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INTRODUCTION

Major Challenges for Commercialization of SOFCs

High Manufacturing Costs Reduced Cell Performance at Low Operating

(SOFC System Costs per Unit of Power ($/kW)) Temperature (Interconnects, Sealing, etc.)

Single Step Co-Firing Process Polarization Modeling: Systematic Analysis of

with Conventional Material System Cell Performance and Polarization Losses

Research Goals
= Manufacture SOFCs with the Lowest Manufacturing Costs
by Single Step Co-Firing of the Entire SOFCs
= Achieve the Highest Cell Performance and Lower Operating Temperature
by Optimization of Materials, Microstructures, and Process Parameters

using Polarization Modeling

Minimize $/kW




SINGLE STEP CO-FIRING PROCESS

Cathode Current Collector: Screen Printing
Ca-doped LaMnO; (Porous)

Cathode Active Layer: Screen Printing
Ca-doped LaMnO; + YSZ (Fine & Porous)

Electrolyte: Screen Printing
YSZ (Dense)
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Anode Active Layer: Screen Printing
Ni + YSZ (Fine & Porous)

Co-Firing in Air
(1300-1330°C)

Anode Support: Tape Casting
Ni + YSZ (Porous)
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PROCESS DEVELOPMENT

Lowered Electrolyte Sintering Temperature

= Density of YSZ : Without Sintering Aid: ~ 94%, With Sintering Aid: ~ 99+% @1300°C
Matched Thermal Expansion Coefficients and Sintering Shrinkages

Developed Refractory Cathode Composition .=,

" Doped-(La,Ca)MnO,

Doped-LCM
Optimized Thicknesses and Porosities of Electrodes

Optimized Particle Sizes of Initial Powders

Evaluated Pore Former Material ) ?ﬂ_',mwff,,.,? m&-ﬁfﬁ" e
= Carbon Black
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Carbon Black Methyl Cellulose

& Cathode Current Collector
: (La,Ca)MnO,
50um thick, 50% porous

Employed Cathode Current Collector  ; ,-:5,:-. }




PROCESS DEVELOPMENT

Power Density (chmz)
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Temperature: 900°C
| H,+3%H,0/ Air

j— Cathode Particle Size Optimization
~}=— Cathode Current Collector

= Anode Porosity Optimization

= Pore Former Material Optimization
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Current Density (A/cm’)

Cathode Current Collector:
LCM, 50um thick, 50% porous

Cathode Active Layer:
LCM-YSZ, 30um thick, 31% porous

: Electrolyte: YSZ, 15um thick
Anode Support:
Ni-YSZ, 850um thick, 32% porous
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BASELINE CELL: POWER DENSITY
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Test Condition
= Temperature: 700~800°C
= Fuel: 97% H,+3% H,0
= Oxidant: Air

0.5 1.0 1.5 2.0
Current Density (A/lcm®)
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POLARIZATION MODEL: THEORY
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= Activation Polarization (77,.,)*: @ =i exp(ﬁ’_)—ioexp( ( )RTe acr” ) (a=1/2, n,=2)

Nact = — In{ [( )+ ( ) +4]}  (Anode + Cathode)

- _RT, (1——)— Eln(l——)+—| s Piot

= Concentration Polarization (7,,,.)** : n... i P RAEY: =
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H20 as
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Open Circuit Ohmic Activation Concentration Concentration
Potential Polarization Polarization Polarization (Cathode) Polarization (Anode)

* PW.Li, M.K.Chyu, J. Heat Transfer, vol.127, 1344 (2005)
** J.W.Kim, A.V.Virkar, K-Z.Fung, K.Mehta, S.C.Singhal, J.Electrochem.Soc.146 (1) (1999) 69
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POLARIZATION MODELING: CURVE=FIFTING (EXAMPLE)

Test Condition

= Temperature: 800°C

Fitting 21% 0O, +
= Fuel: 97% H,+3% H,0 (300cc/min): Fixed Parameters 100% O, 79% N,
= Oxidant: 100%, 21%, 8% O, + N, (1000cc/min)
2 R, (Q-cm?) 0.082
100% O,
21% 02 + 79% N2
8%0, + 92% N,
Curve-fitted
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Assumption: i, >> i, and #,,,..<< W ,nca Naee With 100% O,

Current Density (Alcmz)

_— . 2Fp’ DU
= Anode Limiting Current o H2 H2-H20

RTI DD s 120 = 0.23 cm?/s

AFp° DY
0?2 0O02—-N2 eff _ 0 037 2/

- p° Dy, v, = 0. cm?/s

(Z_"02)RTI
p c

= Cathode Limiting Current ¢ =
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POLARIZATION MODELING: VERIFICATION-OF ASSUMPTION

Various Polarization Losses @800°C with Cathodic Limiting Current Density

Humidified Hydrogen (3% H,0) and Air @800°C as a Function of p,,, in Oxidant
: 1000
| Temperature: 800°C

2

Cathodic Limiting Current Density (A/cm°)

0.61 Temperature: 800°C
| Fuel: 97%H,+3% H,0
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Current Density (A/lcm?’) P,, in oxidant (atm)

® Heonce << Neonc,a AN 17, €xXcept at high = i, rapidly increases as p,, increases and

current density near i, approaches 100% O,

< Consistent with assumption that 5, . is negligible compared to other polarization

losses when oxygen at the cathode nears 100%
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POLARIZATION MODELING & IMPEDANCE - SPECTROSCOPY

= Activation Polarization Resistance at OCV

@itqee AT 1 RT
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= Anodic Concentration Polarization Resistance at OCV
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Impedance Spectroscopy @800°C
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o 21%0,+79%N,
8% 0, +92%N,
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POLARIZATION ANALYSIS #1: BASELINE-CELL

1.2,

Ohmic Loss (Electrolyte)
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Ohmic Loss (Electrode) : Anode + Cathode + Contacts

o
oo
1

Activation Polarization

Voltage (V)
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Temperature: 800°C
| H,-3%H,0/ Air
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Current Density (Alcmz)

Dominant Polarization Losses
®= Ohmic Loss (Electrode)
= Activation Polarization (Cathode)

= Concentration Polarization (Anode)
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POLARIZATION ANALYSIS #2: CONTACT-RESISTANCE

Cathode Current Collection : vs. Pt Mesh
1.2 . . . 1.0
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= Ag is softer than Pt at operating temperature.
= Higher Interfacial Contact Area = Lower Ohmic Electrode Resistance

= |In SOFC stacks, the effect of the contacts between the electrode and interconnects can be

substantial.
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POLARIZATION ANALYSIS #3: CATHODE-MICROSTRUCTURE

Sintering Temperature: vs. 1330°C
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0.3 1300°C Sintering

A 1330°C Sintering

0-2- AA
AAdA

0.1 #é%‘A
ool o=~ " No Significant Change in Anode Microstructure.
19 20 21 22 23 24 .

Re(2) (@ cm’) = Less Sintering of Cathode — Low Activation Polarization

i, =0.16 A/lcm?

Adpa,

-M(2) (@ cm?)
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POLARIZATION ANALYSIS #4: ANODE POROSITY

Pore Former in Anode: vs. 5wt% C

L Temperature: 800°C
2. H,-3%H0/Air
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® Increased Anode Porosity
Deff 5 100 = 0.19 cm2s-

= Low Anode Concentration Polarization
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CELL PERFORMANCE IMPROVEMENT-CHART
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FUEL UTILIZATION TEST : BACKGROUND

" Fuel Utilization

Molar flow rate of reactants consumed in a cell N

consumed

Molar flow rate of reactants supplied into the cell N

in

" Fuel utilization increases along the flow path over the electrode surface.

< Fuels are consumed and products are formed along the flow path.

= Cell Performance Loss near Exit (High Fuel Utilization)
J Loss of Nernst Potential
* Anodic Activation Polarization

* Anodic Concentration Polarization

= Simulate the effect of practical fuel utilization on single cell performance

by increasing H,0 content in fuel




FUEL UTILIZATION TEST : EFFECT OF-ANODE ACTIVE LAYER
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Without Anode Active Layer

Temperature: 800°C

H,-3% H,0 / Air

H,-30% H,0 / Air
H,-40% H,O / Air
H,-50% H,0 / Air
H,-60% H,O / Air
H,-70% H,0 / Air

10 15 20 25 30 35

Current Density (Alcmz)

Porosity = 26%
g 1y S : Avg. Grain Size = 1.3 um

Y
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PIPRAT Sorme il X e Avg. Pore Size = 0.7 um
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Porosity = 37%
B o Avg. Grain Size = 4.3 pm
3 ‘ Avg. Pore Size = 2.6 um

S,
CH

05 1.0 15 20 25 30 35

Current Density (Alcmz)

Max. Power Density
(W/cm?)

With Without
AAL AAL

Fuel
Compositions

H, — 3% H,0 1.41 1.40

H,-30%H,0 | 1.27 1.25

H,-50%H,0 | 1.17 0.91

H,-70%H,0 | 0.84 0.45
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FUEL UTILIZATION TEST : POLARIZATION-MODELING

E.=E —;-R.-—ZRTln{ [(—)+ '(—) +41}+—1 (1—_,_—)+— (1——)— ln(1+;’*’”" )
- I w20l

R,, D9, \, : Independent of Fuel Composition

DYy, 20 - INdependent of H,/H,O ratio (Kinetic Theory of Gases)*

With Anode Active Layer Without Anode Active Layer Exchange Current
Fuel Density (A/lcm?)

97% H,-3% H,0 97%H,-3% H,0 Compositions With Without
70% H_-30% H.O : 70% H,-30% H,0 AAL AAL
60% H_-40% H_O 1 60% H,-40% H,0
50%H50%HO |y _ 394 H,0 0.87 0.98
2 2
2

50% H_-50% H,O

40% H_-60% H,O 40% H,-60% H,O
0.8 30% H,-70% H,0

--- Curve-fitted

2
2
2
2
2

2
2
2
2
30% H,-70% H,0

H, - 30% H,0 0.84 0.78
--- Curve-fitted

0.6
H,-40%H,0 | 0.82 0.70

Voltage (V)

0.4

Voltage (V)

il H, - 50% H,0 0.79 0.57

| Temperature: 800°C | Temperature: 800°C

ool — | Hy,-60%H,0 0.75 0.43
05 10 15 20 25 30 35 00 05 10 15 20 25 3.0 35

Current Density (A/lcm?) Current Density (A/cm’) H, -70% H,O 0.53 0.22

* R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, John Wiley & Sons (1960)




FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Activation Polarization:
= At Low Fuel Utilization (H,-3% H,0)
—> Dominated by Cathode
(No Difference in Cell Performance and Exchange Current Density due

to Anode Active Layer at Low Fuel Utilization)
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Tt = Maoge™ ZFE” il i)+ (5 + 413

2 g, iy,

= At High Fuel Utilization
—> Anodic Activation Polarization Increases

—> Cathodic Activation Polarization: Independent of Fuel Composition

. |"T
Mucta™ Mace—Tacge= —r In-[(2)+[(2) "+ 4

I 2 b, R,
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FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Anodic Activation Polarization:

Doeie= 220 mgl((Dy+ t-'ll(£)2+ 473
= : :

Iﬂ,a IO,a

Anodic Exchange
Current Density

Fuel (A/lcm?)
Compositions

With Anode Active Layer Without Anode Active Layer With | Without
AAL AAL

30% H,-70% H,0 30% H,-70% H,0
40% H,-60% H,0 40% H,-60% H,0 H, - 30% H,0 26.73 4.18
50% H,-50% H,0 50% H,-50% H,0

2 2 2
2

60% H_-40% H.O
70% H,-30% H,0
-- Curve-fitted

60% H,-40% H,0 H, - 40% H,0 15.68 2.70
70% H,-30% H,0

-- Curve-fitted

2
2
2
2
2

Hz - 50% H20 9.47 1.53

H,-60%H,0 | 6.02 0.88

H,-70%H,0 | 1.55 0.34

Anodic Activation Polarization (V)
Anodic Activation Polarization (V)

o

=

S
1

02 04 06 08 A Cathodic
Current Density (A/cm?) Current Density (A/cm?) Exchange
Current
Density
(A/lcm?)
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FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Anodic Concentration Polarization:

RT ia P** 028 Oxypen partial pressure at anode-slectrolyte intexface
Poz

conc,a g In 0,0 u .
n ' 4F (pu’z) Pﬂ"ﬂ :praﬂnlpmmlmﬂaamﬂalnlﬁm

ﬂ F%ﬂa

Determined by Local H,-H,0 Equilibrium: Poz = Kpty

Calculation of p'a.,

P
In Steady State, |[Fgal = Fgzol = 3F Jgz + 2o =0

Fea = ~Pyg mao¥Pma = ~Pyz o RTI, = L o

Fc o Fi

Fao = —Dga_gao H2—-H20 RTT,
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FUEL UTILIZATION TEST : PERFORMANCE ANALYSIS

Anodic Concentration Polarization:

=
»

, Temperature = 800°C
i=4.0A/m*  po . =0.27cm¥/s
I, = 850pum

RT  (Dg;
Neonca = AF IH( 0.0
Po2 i=3.0A/cm?

i=2.0A/cm?

HZ-HZI0

Dz RT s i) P20

HZ — eff
2FDH2—Hzﬂ

i=1.0A/cm?

0,0 RT!a - 0,01
(ﬂuzﬂ + 2FDT 1) Pu2

=

Anodic Concentration Polarization (V)

=
(=)

0.2 0.4 0.6

P S}

= Anodic concentration polarization is low when the fuel is in the intermediate H,0

partial pressure region.

* Anode active layer had no significant effect on anodic concentration polarization.
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FUEL UTILIZATION TEST : POLARIZATION-ANALYSIS

Anodic Electrode Polarization Loss:

With Anode Active Layer Without Anode Active Layer

Activation+Concentration
Activation

| Temperature: 800°C
0.301 Current Density: 1.5A/cm’

0.25

Activation+Concentration
Activation

| Temperature: 800°C
0.30+ Current Density: 1.5A/cm’

0.25

=

w

a
|

=

W

a
|

b Anodic Activation
0.15- Polarization

0.20
0.15

Anodic Activation

0.10—- I Polarization 0_10__

0.05 Anodic Concentration 0.05 Anodic Concentration
0.00 Pplarlzatlon 0.00 Polarization

00 01 02 03 04 05 0.6 07 0.8 09 00 01 02 03 04 05 0.6 07 08 09

Anodic Electrode Polarization (V)
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p°,,0 in Fuel (atm) P’ in Fuel (atm)

= Activation Polarization: Dominant Loss at High Fuel Utilization

= Significantly Reduced by Anode Active Layer




ADVANCED CATHODE INVESTIGATION--BACKGROUND
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= Cathode Polarization Loss : Major Difficulty in Lowering the Operating Temperature

= A site-doped Lanthanum Cobaltite
* High Catalytic Activity and Mixed Electronic-lonic Conductivity
* High Thermal Expansion Coefficient

* Solid State Reaction with YSZ at Low Temperature

= A site-doped Lanthanum Ferrite
High Catalytic Activity and Mixed Electronic-lonic Conductivity
Adjustable Thermal Expansion
No Solid State Reaction with YSZ up to 1400°C

Diffusion of Zr4* into Lanthanum Ferrite : Doped Ceria Interlayer

= Calcium-doped Lanthanum Ferrite

* Defect Model Poo - Weight Relationship
* Thermogravimetry Measurements — Equilibrium Defect Concentration

* Electrical Conductivity Measurements = Hole Mobility
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ADVANCED CATHODE INVESTIGATION:-POINT DEFECT MODEL

Point Defect Model for (La, ;Ca, ), o5F€0O3;.5

A-site B-site

X Feg
Laj, Fe

Cap,

VLa

= Oxygen Incorporation Reaction
1

[O%1[Fet, I
—0g & Of + 2Fef, —— Ko = —

- VIeE TapleE

VS' + 2Fel, +

= Charge Disproportionation Reaction

2Fef, < Fe}, + Fey, —— [Fep, ]~ 0 @ 0.001atm = py» = latm

= Schottky Equilibrium Reaction

T

nfl & Vi + Vi, + 3V —— [Vi, 1= 0
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ADVANCED CATHODE INVESTIGATION:-POINT DEFECT MODEL

= Charge Neutrality Condition
2[V5'] + [Fege ] = [Cap,] +3[Vi,] — [Fefe] = [Car,] + 3[Vi,""] — 2[V§']

= A-site Restriction
[Laf,] + [Cap,] + [V ] = 1
B-site Restriction
[Fefe] + [Fef ] =1 — [Fef] = 1 — [Fef] = 1= [Car,] = 3[Vi, ] + 2[Vg']
O-site Restriction

[05] +[V5'] =3 = [05] =3 —[V5']

Mass Action Coefficient for Oxygen Exchange Reaction
_ [0§1Fef, 1#
v o 1f2
Ve e, 155

_ B [Vg'DUCay, T+ 3[Vi, ] - 2[V5'D?
[Vo1(1 — [CaL, '] =3[V "1+ 2[Vg'D?

Kax
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ADVANCED CATHODE INVESTIGATION:-POINT DEFECT MODEL

= Relationship between p,, and Weight of (La, sCa; ) o5F€0;.5

(3—[Voh(Car, T+ 3V, "] - 2[V5D)? 1

For = VT - [Cara 1 - 30V, "1+ 2VG 12 1

ME.E:F = n X m.i.ﬂ'.F" = 11X [(G.B Kfﬂm + G.Z b mﬂ'ﬂ) X ﬁ.’%"f} + m;-'g+ (3 - fg) X m;}]

)
= [Vg'] = 13.56 — 0.0625 % ;*:F

(—10.56 + 0.0625 x "i"“r“:f'")2 (—26.78 + 0125 x MLCF)

(13.56 — 0.0625 x ""i"“ff'")2 (27.78 + 0.125 x ML-TF)
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THERMOGRAVIMETRY
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Thermogravimetry Measurements
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Curve-Fitted
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ADVANCED CATHODE INVESTIGATION:-DEFECT EQUILIBRIUM
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ADVANCED CATHODE INVESTIGATION :-ELECTRICAL"CONDUCTIVITY

Electrical Conductivity Measurements
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ADVANCED CATHODE INVESTIGATION-CONDUCTION"MECHANISM
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SUMMARY

Successfully developed single-step un-constrained co-firing of the solid oxide
fuel cell @ 1300°C.

Modeled cell performance.

Achieved maximum power density of 1.50 W/cm? at 800°C and 0.87 W/cm? at
700°C with humidified hydrogen (3% H,0) and air.

Simulated the effect of practical fuel utilization on single cell performance.

Improved cell performance at high fuel utilization by employing anode active
layer.

Investigated defect chemistry and electrical conduction mechanism of novel
cathode material (calcium-doped lanthanum ferrite).

FUTURE WORK

Employ advanced cathode material in co-firing process.

Analyze performance at low operating temperature (600-700°C).
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