

PERFORMANCE ANALYSIS OF SINGLE STEP

CO-FIRED SOLID OXIDE FUEL CELLS (SOFCS)

KYUNG JOONG YOON, PETER A. ZINK, UDAY B. PAL, SRIKANTH GOPALAN

DEPARTMENT OF MECHANICAL ENGINEERING DIVISION OF MATERIALS SCIENCE AND ENGINEERING BOSTON UNIVERSITY

OUTLINE

Introduction

- Single Step Co-firing Process Development
- Polarization Modeling
- Polarization Analysis
- Fuel Utilization Test
 - Advanced Cathode Investigation
 - Summary & Future Work

INTRODUCTION

Major Challenges for Commercialization of SOFCs

High Manufacturing Costs (SOFC System Costs per Unit of Power (\$/kW))

Reduced Cell Performance at Low Operating Temperature (Interconnects, Sealing, etc.)

Single Step Co-Firing Process with Conventional Material System Polarization Modeling: Systematic Analysis of Cell Performance and Polarization Losses

Research Goals

Manufacture SOFCs with the Lowest Manufacturing Costs

by Single Step Co-Firing of the Entire SOFCs

Achieve the Highest Cell Performance and Lower Operating Temperature

by Optimization of Materials, Microstructures, and Process Parameters using Polarization Modeling

 \Rightarrow

Minimize %/kW

SINGLE STEP CO-FIRING PROCESS

Cathode Current Collector: Screen Printing

Ca-doped LaMnO₃ (Porous)

Cathode Active Layer: Screen Printing Ca-doped LaMnO₃ + YSZ (Fine & Porous)

> Electrolyte: Screen Printing YSZ (Dense)

Anode Active Layer: Screen Printing

Ni + YSZ (Fine & Porous)

Anode Support: Tape Casting Ni + YSZ (Porous) Co-Firing in Air (1300-1330°C)

PROCESS DEVELOPMENT

- Lowered Electrolyte Sintering Temperature
 - Density of YSZ : Without Sintering Aid: ~ 94%, With Sintering Aid: ~ 99+% @1300°C
- Matched Thermal Expansion Coefficients and Sintering Shrinkages
- Developed Refractory Cathode Composition
 - Doped-(La,Ca)MnO₃
- Optimized Thicknesses and Porosities of Electrodes
- Optimized Particle Sizes of Initial Powders
- Evaluated Pore Former Material
 - Carbon Black

Doped-LCM

Cathode Current Collector : (La,Ca)MnO₃ 50μm thick, 50% porous

Carbon Black

PROCESS DEVELOPMENT

Cathode Current Collector: LCM, 50µm thick, 50% porous

Cathode Active Layer: LCM-YSZ, 30µm thick, 31% porous

Electrolyte: YSZ, 15µm thick Anode Support: Ni-YSZ, 850µm thick, 32% porous

BASELINE CELL: POWER DENSITY

POLARIZATION MODEL: THEORY

$$E_{C} = E_{0} - iR_{i} - \eta_{act} - \eta_{conc}$$

• Activation Polarization
$$(\eta_{act})^*$$
: $i = i_0 \exp(\frac{\alpha n_e \eta_{act} F}{RT}) - i_0 \exp(-\frac{(1-\alpha) n_e \eta_{act} F}{RT})$ $(\alpha = 1/2, n_e = 2)$
 $\eta_{act} = \frac{RT}{F} \ln\{\frac{1}{2}[(\frac{i}{i_0}) + \sqrt{(\frac{i}{i_0})^2 + 4}]\}$ (Anode + Cathode)

BOSTON

Concentration Polarization
$$(\eta_{conc})^{**}$$
: $\eta_{conc} = -\frac{RT}{4F}\ln(1-\frac{i}{i_{cs}}) - \frac{RT}{2F}\ln(1-\frac{i}{i_{as}}) + \frac{RT}{2F}\ln(1+\frac{p_{H_2}^o i}{p_{H_2}^o i_{as}})$

$$E_{C} = E_{o} - iR_{i} - \frac{RT}{F} \ln\{\frac{1}{2}[(\frac{i}{i_{o}}) + \sqrt{(\frac{i}{i_{o}})^{2} + 4}]\} + \frac{RT}{4F} \ln(1 - \frac{i}{i_{cs}}) + \frac{RT}{2F} \ln(1 - \frac{i}{i_{as}}) - \frac{RT}{2F} \ln(1 + \frac{p_{H2}^{o}i_{as}}{p_{H20}^{o}i_{as}})$$

$$Open Circuit Ohmic Activation Polarization Polarization (Cathode) Concentration Polarization (Anode)$$

* P.W.Li, M.K.Chyu, J. Heat Transfer, vol.127, 1344 (2005)

** J.W.Kim, A.V.Virkar, K-Z.Fung, K.Mehta, S.C.Singhal, J.Electrochem.Soc.146 (1) (1999) 69

POLARIZATION MODELING: CURVE-FITTING (EXAMPLE)

- **Test Condition**
- Temperature: 800°C
- Fuel: 97% H₂+3% H₂O (300cc/min): Fixed
- Oxidant: 100%, 21%, 8% O_2 + N_2 (1000cc/min)

Current Density (A/cm²)

Fitting Parameters	100% O ₂	21% O ₂ + 79% N ₂	8% O ₂ + 92% N ₂
R _i (Ω·cm²)	0.082	0.082	0.082
<i>i_o</i> (A/cm²)	0.52	0.28	0.097
i _{as} (A/cm²)	5.77	5.77	5.77
i _{cs} (A/cm²)	Q	5.42	1.77
	V		

Assumption: $i_{cs} >> i_{as}$ and $\eta_{conc,c} << \eta_{conc,a}$, η_{act} with 100% O₂

• Anode Limiting Current
$$i_{as} = \frac{2 F p_{H2}^o D_{H2-H20}^{eff}}{R T l_a}$$
 $D^{eff}_{H2-H20} = 0.23 \text{ cm}^2/\text{s}$
• Cathode Limiting Current $i_{cs} = \frac{4 F p_{o2}^o D_{o2-N2}^{eff}}{(\frac{p - p_{o2}^o}{p}) R T l_c}$ $D^{eff}_{O2-N2} = 0.037 \text{ cm}^2/\text{s}$

POLARIZATION MODELING: VERIFICATION OF ASSUMPTION

current density near i_{cs}

• i_{cs} rapidly increases as p_{O2} increases and approaches 100% O₂

\diamond Consistent with assumption that $\eta_{conc,c}$ is negligible compared to other polarization losses when oxygen at the cathode nears 100%

POLARIZATION MODELING & IMPEDANCE SPECTROSCOPY

Activation Polarization Resistance at OCV

$$R_{act} = \frac{d\eta_{act}}{di} = \frac{RT}{F} \cdot \frac{1}{\sqrt{i^2 + 4i_p^2}}$$

$$R_{act}|_{i\to 0} = \frac{RT}{2Fi_o}$$

Anodic Concentration Polarization Resistance at OCV

$$R_{cone,a} = \frac{d\eta_{cone,a}}{dt} = \frac{RT}{2F} \left[\frac{1}{i_{as} \left(1 - \frac{t}{t_{as}}\right)} + \frac{p_{HZ}^a}{p_{HZ0}^a} \cdot \frac{1}{i_{as} \left(1 + \frac{p_{HZ}^a}{p_{HZ0}^a} \cdot \frac{t}{t_{as}}\right)} \right]$$

$$R_{conc,\alpha}\Big|_{i\to 0} = \frac{RT}{2F} \cdot \frac{1}{i_{\alpha s}} \left(1 + \frac{p_{H2}^o}{p_{H20}^o}\right)$$

Cathodic Concentration Polarization Resistance at OCV

POLARIZATION ANALYSIS #1: BASELINE CELL

- Dominant Polarization Losses
 - Ohmic Loss (Electrode)
 - Activation Polarization (Cathode)
 - Concentration Polarization (Anode)

POLARIZATION ANALYSIS #2: CONTACT RESISTANCE

Cathode Current Collection : Ag Mesh vs. Pt Mesh

• Ag is softer than Pt at operating temperature.

 \Rightarrow Higher Interfacial Contact Area \Rightarrow Lower Ohmic Electrode Resistance

 In SOFC stacks, the effect of the contacts between the electrode and interconnects can be substantial.

POLARIZATION ANALYSIS #3: CATHODE MICROSTRUCTURE

Sintering Temperature: **1300°C** vs. **1330°C** 1.2 1.6 Temperature: 800°C H₂-3% H₂O / Air 1.4 1.0 Power 1.2 0.8 1.0 Max.=0.9W/cm Voltage (V) 0.6 **0.8** 7 0.6 0.4 0.4 0.2 -1300°C Sintering 0.2 1330°C Sintering 0.0 0.0 Current Density (A/cm²)

1300°C Sintering

 $i_o = 0.27 \text{ A/cm}^2$

1330°C Sintering Avg. Grain Size = 3.2 μm

$i_o = 0.16 \text{ A/cm}^2$

- No Significant Change in Anode Microstructure.
- Less Sintering of Cathode ⇒ Low Activation Polarization

⇒ Low Anode Concentration Polarization

CELL PERFORMANCE IMPROVEMENT CHART

BOSTO

FUEL UTILIZATION TEST : BACKGROUND

Fuel Utilization

- Fuel utilization increases along the flow path over the electrode surface.
 - ⇐ Fuels are consumed and products are formed along the flow path.
- Cell Performance Loss near Exit (High Fuel Utilization)
 - Loss of Nernst Potential
 - Anodic Activation Polarization
 - Anodic Concentration Polarization

Simulate the effect of practical fuel utilization on single cell performance by increasing H₂O content in fuel

FUEL UTILIZATION TEST : EFFECT OF ANODE ACTIVE LAYER

Im

ιm

With Anode Active Layer

Without Anode Active Layer Temperature: 800°C 1.4 1.2 Power Density (W/cm²) 1.0 0.8 H₂-3% H₂O / Air H₂-30% H₂O / Air 0.6 H₂-40% H₂O / Air 0.4 H₂-50% H₂O / Air H₂-60% H₂O / Air 0.2 H₂-70% H₂O / Air 0.0 3.0 3.5 0.0 0.5 1.5 2.0 2.5 1.0

Current Density (A/cm²)

*20jim	
MARCH CARACTER TO A	Porosity = 26%
Anoue Active Layer	Avg. Grain Size = 1.3
	Avg. Pore Size = 0.7 μ
The second second	
Anode Support	Series Porosity = 37%
	Avg. Grain Size = 4.3
	Avg. Pore Size = 2.6 μ

Fuel	Max. Pow (W/	er Density cm²)
Compositions	With AAL	Without AAL
H ₂ – 3% H ₂ O	1.41	1.40
H ₂ – 30% H ₂ O	1.27	1.25
H ₂ – 50% H ₂ O	1.17	0.91
H ₂ – 70% H ₂ O	0.84	0.45

FUEL UTILIZATION TEST : POLARIZATION MODELING

$$E_{C} = E_{o} - iR_{i} - \frac{2RT}{F} \ln\{\frac{1}{2}[(\frac{i}{i_{o}}) + \sqrt{(\frac{i}{i_{o}})^{2} + 4}]\} + \frac{RT}{4F} \ln(1 - \frac{i}{i_{cs}}) + \frac{RT}{2F} \ln(1 - \frac{i}{i_{as}}) - \frac{RT}{2F} \ln(1 + \frac{p_{H20}^{o}i_{as}}{p_{H20}^{o}i_{as}})$$

BOSTON

 R_{i} , D^{eff}_{02-N2} : Independent of Fuel Composition D^{eff}_{H2-H20} : Independent of H₂/H₂O ratio (Kinetic Theory of Gases)*

With Anode Active Layer	Without Anode Active Layer	Fuel	Exchang Density	e Current (A/cm²)
97% H ₂ -3% H ₂ O 1.2 70% H ₂ -30% H ₂ O	 97% H₂-3% H₂O 70% H₂-30% H₂O 60% H -40% H O 	Compositions	With AAL	Without AAL
1.0	1.0 - 50% H₂-50% H₂O 40% H₂-60% H₂O	H ₂ – 3% H ₂ O	0.87	0.98
0.8 8 0.8 0.8 0.8 0.8 0.8 0.8 0.	0.8 - 30% H ₂ -70% H ₂ O	H ₂ – 30% H ₂ O	0.84	0.78
- 0.0		H ₂ – 40% H ₂ O	0.82	0.70
0.2	0.2 - Tomporoturo: 800°C	H ₂ – 50% H ₂ O	0.79	0.57
Temperature: 800°C	0.0	H ₂ – 60% H ₂ O	0.75	0.43
Current Density (A/cm ²)	Current Density (A/cm ²)	H ₂ – 70% H ₂ O	0.53	0.22

* R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, John Wiley & Sons (1960)

FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

- **Activation Polarization:**
 - At Low Fuel Utilization (H₂-3% H₂O)
 - \Rightarrow Dominated by Cathode

(No Difference in Cell Performance and Exchange Current Density due

to Anode Active Layer at Low Fuel Utilization)

$$\eta_{act} \approx \eta_{act,c} = \frac{2 RT}{F} \ln \{\frac{1}{2} [(\frac{i}{i_{0,c}}) + \sqrt{(\frac{i}{i_{0,c}})^2 + 4}]\}$$

$$i_{o,a} >> i_{o,c}$$
 $i_o \approx i_{o,c}$

BOSTO UNIVERSI

At High Fuel Utilization

- Anodic Activation Polarization Increases
- ⇒ Cathodic Activation Polarization: Independent of Fuel Composition

$$\eta_{aci,a} \approx \eta_{aci} - \eta_{aci,c} = \frac{2 RT}{F} \ln\{\frac{1}{2}[(\frac{i}{i_{0,a}}) + \sqrt{(\frac{i}{i_{0,a}})^2 + 4}]\}$$

FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

BOSTON

Anodic Activation Polarization:

$$\eta_{act,a} = \frac{2RT}{F} \ln\{\frac{1}{2}[(\frac{i}{i_{0,a}}) + \sqrt{(\frac{i}{i_{0,a}})^2 + 4}]\}$$

FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Anodic Concentration Polarization:

BOSTO UNIVERSI

FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Anodic Concentration Polarization:

Anodic concentration polarization is low when the fuel is in the intermediate H₂O partial pressure region.

Anode active layer had no significant effect on anodic concentration polarization.

FUEL UTILIZATION TEST : POLARIZATION ANALYSIS

Anodic Electrode Polarization Loss:

Activation Polarization: Dominant Loss at High Fuel Utilization

⇒ Significantly Reduced by Anode Active Layer

ADVANCED CATHODE INVESTIGATION : BACKGROUND

- Cathode Polarization Loss : Major Difficulty in Lowering the Operating Temperature
- A site-doped Lanthanum Cobaltite
 - High Catalytic Activity and Mixed Electronic-Ionic Conductivity
 - High Thermal Expansion Coefficient
 - Solid State Reaction with YSZ at Low Temperature
- A site-doped Lanthanum Ferrite
 - High Catalytic Activity and Mixed Electronic-Ionic Conductivity
 - Adjustable Thermal Expansion
 - No Solid State Reaction with YSZ up to 1400°C
 - Diffusion of Zr⁴⁺ into Lanthanum Ferrite : Doped Ceria Interlayer
- Calcium-doped Lanthanum Ferrite
 - Defect Model

- **p**₀₂ Weight Relationship
- Thermogravimetry Measurements
- \Rightarrow Equilibrium Defect Concentration

BOST

Electrical Conductivity Measurements ⇒ Hole Mobility

BOSTON

ADVANCED CATHODE INVESTIGATION : POINT DEFECT MODEL

✤ Point Defect Model for (La_{0.8}Ca_{0.2})_{0.95}FeO_{3-δ}

A-site	B-site	O-site
La ^x _{La}	Fe ^x _{Fe}	
$(a'_{2} = 0.2 \times 0.9)$	Fe _{Fe}	O ₀ ^x
///	το _{Γ≤} ≈ 0	V ₀ ••
V _{La} = 0.05	V ^{'''} ∀Pe≰ ≈ 0	

Oxygen Incorporation Reaction

$$V_0^{**} + 2Fe_{Fe}^{x} + \frac{1}{2}O_2 \leftrightarrow O_0^{x} + 2Fe_{Fe}^{*} \longrightarrow K_{ox} = \frac{[O_0^{x}][Fe_{Fe}^{x}]^2}{[V_0^{**}][Fe_{Fe}^{x}]^2 p_{O2}^{1/2}}$$

Charge Disproportionation Reaction

 $2\operatorname{Fe}_{\operatorname{Fe}}^{\mathrm{x}} \leftrightarrow \operatorname{Fe}_{\operatorname{Fe}}^{*} + \operatorname{Fe}_{\operatorname{Fe}}^{*} \implies [\operatorname{Fe}_{\operatorname{Fe}}^{*}] \approx 0 @ 0.001 \operatorname{atm} \leq p_{02} \leq 1 \operatorname{atm}$

Schottky Equilibrium Reaction

$$ntl \leftrightarrow V_{La}^{'''} + V_{Fe}^{'''} + 3V_0^{**} \implies [V_{Fe}^{'''}] \approx 0$$

ADVANCED CATHODE INVESTIGATION : POINT DEFECT MODEL

Charge Neutrality Condition

 $2[V_{0}^{\bullet\bullet}] + [Fe_{Fe}^{\bullet}] = [Ca_{La}'] + 3[V_{La}'''] \longrightarrow [Fe_{Fe}^{\bullet}] = [Ca_{La}'] + 3[V_{La}'''] - 2[V_{0}^{\bullet\bullet}] - 2[V_$

A-site Restriction

$$[La_{La}^{x}] + [Ca_{La}^{'}] + [V_{La}^{'''}] = 1$$

B-site Restriction

$$[Fe_{Fe}^{x}] + [Fe_{Fe}^{\bullet}] = 1 \implies [Fe_{Fe}^{x}] = 1 - [Fe_{Fe}^{\bullet}] = 1 - [Ca_{La}^{'}] - 3[V_{La}^{'''}] + 2[V_{0}^{\bullet\bullet}] - 2[V_{0}^{\bullet\bullet}] = 1 - [V_{0}^{\bullet\bullet}] = 1$$

O-site Restriction

 $[O_0^x] + [V_0^{\bullet\bullet}] = 3 \implies [O_0^x] = 3 - [V_0^{\bullet\bullet}]$

Mass Action Coefficient for Oxygen Exchange Reaction

$$K_{\rm sx} = \frac{[{\rm O}_0^{\rm x}][{\rm Fe}_{\rm Fe}^*]^2}{[{\rm V}_0^{**}][{\rm Fe}_{\rm Fe}^{\rm x}]^2 p_{\varrho 2}^{1/2}}$$

$$K_{ox} = \frac{(3 - [V_0^{\bullet\bullet}])([Ca_{La}'] + 3[V_{La}'''] - 2[V_0^{\bullet\bullet}])^2}{[V_0^{\bullet\bullet}](1 - [Ca_{La}'] - 3[V_{La}'''] + 2[V_0^{\bullet\bullet}])^2} \cdot \frac{1}{p_{02}^{1/2}}$$

ADVANCED CATHODE INVESTIGATION : POINT DEFECT MODEL

BOSTON UNIVERSIT

Relationship between p₀₂ and Weight of (La_{0.8}Ca_{0.2})_{0.95}FeO₃₋₅

$$K_{ox} = \frac{(3 - [V_0^{\bullet\bullet}])([Ca_{La}'] + 3[V_{La}'''] - 2[V_0^{\bullet\bullet}])^2}{[V_0^{\bullet\bullet}](1 - [Ca_{La}'] - 3[V_{La}'''] + 2[V_0^{\bullet\bullet}])^2} \cdot \frac{1}{p_{02}^{1/2}}$$

 $M_{LCF} = n \times m_{LCF} = n \times \left[(0.8 \times m_{La} + 0.2 \times m_{Ca}) \times 0.95 + m_{Fe} + (3 - \delta) \times m_0 \right]$

$$\delta = [V_0^{**}] = 13.56 - 0.0625 \times \frac{M_{LCF}}{n}$$

$$p_{02} = \frac{1}{K_{ox}^2} \times \frac{\left(-10.56 + 0.0625 \times \frac{M_{LCF}}{n}\right)^2 \left(-26.78 + 0.125 \times \frac{M_{LCF}}{n}\right)^4}{\left(13.56 - 0.0625 \times \frac{M_{LCF}}{n}\right)^2 \left(27.78 + 0.125 \times \frac{M_{LCF}}{n}\right)^4}$$

BOSTON

ADVANCED CATHODE INVESTIGATION : THERMOGRAVIMETRY

ADVANCED CATHODE INVESTIGATION : DEFECT EQUILIBRIUM

BOSTO UNIVERSIT

ADVANCED CATHODE INVESTIGATION : ELECTRICAL CONDUCTIVITY

Electrical Conductivity Measurements

 $\sigma_{t} = \sigma_{e} + \sigma_{i} \approx \sigma_{e}$

*p*₀₂↑ ⇒ σ_e ↑ : *p*-type conductor
 Low Temperature: Thermally Activated Behavior (Small Polaron Hopping)
 High Temperature: Decrease in Hole Concentration

Mobility vs. Temperature

*p*₀₂↓, T ↑ ⇒ [V₀["]] ↑
 Hopping Conduction Via Fe⁴⁺-O-Fe³⁺ Chain
 V₀["] : Scattering Centers or Random Traps

for Electrons

ADVANCED CATHODE INVESTIGATION : CONDUCTION MECHANISM

Adiabatic Small Polaron Hopping

Non-adiabatic Small Polaron Hopping

$$\mu_p = \frac{(\mathbf{1} - [\mathbf{Fe}_{\mathsf{Fe}}])qa^2}{kT} P \exp\left(-\frac{E_A}{kT}\right)$$

n (atm)	Adiabatic Case		Non-adiabatic Case	
μ ₀₂ (atm)	Activation Energy (eV)	R ²	Activation Energy (eV)	R ²
1	0.108	0.99353	0.149	0.99788
0.21	0.111	0.99344	0.152	0.99776
0.05	0.195	0.99423	0.235	0.99673
0.001	0.272	0.98927	0.310	0.99801

SUMMARY

- Successfully developed single-step un-constrained co-firing of the solid oxide fuel cell @ 1300°C.
- Modeled cell performance.
- Achieved maximum power density of 1.50 W/cm² at 800°C and 0.87 W/cm² at 700°C with humidified hydrogen (3% H₂O) and air.
- Simulated the effect of practical fuel utilization on single cell performance.
- Improved cell performance at high fuel utilization by employing anode active layer.
- Investigated defect chemistry and electrical conduction mechanism of novel cathode material (calcium-doped lanthanum ferrite).

FUTURE WORK

- Employ advanced cathode material in co-firing process.
- Analyze performance at low operating temperature (600-700°C).

PUBLICATION LIST

Journal Papers

1. Kyung Joong Yoon, Wenhua Huang, Guosheng Ye, Srikanth Gopalan, Uday B. Pal, Donald A. Seccombe, Jr., "Electrochemical Performance of Solid Oxide Fuel Cells (SOFCs) Manufactured by Single Step Co-firing Process," *Journal of the Electrochemical Society*, 154 (4) B389 (2007).

BOSTON UNIVERSIT

- 2. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Effect of Fuel Composition on Performance of Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *Journal of the Electrochemical Society*, 154 (10) B1080 (2007).
- 3. Kyung Joong Yoon, Peter Zink, Srikanth Gopalan, Uday B. Pal, "Polarization Measurements on Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *Journal of Power Sources*, 172 (1) 39 (2007).
- 4. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Effect of Anode Active Layer on Performance of Single Step Co-fired Solid Oxide Fuel Cells (SOFCs) at High Fuel Utilizations," *Journal of the Electrochemical Society*, 155(6) B610 (2008).
- 5. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Analysis of Electrochemical Performance of Solid Oxide Fuel Cells (SOFCs) Using Polarization Modeling and Impedance Measurements," *Journal of the Electrochemical Society*, 156 (3) B311 (2008).
- 6. Kyung Joong Yoon, Guosheng Ye, Srikanth Gopalan, Uday B. Pal, "Cost-effective Single Step Co-firing Technique for Manufacturing Solid Oxide Fuel Cells (SOFCs) using High Shear Compaction (HSC) Anode," *Journal of Fuel Cell Science and Technology*, Accepted (2008).
- 7. Soobhankar Pati, Kyung Joong Yoon, Uday B. Pal, "Solid Oxide Electrolyte Electrolyzer with Liquid Metal Anode for Production of Hydrogen and Syn-Gas from Waste and Steam," submitted (2009).
- 8. Kyung Joong Yoon, Peter Zink, Larry Pederson, Srikanth Gopalan, Uday B. Pal, "Defect Chemistry and Electrical Properties of (La_{0.8}Ca_{0.2})_{0.95}FeO_{3.6}," in preparation (2009).

Conference Proceedings

- 1. Kyung Joong Yoon, Peter Zink, Srikanth Gopalan, Uday B. Pal, "Polarization Analysis in Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *Materials Research Society Symposium Proceedings of the Fall 2006 Meeting*, Vol. 972, AA 10-02 (2007).
- 2. Peter A. Zink, Kyung Joong Yoon, Wenhua Huang, Srikanth Gopalan, Uday B. Pal, Donald A. Seccombe, Jr., "Refractory Cathode Investigation for Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *Materials Research Society Symposium Proceedings of the Fall 2006 Meeting*, Vol. 972, AA 03-12 (2007).
- 3. Kyung Joong Yoon, Peter Zink, Uday B. Pal, Srikanth Gopalan, "High Performance Low Cost Co-fired Solid Oxide Fuel Cells (SOFCs)," *ECS Transactions*, Vol. 7 (1) 579 (2007).
- 4. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Anode Polarization Effects in Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *ECS Transactions*, Vol. 7 (1) 565 (2007).
- 5. Peter Zink, Kyung Joong Yoon, Wenhua Huang, Uday B. Pal, Srikanth Gopalan, "Refractory Cathode Investigation for Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *ECS Transactions*, Vol. 7 (1) 399 (2007).
- 6. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Effect of Anode Active Layer on Performance of Single Step Co-fired Solid Oxide Fuel Cells (SOFCs)," *ECS Transactions*, Vol. 13 (26) 249 (2008).
- 7. Kyung Joong Yoon, Srikanth Gopalan, Uday B. Pal, "Electrochemical Performance of Single Step Co-Fired Solid Oxide Fuel Cells (SOFCs) Analyzed Using Polarization Modeling and Impedance Spectroscopy," *Materials Research Society Symposium Proceedings of the Fall 2008 Meeting*, Vol. 1126, S10-02 (2008).
- 8. Peter A. Zink, Kyung Joong Yoon, Uday B. Pal, Srikanth Gopalan, "Electrical Performance of Calcium-doped Lanthanum Ferrite for Use in Single Step Co-Fired Solid Oxide Fuel Cells (SOFCs)," *Materials Research Society Symposium Proceedings of the Fall 2008 Meeting*, Vol. 1126, S11-02 (2008).

Thank you!