,pt|xt,wt;Θ) = f(δt, ct|xt,wt;Θ) ×
∣∣J(st,pt,xt,wt;θ)

−1
∣∣ (16)

where | · | is the determinant and J(st,pt|xt,wt; θ) are the full derivatives of shares and prices

with respect to mean utility and costs, a 2Nt × 2Nt matrix:

J(st,pt|xt,wt;θ) =

[
dst
dδt

dst
dct

dpt

dδt

dpt

dct

]
. (17)

We derive the Jacobian in Appendix A.1.3. Notice that it doesn't depend on the parameters

{β,γ,Σ}. The density of f(δt, ct|xt,wt;Θ) can be written as a result of the structure of the

model (particularly equations 2 and 10) and the distributional assumptions in equation 15:

f(δjt, cjt|xjt,wjt;Θ,Σ) ∼ N(µ(xjt,wjt;Θ),Σ), (18)

3Instead of a cost shifter, one may instead impose that the cost and demand errors are independent, in
which case the cost residual itself is a valid instrument for price (MacKay and Miller, 2021).

4In simulations, CG �nd that using the Chamberlain (1987) instruments generally performs better than
other approaches for picking instruments, but the performance gains they document from doing so are small
compared to those we �nd from the use of MLE.
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where µ is a vector-valued function (returning a two-vector), and Σ is a 2 × 2 matrix. For

ease of notation, we denote the data in market t as Dt and the data across all markets as

D. The log-likelihood can be written by expanding out the joint normal distribution for a

market t and taking the natural logarithm of all the terms in Equation 16:

ℓt(Θ,Σ;Dt) =− Nt

2
log(|Σ|)

− 1

2

∑
j∈Jt

(
([δjt cjt]− µ(xjt,wjt;Θ)T )Σ−1(

[
δjt

cjt

]
− µ(xjt,wjt;Θ))

)
− log(|J(Dt;θ)|).

Write

[
ξjt(Θ)

ujt(Θ)

]
=

[
δjt

cjt

]
− µ(xjt,wjt;Θ), substitute into the likelihood and sum across mar-

kets to get the aggregate log-likelihood:

ℓ(Θ,Σ;D) =
∑
t

ℓt(Θ,Σ;Dt) (19)

=
∑
t

(
−Nt

2
log(|Σ|)− 1

2

∑
j∈Jt

[ξjt ujt]
TΣ−1

[
ξjt ujt

]
− log(|J(Dt;θ)|)

)
.

We will refer to the log-likelihood given above as the unconcentrated version of the log-

likelihood.

Optimization To simplify optimization, we will concentrate out a number of parame-

ters. First consider the variance-covariance matrix Σ. Fixing Θ and therefore the residuals

{ξjt(Θ), ujt(Θ)}, the likelihood maximizing choice of Σ is the implied variance-covariance

matrix of the residuals. This is a function of the parameters, which we denote by Σ∗(Θ).

As shown in Appendix A.1.1, making this substitution simpli�es the middle term of the

log-likelihood in eq 19 to a constant, resulting in the following likelihood:

ℓ(Θ,Σ;D) = −N

2
log(|Σ∗(Θ)|)−

∑
t

log(|J(Dt;θ)|). (20)

Notice that the linear parameters do not enter the Jacobian, only the implied variance-

covariance matrix. Thus similar to the GMM procedure, we can concentrate out the linear
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parameters by solving an inner loop problem of the form:

γ∗(θ),β∗(θ) = argmin
γ,β

log(|Σ∗(θ, β, γ)|). (21)

Now recall that the implied variance covariance-matrix Σ∗(θ, β, γ) is a 2× 2 matrix, with a

determinant equal to σ2
ξ (θ, β, γ)σ

2
u(θ, β, γ) − (σξ,u(θ, β, γ))

2. In the absence of a covariance

term, minimizing this objective would be equivalent to minimizing the demand and cost

residuals separately. This could be done by separate OLS regressions. But the presence of

a covariance term complicates things, leading to a non-linear objective with no closed form

solution.5 In Appendix A.1.2 we show that β and γ can be solved in closed form holding

the other parameter �xed and so we estimate them jointly by alternating least squares until

convergence.

This yields a concentrated likelihood function that depends only on the non-linear pa-

rameters, to be maximized in an outer loop:

ℓ(θ;D) = − N

2
log(|Σ∗(θ)|)︸ ︷︷ ︸

Part I

−
∑
t

log(|J(θ)|)︸ ︷︷ ︸
Part II

, (22)

where we will call part I of the likelihood the covariance term and part II the Jacobian term.

Standard Errors To compute standard errors, we use the inverse of the Fisher information

matrix, which is given in Appendix A.3. For accurate estimation of the standard errors, we

use the Fisher information matrix of the unconcentrated likelihood, to allow the uncertainty

in the inner loop estimation procedures to be accounted for.

Computational Details and Algorithm The optimization of the likelihood initially

follows the GMM procedure in inverting from market shares to mean utilities and marginal

cost vectors {δ, c}. In order to invert from market shares to mean utilities, we use the

SQUAREM method proposed by Varadhan and Roland (2008) and recommended by CG.

The marginal cost is calculated from the Bertrand-Nash equations detailed in the Model

section.

The rest of the optimization is best understood when thinking about the covariance term

and the Jacobian term of the log-likelihood in equation 22 separately. The covariance term

is evaluated by concentrating out the linear terms using the objective in equation 21.

5In the GMM estimation procedure, OLS also fails unless there is no covariance in the errors. But there
IV-GMM delivers a closed-form solution for (β, γ).
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The terms entering the Jacobian terms depend on partial hessians of the shares with

respect to price. They are derived in detail in Appendix A.1.3. Note that these Hes-

sians are the computational bottleneck of the estimation routine, having dimensions of size

(T,Ni,max(Nt),max(Nt),max(Ft))
6.

Given data, Algorithm 1 outlines the procedure of the estimation objective. The code de-

veloped for this application uses the PyTorch package. PyTorch provides a high-performance

library for optimizing both the GMM and MLE objectives.7

Algorithm 1 MLE estimation of BLP

Require: {θ, data}
−→ Calculate δ(θ|data) using the SQUAREM algorithm.
−→ Calculate c(θ|data) using Equation 7.
−→ Calculate {β∗, γ∗} using the ALS process described in appendix section A.1.2.
−→ Calculate ℓI(θ, β

∗, γ∗|data), part I of the log-likelihood equation 22.
−→ Calculate ℓII(θ|data), part II of the log-likelihood equation 22 as described in appendix
sections A.1.3 and A.1.3.
return ℓ = ℓI + ℓII

4 Simulations

In this section, we evaluate the performance of GMM and MLE on simulated data, where

the ground truth is known. Our simulation procedure is based on Conlon and Gortmaker

(2020) and Armstrong (2016).

For each simulation, we set the number of markets to T = 20. The number of �rms Ft

in each market is randomly chosen from the set {2, 5, 10}. The number of products for each
�rm Jft is also chosen randomly from {3, 4, 5}. The structural error terms are given by:[

ξj

uj

]
∼ N(0,Σ) where Σ =

[
0.2 0

0 0.2

]
.

The linear demand characteristics are [1, xjt, pjt] and the linear supply characteristics are

[1, xjt, wjt]. Both exogenous characteristics (xjt, wjt) are drawn from a standard uniform

distribution. We allow for two random coe�cients on the demand side. The �rst is on the

6The max(Nt) is a result of how we programmed markets. Essentially, in order to have all markets
concatenated in a matrix or tensor, the max number of products is used. Additionally, themax(Ft) dimension
is a result of the particular hessian objects having a dimension that has to only do with products that are
within the same �rm.

7Two reasons for using PyTorch are: (1) utilizing the e�cient tensor and matrix operations, (2) utilizing
automatic di�erentiation for optimization.
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demand characteristic xjt, where β̃i ∼ N(0, σ2
β) and σβ = 3. The second one is on price, where

α̃i ∼ N(0, σ2
α) and σα = 0.2. To compute the values of the endogenous variables (pjt, sjt) we

use the Morrow and Skerlos (2011) method as described in Conlon and Gortmaker (2020).

We use Gauss-Hermite quadrature with a product rule to integrate over the 2-dimensional

distribution of random coe�cients. We provide details in Appendix A.2. We set the ground-

truth values for the demand-side parameters to [β0, βx, α] = [−7, 6,−1], and the supply-side

parameters to [γ0, γx, γw] = [2, 1, 0.2]. To ensure reproducibility, we �x a random seed for

each simulation.

We refer to the setup above as �No covariance�, and also consider the following variations:

� Low covariance: We set the variance-covariance matrix to Σ =

[
0.2 0.1

0.1 0.2

]
.

� High covariance: We set the variance-covariance matrix to Σ =

[
0.3 0.2

0.2 0.3

]
.

� Laplace, no and low covariance: The errors are generated so that the marginals

are Laplace instead of normal. A Gaussian copula is used to generate the draws in the

low covariance case, where Σ takes the form above.

� Supply Misspeci�cation: The supply side functional form is misspeci�ed. Marginal

costs are linear in characteristics as per Equation 6, but the estimation assumes log-

linearity ln(cjt) = wjtγ + ujt.

� Ownership Misspeci�cation: The ownership matrix is misspeci�ed, in that we set

O to be the identity matrix (i.e. each product is assumed to be owned by a single

�rm). The truth is that each �rm produces 3, 4 or 5 products.

For GMM estimation, we construct local di�erentiation instruments following Gandhi

and Houde (2019). We also create a predicted price instrument, by regressing price on valid

instruments (Reynaert and Verboven, 2014).

4.1 Results

We compare MLE and GMM for each of the above scenarios on three metrics: parame-

ter estimates, standard errors, and own-price elasticities. For each scenario, we run 1000

simulations, with a di�erent random seed for each simulation8. For each simulation, opti-

mization starts at a random initial guess which is drawn uniformly within a 50% range of

8Each random seed is also randomly chosen. The random seed is assigned for reproducibility.
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(a) No covariance scenario
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(b) Low covariance scenario

Figure 1: These �gures plot the histograms of parameters across the 1000 simulation estimates for the (a)
no covariance scenario and the (b) low covariance scenario. The dashed vertical line in each sub-�gure is
placed at the true parameter value. The results show the overall distribution of parameter estimates.

the true values. Optimization is repeated 3 times with di�erent starting values, after which

the parameter estimates are chosen based on the smallest objective value.

To validate that we have correctly coded up the scenarios in CG, as well as the our

particular implementation of GMM, we compare our estimates to those produced by PyBLP.

The parameter estimates are in most cases indistinguishable. In addition, the mean bias and

mean absolute bias we report in our GMM results closely match those in Table 5 of CG.

The scenarios that we run simulations for can be viewed in three di�erent categories.

First, the correctly speci�ed scenarios, where both the MLE and the GMM estimators are

correctly speci�ed. Second, the MLE misspeci�ed scenarios, which are the Laplace scenarios

(GMM is correctly speci�ed in this case). Last, there are the fully misspeci�ed scenarios,

where both MLE and GMM are misspeci�ed, these are the Supply Misspeci�cation and

Ownership Misspeci�cation scenarios.
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Mean Bias and RMSE. We begin by summarizing the bias and root mean squared error

(RMSE) of the estimators, in two Tables: (a) the RMSE of the estimators can be found in

Table 2 and (b) the mean bias can be found in Table 3. The results show that in general the

MLE estimates perform somewhat better when it comes to mean bias, and clearly outperform

the GMM estimates when looking at the RMSE values. Another way of putting this is for a

particular realization of the data, MLE estimates are generally closer to the true values. A

visualization of this can be seen in Figure 1, where we see the histogram of the parameter

estimates of each of the three parameters for the no covariance and low covariance scenarios.

For RMSE, MLE clearly outperforms the GMM for all the correctly speci�ed and MLE

misspeci�ed scenarios. In the fully misspeci�ed scenarios, GMM performs better when there

is a supply side misspeci�cation and MLE performs better when the ownership matrix is

misspeci�ed.

Standard Errors and Coverage. Standard errors and con�dence intervals are funda-

mental for inference. These results are summarized in two tables: (a) the mean standard

error for a scenario in Table 4 and (b) the coverage percentile of the true values for the 95%

con�dence intervals in Table 5.9 The coverage percentile represents the percent of simulations

where:

θtrue ∈ [θ̂ − 1.96σ̂θ/
√
n, θ̂ + 1.96σ̂θ/

√
n]. (23)

The mean standard errors for MLE are tighter under all correctly speci�ed scenarios as

well as the Laplace scenarios (the one exception to this is the mean standard error of α in the

high covariance scenario). Table 5 shows the coverage of each estimator for each parameter,

for a nominal 95%. In general GMM tends to badly under-cover, with true coverage of

between 80-90% for the mean price parameter, 90-95% for the standard deviation of the

random coe�cient on x and 70-80% for the standard deviation of the random coe�cient on

price. By contrast for MLE those coverages are respectively 88-95%, 90-95% and 90-95%, so

that the undercoverage problem is less severe. The sole exception to this general pattern is

the case where the cost structure is misspeci�ed, where MLE performs terribly.

Own-price elasticities Demand systems are often used to generate own-price elasticities.

Given the interest in these statistics, we examine what the mean bias and absolute mean

9For the standard errors of the σprice parameter in the GMM procedure, we �nd that about 10% of the
simulations have numerically infeasible values (standard error values ranging from 1000 to 1e13). To validate
that this is not an error in our standard error computations, we take a handful of simulations with such
issues and run the pyBLP package provided by CG. The outputs were NaN for the corresponding standard
error values. It therefore appears that this problem is not speci�c to our code, but to the GMM procedure
implemented here and in pyBLP itself. We drop these cases in the relevant columns of Tables 4 and 5; if
they were included the performance of GMM would be much worse.
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(b) Low covariance scenario

Figure 2: This �gure has a set of histograms summarizing the bias (left) and absolute bias (right) of product-
level own-price elasticities in the (a) no covariance and (b) low covariance scenarios. Within each sub�gure,
the vertical dashed lines are the average bias and average absolute bias for GMM (blue) and MLE (red).

bias of product-level own-price elasticities are for a given set of estimated parameters. Figure

2 shows this for the no covariance and low covariance scenarios. The results support the

conclusion from the previous sections, the MLE produces tighter results in most of our

scenarios.

Jacobian. One notable feature of MLE is the presence of a Jacobian in the likelihood.

This accounts for the non-linear mapping from marginal costs and mean utilities to the

(endogenous) prices and quantities. One might think that minimizing the covariance term

in the likelihood would be enough to ensure good performance, since doing so in some sense

minimizes the variance of the demand and cost residuals. We investigate the importance of

the Jacobian term in the likelihood here.

Figure 3 plots the likelihood decomposition into the covariance and Jacobian terms sep-
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Figure 3: This �gure plots the likelihood and its components for di�erent values of σx. Each subplot has
the same x-axis, which is a range of σx around the true value of 3, while α and σprice stay �xed at the true
value of 1. The �gure on the left shows the full likelihood detailed in equation 22, with the dashed green line
highlighting the GMM loss. The middle �gure is the covariance term of the likelihood, and the �gure on the
right is the Jacobian term of the likelihood. Finally, the vertical dashed red line is the true value of sigma.

arately, where we vary the σx parameter at the true α = 1 value (for a random simulation).

The covariance term is minimized below the truth, and the Jacobian term is necessary to

correct the bias in the covariance term and arrive at the correct solution. The Jacobian thus

plays an important role, in some sense regularizing the estimator by penalizing parameters

under which the derivatives of the endogenous variables in the exogenous variables are big

(i.e. parameters at which the predictions are unstable).

5 Empirical exercise: replicating BLP'95

In this section, we describe our replication of BLP'95 using MLE. We use the same data as

Berry et al. (1995), provided by Andrews et al. (2017). The data contains US automobile

data from 1971 to 1990. The dataset also includes 5 product characteristics, horse power to

weight ratio (hpwt), if a car has air conditioning (air), miles per dollar of gasoline (mpd),

width times length (space), and miles per gallon (mpg).

We start by replicating the GMM estimation procedure. We follow the procedure out-

lined in AGS, which is based o� of BLP. This includes dropping certain instruments due

to collinearity as well as starting the estimation procedure from the estimated parameters

in BLP. As in BLP, we have 2217 model/years with 997 distinct models. The instruments

that we use are BLP sums of characteristic instruments. With this setup, the local GMM

estimation produces estimates that are almost identical to the AGS parameters.

Next, we estimate the parameters using MLE. For the MLE setup, we run the procedure

on the same dataset. Our integration approach follows AGS by using the same random
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draws and importance sampling. One change we make is to double the number of draws to

ensure symmetry. More speci�cally, we take the set of draws, multiply the vector associated

with air conditioning with negative one, and concatenate these to the original draws. This

leaves us with two times the total draws.10

To get a sense of how reasonable our results are, we compare our estimates to existing

benchmarks in the literature that use this dataset. These benchmarks are the estimates

reported in BLP, AGS, and CG. These benchmarks di�er in two main ways, the instruments

selected and the choice of draws (and weights) used for integration. BLP use the sum

of rival characteristics (BLP) instruments and integrate using importance sampling. AGS

follows BLP closely in order to replicate their estimates. CG uses the Chamberlain (1987)

optimal instruments and quasi-Monte Carlo integration (10,000 scrambled Halton draws in

each market).

The estimation results can be found in Table 6 with standard error comparisons in paren-

theses below the parameter estimates. The parameter estimates of MLE are closely aligned

with the GMM estimates. In particular, the α parameter is closest to the CG best practice

estimates. The sigma estimates tend to align with the BLP results, and generally indicate

larger heterogeneity in the data than the CG results. The similarity of the parameter esti-

mates is surprising since the e�ort put into calibrating the MLE estimator to the automobile

data was minimal i.e. these results are �out-of-the-box�. No calibration or instrument con-

struction was necessary. Standard error estimates of the MLE parameters are signi�cantly

tighter for MLE, regularly one quarter of the smallest GMM standard error. The standard

error on α is 0.769, compared to a range of 5.6-11.7 for the GMM. This is nearly 10-fold

reduction compared to GMM. Since we don't know the ground truth we cannot comment on

whether the estimated standard errors imply con�dence intervals with correct coverage, but

the simulations above give us con�dence that if the model is correctly speci�ed the coverage

will be approximately correct.

Finally, we look at the model level comparison of the own-price elasticities of the GMM

and MLE estimators in Figure 4. We can see that there is a fairly large mass around

the diagonal, indicating generally similar estimates. The most signi�cant trend o� of the

diagonal is a section of the AGS estimates. This trend can be fully attributed to the large

di�erence in the σair estimates, where AGS estimates this parameter to be 4.2, compared to

BLP, CG, and MLE estimating it to between 1.4-2. Since the air conditioning variable is

binary, it leads to two separate trend lines, where the one above the diagonal representing

10When estimating the model by MLE using the AGS draws, the parameter estimates were mostly similar,
but σair value was estimated to be 0. This is a result of an arti�cial lack of symmetry around zero of the
objective function in σair due to sampling variance in the draws; doubling the number of draws �xes this
problem.
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Figure 4: This �gure plots the own-price elasticity comparisons between MLE and GMM parameters. Each
dot represents a model own-price elasticity, with the di�erent colors representing the three main GMM
estimates we use as benchmarks in this paper.

models that have air conditioning.

Overall, we were able to use MLE on the BLP automobile data with relative ease and

produce estimates that are similar to prior work but with tighter standard errors and without

having to the construct valid instruments.

6 Conclusion

We develop and evaluate a maximum likelihood estimator for di�erentiated products de-

mand. Unlike the traditionally used GMM estimator, the ML estimator requires stricter

distributional assumptions, while o�ering the advantages of statistical e�ciency and limit-

ing choices required by the researcher to �t the model. While we are not the �rst to propose

an ML estimator, prior work has relied on reduced-form supply speci�cations, whereas our

supply-side pricing is consistent with Bertrand-Nash pricing.

In the simulation section, we show that under correct speci�cation, our method out-

performs GMM as well as showing its robustness and sensitivity to di�erent types of mis-

speci�cation. Finally, we replicate BLP using the new estimation method, �nding that the

estimates are very similar by comparing the estimated values to other benchmarks. These

results demonstrate that MLE can be a useful addition to the tools available to researchers

estimating BLP.
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Table 1: Notation.

Variable De�nition

t Markets in range {1, 2, 3, ..., T}
Ft The number of �rms in market t.

f Firm f in range {1, ..., Ft}
j Product j in range {1, 2, 3, ..., Nt

Jt Set of products in market t

Jft Set of products in �rm f and market t

Nt Number of products in market t

Nft Number of products in �rm f and market t

xj Observed characteristics of product j

βi Consumer i's taste parameter

pj Price of product j

cj Marginal cost of product j

ξj Unobserved characteristics of product j

ϵij Distribution of consumer preferences around the mean

θ A vector of all parameters.
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Table 2: RMSE of simulations.

GMM MLE

α σx σprice α σx σprice

No covariance 0.42 0.34 0.13 0.20 0.23 0.10

Low covariance 0.41 0.27 0.13 0.28 0.20 0.11

High covariance 0.40 0.29 0.14 0.43 0.20 0.11

Laplace, no covariance 0.46 0.34 0.13 0.22 0.23 0.11

Laplace, low covariance 0.38 0.27 0.13 0.33 0.21 0.12

Supply misspeci�cation 0.42 0.32 0.14 0.99 0.41 0.13

Ownership misspeci�cation 0.39 0.32 0.12 0.34 0.21 0.11

Notes This table presents the root mean squared error of di�erent simulation scenarios. Each column is a
combination of an estimator and a parameter. We use 1000 simulations to generate each row in this table.
Note that the supply misspeci�cation and the ownership misspeci�cation scenarios also have low covariance.

Table 3: Mean bias of simulations.

GMM MLE

α σx σprice α σx σprice

No covariance 0.12 -0.09 0.03 0.03 0.01 -0.02

Low covariance 0.10 -0.04 0.01 0.03 0.01 -0.02

High covariance 0.04 -0.08 0.01 0.05 -0.00 -0.03

Laplace, no covariance 0.11 -0.08 0.02 0.03 -0.00 -0.01

Laplace, low covariance 0.08 -0.06 0.02 0.05 0.00 -0.02

Supply misspeci�cation 0.20 0.08 -0.01 0.94 0.30 -0.05

Ownership misspeci�cation -0.05 -0.20 0.03 -0.00 -0.09 -0.02

Notes This table presents the root mean bias of di�erent simulation scenarios. Each column is a combination
of an estimator and a parameter. We use 1000 simulations to generate each row in this table. Note that the
supply misspeci�cation and the ownership misspeci�cation scenarios also have low covariance.
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Table 4: Mean standard error values.

GMM MLE

α σx σprice α σx σprice

No covariance 0.30 0.30 0.13 0.20 0.22 0.12

Low covariance 0.28 0.27 0.22 0.23 0.19 0.12

High covariance 0.28 0.29 0.16 0.30 0.20 0.14

Laplace, no covariance 0.30 0.32 0.14 0.20 0.22 0.13

Laplace, low covariance 0.28 0.28 0.15 0.25 0.20 0.13

Supply misspeci�cation 0.29 0.30 0.16 0.20 0.21 0.10

Ownership misspeci�cation 0.26 0.24 0.10 0.30 0.19 0.13

Notes This table presents the standard errors of di�erent simulation scenarios. Each column is a combination
of an estimator and a parameter. We use 1000 simulations to generate each row in this table. Note that the
supply misspeci�cation and the ownership misspeci�cation scenarios also have low covariance. In the GMM
sigma price column, we omit approximately 10% of the simulations because the standard error calculation
for these simulations were producing numerically infeasible values.

Table 5: Fraction of 95% CI that include the true values.

GMM MLE

α σx σprice α σx σprice

No covariance 0.86 0.92 0.79 0.94 0.93 0.94

Low covariance 0.89 0.95 0.77 0.93 0.94 0.94

High covariance 0.84 0.93 0.72 0.88 0.94 0.95

Laplace, no covariance 0.86 0.93 0.79 0.94 0.95 0.92

Laplace, low covariance 0.88 0.95 0.77 0.91 0.94 0.90

Supply misspeci�cation 0.93 0.97 0.70 0.01 0.64 0.86

Ownership misspeci�cation 0.83 0.81 0.80 0.89 0.91 0.93

Notes This table presents the coverage of di�erent estimators. Each column is a combination of an estimator
and a parameter, and the entries are the fraction of the simulations in which the truth lay within the 95%
con�dence intervals produced by each estimator. We use 1000 simulations to generate each row in this table.
Note that the supply misspeci�cation and the ownership misspeci�cation scenarios also have low covariance.
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Table 6: BLP automobile data parameter estimates with standard errors.

Variable BLP AGS CG MLE

Term on Price (α) ln(y − p) 43.501 42.870 45.898 45.227
(6.43) (5.56) (11.75) (0.77)

Standard deviations Constant 3.612 2.522 2.962 1.924
(1.49) (2.54) (1.64) (0.16)

HP/Weight 4.628 3.525 1.388 4.611
(1.89) (2.84) (2.11) (0.28)

Air 1.818 4.167 1.424 1.991
(1.70) (1.41) (0.43) (0.23)

MP$ 1.050 0.393 0.072 0.299
(0.27) (0.28) (1.00) (0.04)

Size 2.056 1.937 0.231 2.168
(0.58) (0.60) (3.84) (0.11)

Means Constant -7.061 -7.728 -6.679 -5.439
(0.94) (1.16) (1.30) (0.33)

HP/Weight 2.883 4.620 2.774 3.175
(2.02) (1.13) (0.83) (0.35)

Air 1.521 -1.227 0.572 0.385
(0.89) (1.38) (0.35) (0.16)

MP$ -0.122 0.293 0.340 0.086
(0.32) (0.16) (0.10) (0.06)

Size 3.460 3.992 3.920 3.327
(0.61) (0.35) (0.32) (0.17)

Cost Side Parameters Constant 0.952 2.751 2.780 2.327
(0.19) (0.08) (0.10) (0.04)

ln(HP/Weight) 0.477 0.812 0.731 0.495
(0.06) (0.06) (0.07) (0.03)

Air 0.619 0.430 0.528 0.601
(0.04) (0.05) (0.04) (0.02)

ln(y − p) -0.415 -0.610 -0.651 -0.377
(0.06) (0.05) (0.07) (0.04)

ln(Size) -0.046 -0.352 -0.472 0.028
(0.08) (0.11) (0.12) (0.06)

Trend 0.019 0.027 0.018 0.015
(0.00) (0.00) (0.00) (0.00)

Notes This table presents parameter estimates of di�erent estimators on the BLP automobile data. Column
(1) has the original estimates, column (2) is from the AGS data, (3) is the best practice estimates from the
CG paper, (4) is the parameter estimates from the MLE estimator. Standard errors are shown parentheses.
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A Appendix

A.1 Deriving and simplifying the log-likelihood

In this section of the appendix, we are concerned with deriving terms and simplifying the un-

concentrated log likelihood. We �rst show how the parameters (Σ, β, γ) may be concentrated

out, and then provide an analysis of the Jacobian term in the concentrated log likelihood.

A.1.1 Concentrating out Σ

De�ne the following equalities for a given dataset ranging with observations (product-

markets) ranging from 1 to m:

m∑
i=1

ξ2i =
m∑
i=1

(δi − xiβ)
2 = (δ −Xβ)T (δ −Xβ) = ξT ξ

m∑
i=1

u2
i =

m∑
i=1

(ci − wiγ)
2 = (C −Wγ)T (C −Wγ) = uTu

(24)

Recall Part II of the log-likelihood is given by:

=([δj cj]− E[δj cj|xt, wt])Σ
−1(

[
δj

cj

]
− E[δj cj|xt, wt]

T )

=([δj cj]− E[δj cj|xt, wt])

[
σ2
ξ σξ,u

σξ,u σ2
u

]−1

(

[
δj

cj

]
− E[δj cj|xt, wt]

T )

(25)

where for simplicity we index observations by j instead of jt. The maximum likelihood

estimate of Σ, holding the other parameters �xed, is the sample variance-covariance matrix

of the error terms.
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(26)

Next, we can aggregate the likelihood across all data points:
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A.1.2 Estimating the linear parameters

This section is concerned with the estimation of Part I of eq. 22. As mentioned before, u

and ξ have a bivariate normal distribution with arbitrary correlation. The local objective

function that we are concerned with for this part is is:

min
γ,β

log(|Σ̂|) = min
γ,β

log

(∣∣∣∣
[ ∑m

i=1 ξ
2
i

∑m
i=1 ξiui∑m

i=1 ξiui

∑m
i=1 u

2
i

] ∣∣∣∣)

= min
γ,β

log

( m∑
i=1

ξ2i

m∑
i=1

u2
i −

(
m∑
i=1

ξiui

)2) (28)

where | · | is the determinant. Since log(·) is monotonic, the objective above is equivalent to:

min
γ,β

log(|Σ|) = min
γ,β

 m∑
i=1

ξ2i

m∑
i=1

u2
i −

(
m∑
i=1

ξiui

)2
 (29)

Next, we can write out the objective in matrix form and �nd the FOCs:

O = (δ −Xβ)T (δ −Xβ)(C −Wγ)T (C −Wγ)− [(δ −Xβ)T (C −Wγ)]2 (30)

Taking a derivative in β:

∂O

∂β
= −2XT (δ −Xβ)(C −Wγ)T (C −Wγ)− 2XT (C −Wγ)(C −Wγ)T (δ −Xβ)

0 = XT (δ −Xβ)uTu− 2XTuuT (δ −Xβ)

XTXβuTu+XTuuTXβ = XT δuTu+XTuuT δ

(XTXuTu+XTuuTX)β = XT δuTu+XTuuT δ

(XTXuTu+XTuuTX)β = XT δuTu+XTuuT δ

β̂ = (XTXuTu+XTuuTX)−1(XT δuTu+XTuuT δ)

(31)
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Similarly, for γ:

∂O

∂γ
= −2W T (C −Wγ)(δ −Xβ)T (δ −Xβ)− 2W T (δ −Xβ)(δ −Xβ)T (C −Wγ)

γ̂ = (W TWξT ξ +W T ξξTW )−1(W TCξT ξ +W T ξξTC)

(32)

Equations 31 and 32 are dependent on each other. To solve for β̂ and γ̂, we use Alternating

Least Squares (ALS).

A.1.3 The Jacobian in the Likelihood Function

To derive the Jacobian component in the likelihood function, we will use a triangular system

to estimate the total derivatives: (1) Use the supply side �rst order conditions (FOCs) to get

derivatives with respect to price, mean utility, and costs, (2) get the price total derivatives

using the Implicit Function Theorem (IFT) on the FOCs, (3) get the share total derivatives

using the price total derivatives and the share partial derivatives.

Getting the supply side FOCs. Using the Bertrand-Nash equilibrium, we assume that

�rms act using the following objective:

max
pj

πf,t =
∑
j∈Nft

(pj,t − cj,t)sj,t. (33)

For the rest of this derivation, we drop the market notation (all math below is for a single

market). The product speci�c �rst order condition is:

F f
j =

∂πf

∂pj
= sj +

∑
k∈F (j)

(pk − ck)
∂sk
∂pj

(34)
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Next, we take the derivative of the FOCs with respect to price, mean utility, and costs:

∂F f
j

∂pl
=

∂sj
∂pl

+
∂sk
∂pl︸︷︷︸

if k ∈ F (j)

+
∑

k∈F (j)

(pk − ck)
∂sk

∂pj∂pl︸ ︷︷ ︸
Ξp,p
j,l

(35)

∂F f
j

∂δl
=

∂sj
∂δl

+
∑

k∈F (j)

(pk − ck)
∂sk

∂pj∂δl︸ ︷︷ ︸
Ξp,δ
j,l

(36)

∂F f
j

∂cl
= − ∂sl

∂pj︸ ︷︷ ︸
if l ∈ F (j)

. (37)

We can write this in matrix notation, where the partial derivative of vector y with respect to

vector x can be denoted as Jy,x. Additionally, as noted below the terms above, the Ξ terms

are sparse Hessians (sparsity comes from the k ∈ F (j)). With these two notational changes

in mind, we can write the above equations in a simpler form:11

JF,p = Js,p +O ◦ Js,p + Ξp,p (38)

JF,δ = Js,δ + Ξp,δ (39)

JF,c = −O ◦ Js,p, (40)

where ◦ is the Hadamard (i.e., element-wise) matrix-product operator. This gives us the

variables of interest. Formulae for the Hessian tensors in Ξ will be derived later in the last

paragraph of this section.

Getting the price derivatives. To get the price derivatives we will use the IFT on the

�rst derivative of the supply side equation as follows:

∂πft

∂pjt
= Ffjt(δt, pt, ct) ≡

∑
j′∈Nft

(pj′t − cj′t)
∂sj′t
∂pjt

+ sjt1j∈Nft
= 0. (41)

The IFT implies: [
dpt
dδt

| dpt
dct

]
= −(JF,p

t )−1
[
JF,δ
t | JF,c

t

]
(42)

11Note that we can do this since Js,p is symmetric.
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Applying the IFT to the Jt×2Jt matrix formed by stacking the matrices next to each other

gives: [
dpt
dδt

| dpt
dct

]
= −

(
∂Ft

∂pt

)−1 [
∂Ft
∂δt

∂Ft
∂ct

]
= −

[
Js,p
t +Ot ◦ Js,p

t + Ξp,p
t

]−1 [
Js,δ
t + Ξp,δ

t | −Ot ◦ Js,p
t

], (43)

which is a Jt × (2Jt) matrix with of derivatives of all the prices (rows) in δ (�rst set of Jt

columns) and c (last set of Jt columns) respectively.

Share derivatives. Using the derived values above, we can calculate the last two entries

of the Jacobian matrix of interest, the full derivatives of shares with respect to mean utility

and costs:

dst
dδt

=
∂st
∂δt

+
∂st
∂pt

dpt
dδt

(44)

dst
dct

=
∂st
∂pt

dpt
dct

(45)

(46)

where the derivatives of p w.r.t. to exogenous variables are given by the IFT above. Now,

we have a way of getting the Jacobian matrix for the likelihood:

J =

[
ds
dδ

ds
dc

dp
dδ

dp
dc

]
(47)

Deriving the Hessians. From above, we need to calculate the following Hessian terms:

Hs,p,p
k,j,l = ∂sk

∂sj∂sl
and Hs,p,δ

k,j,l = ∂sk
∂sj∂δl

for each market. We can write shares for product k as:

sk =

∫
eVki

1 +
∑

w∈Jt
eVwi

dϵki (48)

=

∫
skidϵki, (49)

which we can use to get the derivative of shares with respect to price:

∂sk
∂pj

=

∫
∂Vji

∂pj
( ski︸︷︷︸
if k = j

−ski ∗ sji) dϵki. (50)
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Taking a second derivative with respect to prices:

∂sk
∂pj∂pl

=

∫
∂Vji

∂pj

∂Vli

∂pl
( ski︸︷︷︸
if k = j = l

− skisli︸ ︷︷ ︸
if k = j

−skisji︸ ︷︷ ︸
if j = l

−skisji︸ ︷︷ ︸
if k = l

+2skisjisli) dϵki. (51)

Hs,p,δ
k,j,l can be derived similarly:

∂sk
∂pj∂δl

=

∫
∂Vji

∂pj

∂Vli

∂δl
( ski︸︷︷︸
if k = j = l

− skisli︸ ︷︷ ︸
if k = j

−skisji︸ ︷︷ ︸
if j = l

−skisji︸ ︷︷ ︸
if k = l

+2skisjisli) dϵki. (52)

A.2 Integrating market shares

Accurate integration is crucial for optimization. One option is Monte Carlo integration,

which uses randomly drawn nodes with equal weights of 1/draws. A more precise and

computationally e�cient way is Gauss-Hermite quadrature, which deals with integrals of

the form
∫
e−x2

f(x) ≈
∑n

i=1wif(xi). For the multinomial logit setup of BLP, Skrainka and

Judd (2011) propose the quadrature setup:

sjt =

∫
eδjt+xjtσβvit

1 +
∑

j′∈Jt
eδj′t+xj′tσβvit

f(vit)dvit (53)

where vit is a normal variable with an identity for diagonal. The Gauss-Hermite estimation

of this integral can calculated once f(vit) is replaced with the normal distribution formula

and a change of variables setup is used to satisfy the form of
∫
e−x2

f(x):

sjt ≈ π−K
2

n∑
i=1

wi
eδjt+xjtσβvit

1 +
∑

j′∈Jt
eδj′t+xj′tσβvit

. (54)

A.3 Standard Error Estimation

We refer the reader to Conlon and Gortmaker (2020) for GMM standard error estimation.

For MLE, we have:
√
n(Θ̂−Θ0) −→ N(0, I−1) (55)

for I the Fisher Information matrix:

I = −E

[
∂2ℓ(D; Θ)

∂Θ∂Θ′

]
(56)
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We estimate this as follows:

Î = − ∂2

∂Θ∂Θ′

(
1

T

∑
t

ℓ(Dt; Θ)

)
(57)

where we have interchanged expectation and derivative, and replaced the expectation with

its empirical analog. We compute derivatives using automatic di�erentiation.
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