Disclosure Rules and Declared Essential Patents^{*}

Rudi Bekkers¹, Christian Catalini², Arianna Martinelli³, Cesare Righi⁴, and Timothy Simcoe⁵

¹Eindhoven University of Technology ²MIT Sloan School of Management ³Scuola Superiore Sant'Anna, Pisa ⁴Boston University, Questrom School of Business ⁵Boston University, Questrom School of Business and NBER

March 16, 2017

Abstract

Many standard setting organizations (SSOs) require participants to disclose patents that might be infringed by a proposed standard, and commit to license their "essential" patents on terms that are at least fair, reasonable and non-discriminatory (FRAND). Data from these SSO intellectual property disclosures have been used in academic studies to provide a window into the standard setting process, and in legal proceedings to assess parties' relative contributions to a standard. We develop a simple model of the disclosure process to illustrate the link between SSO rules and patent-holder incentives, and examine some of the model's predictions using a novel dataset constructed from the disclosure archives of thirteen major SSOs. The central message of the paper is that subtle differences in the rules used by different SSOs can influence which patents are disclosed, the terms of licensing commitments, and ultimately long-run citation and litigation rates for the underlying patents.

Keywords: Standards, compatibility, patents, licensing, FRAND.

JEL Codes: L15, O31, O34, K41.

^{*} Support for this research was provided by the Hoover IP2 initiative. All opinions and any errors are attributable to the authors. © 2016 by Rudi Bekkers, Christian Catalini, Arianna Martinelli, Cesare Righi and Tim Simcoe. Address for correspondence: tsimcoe@bu.edu.

1 Introduction

Voluntary consensus standardization is an important activity in the Information and Communications Technology (ICT) sector, where compatibility standards can help launch markets or promote major upgrades to existing platforms. However, new standards may fail to produce these catalytic effects if users fear they are built on proprietary technology, and therefore carry substantial legal or financial risks. Standard Setting Organizations (SSOs) address this concern by requiring members to disclose relevant patents during negotiations over the design of new standards, and by seeking a commitment that any essential intellectual property (IP) will be licensed on liberal terms. Patents disclosed as part of this process are often called "declared essential" patents (dSEPs).

Data from declared essential patents have been used in academic studies to provide a window into the standard setting process, and in legal proceedings to assess parties' relative contributions to a standard.¹ In this paper, we analyze how SSO rules governing patent disclosure influence which patents get disclosed, the terms of licensing commitments for those patents, and their subsequent citation and litigation rates.

We begin by describing differences in SSOs' disclosure policies, and developing a simple model of the disclosure process. The model emphasizes two choices made by the owner of a possibly essential patent: whether to make a specific or "blanket" patent disclosure, and whether to offer a royalty-free or a fair reasonable and non-discriminatory (FRAND) licensing commitment. Blanket disclosures do not list specific patents, and in the equilibrium of our model, firms use blanket disclosures to increase the odds that relatively weak patents become essential. Royalty-free licensing commitments occur when a patent-holder faces *ex ante* competition from a non-infringing alternative for inclusion in the standard, and the benefits of having its own technology included in the standard outweigh the costs of forgone royalties.

The second half of the paper uses data from the publicly available disclosure records of thirteen SSOs to study the operation and impact of different IPR policies, and to explore the unique

¹Academic studies include Rysman and Simcoe (2008), Kang and Bekkers (2015), Baron, Pohlmann, and Blind (2016), Kuhn, Roin, and Thompson (2016) and a number of others cited below. For an example of a court that used declared essential patent counts to apportion royalties, see *In re Innovatio IP Ventures*, *LLC*, No. 11 C 9308, slip op. at 82–84 (N.D. Ill. Sept. 27, 2013)

characteristics of declared essential patents.² An initial look at disclosure data reveals that two SSOs – the European Telecommunications Standards Institute (ETSI), and the Internet Engineering Task Force (IETF) – stand out in ways that can be linked back to our theory of disclosure. ETSI does not allow blanket disclosure, and therefore accounts for almost half of the patents in our sample. In our model, prohibiting blanket disclosure leads to specific disclosure of weaker patents, and our patent-level analyses suggest that ETSI's policy produces a larger share of false-positive (i.e. non-essential) disclosures. Our model also predicts that royalty-free licensing commitments only occur when there is *ex ante* competition, and are more likely when firms derive a greater share of their profit from implementation. The IETF's disclosure rules encourage *ex ante* competition by encouraging early disclosure, and discouraging blanket disclosure *unless* a patent-holder is willing to offer a royalty-free licensing commitments are far more likely at the IETF than other SSOs, and that firms with a "downstream" business model that is less focused on technology licensing are more likely to offer royalty-free licensing commitments.

After studying the link between IPR policies and disclosure, we turn to an analysis of declared essential patents. We begin by constructing a pair of matched control samples, and showing that dSEPs differ from these controls along a number of observable dimensions that suggest technical importance and economic value. In particular, after matching on vintage, technology-class, patent type and the number of claims, declared essential patents receive sixty to seventy percent more forward citations, are two to three times more likely to be asserted in litigation, and come from significantly larger patent families (indicating that protection was sought in a larger number of countries). We use regression to explore heterogeneity in these differences between SSO and control patents. While the gap in forward citations does not vary significantly with the terms of the licensing commitment, we find that the probability of litigation is lower for royalty-free than FRAND commitments, and significantly higher when there is no ex-ante licensing commitment. Citation and litigation rates also vary significantly across SSOs.

The final section of the paper exploits the panel structure of the patent data to move towards causal estimates of the impact of standardization on patent value and litigation. We begin by con-

²The authors are placing these data into the public domain to promote research on standards and intellectual property. They are available for download at www.ssopatents.org.

structing a control sample that is matched to the dSEPs based on pre-disclosure citation patterns. Event studies and difference-in-differences regressions show that citations to dSEPs increase by 6 to 20 percent following disclosure, suggesting that inclusion in a standard increases the value of the patent. Remarkably, we find that this disclosure effect is negative for ETSI, where we expect mandatory specific disclosure to generate more "false positive" dSEPS. We also show that litigation rates increase after disclosure – though not for patents disclosed to ETSI or the IETF – and that dSEPs are more likely to be litigated following a change in ownership than their citation-matched controls.

This study makes several contributions to the literature on standard setting and intellectual property. First, we provide a theory that links SSO rules to variation in disclosure terms and dSEP outcomes. To our knowledge, the only other model of the disclosure process is found in Lerner, Tabakovic, and Tirole (2016), and we emphasize a different set of mechanisms and strategies. Second, we extend the empirical analyses of citation and litigation rates in Rysman and Simcoe (2008) and Simcoe, Graham, and Feldman (2009) by using additional data and new methods, and by using our theory to help interpret heterogeneity in the impact of disclosure across SSOs. Our findings suggest that SSOs both select important technologies, and contribute to their value. However, they also show that SSO policies have a substantial impact on the patents that get disclosed and the terms of the associated licensing commitment. It is important to account for these differences in studies that rely on dSEP data.

A third contribution of our work is to provide some of the first empirical evidence linking the terms of licensing commitments to SSO policies and patent-level outcomes. Not surprisingly, patents disclosed on royalty-free terms are less likely to be litigated. Perhaps more interestingly, the IETF's disclosure policy yields a much higher share of royalty-free commitments than at other SSOs. Finally, our paper provides some preliminary evidence on the link between business models (which we operationalize as a firm's location in the ICT value chain) and the terms of SSO licensing commitments. Licensors and component suppliers are less likely to make royalty-free commitments and more likely to litigate their dSEPs, consistent with the idea that those firms are more reliant on intellectual property to appropriate the returns to innovation.

Our findings have implications for the academic literature that uses data from dSEPs, for courts that rely on dSEP counts in damage calculations, and for SSOs (or antitrust agencies) evaluating alternative disclosure rules. In particular, many of the patterns revealed in our exploration of these data illustrate the trade-offs standard setting institutions face in crafting an effective intellectual property policy. For example, we find that rules allowing for blanket disclosure (i.e. licensing commitments that do not list any specific IP) have a substantial impact on the amount of IP declared. This is not surprising, since it will typically be cheaper and less risky for firms to issue a blanket commitment than to be more specific.³ Similarly, we find that a substantial amount of IP disclosure occurs before a patent issues, when there may still be considerable uncertainty about the scope of its claims. On the other hand, allowing for later disclosure may increase the risks of hold-up.⁴ We view these timing and specificity problems, combined with the economic importance of dSEPs and the ambiguity of the FRAND licensing commitment, as the joint causes of the high observed litigation rates for dSEPs. Our findings also suggest that when SSOs do mandate specific disclosure, as with ETSI, courts should be cautious when relying on dSEP counts that are likely to contain a substantial number of false positives. Finally, at a more general level, our results show that seemingly small changes in disclosure rules may have considerable impacts on long-term outcomes. This broad lesson parallels the findings of other studies that examine disclosure as a policy instrument outside the private political domain of industrial standardization (e.g., Fung. Graham, and Weil, 2007; Dranove and Jin, 2010)

The balance of the paper proceeds as follows: Section 2 describes SSO policies, and presents our model of the disclosure process. Section 3 analyzes disclosure characteristics. Section 4 analyzes dSEP characteristics. Section 5 uses matched-sample difference-in-differences regression to estimate the effect of disclosure on citation and litigation rates. Section 6 concludes.

³As discussed below, firms often make an informal announcement about essential IPR to a technical committee, and these announcements may precede the formal blanket declaration. We have no data to indicate whether these informal declarations provide more details about specific patents, and might therefore be useful to a technical committee hoping to evaluate potential trade-offs between technical quality and implementation costs.

⁴Hold-up occurs when an essential patent-owner charges royalties that exceed the *ex ante* competitive price for their technology, and therefore appropriates (part of) the economic returns to implementers' sunk investments in a standard. See Farrell, Hayes, Shapiro, and Sullivan (2007) for an overview of the extensive literature on this topic.

2 Intellectual Property Policies and Disclosure Outcomes

In one of the first systematic studies of SSO intellectual property policies, Lemley (2002) suggests that they typically have three components: search, disclosure and licensing rules. Because none of the thirteen organizations that we examine below have a mandatory search rule, our discussion will focus on policies governing *disclosure* and *licensing*. Disclosure rules specify how and when firms must notify other participants in an SSO that they own IP that may be infringed by a standard. Licensing rules specify the commitments that patent holders are requested to make regarding future licensing, the conditions that can be attached to those commitments, and the methods of enforcement. Table 1 provides an overview of the IPR policies for the SSOs in our data set, and Appendix A goes into greater detail.⁵

2.1 Disclosure rules

SSOs take different approaches to disclosure specificity. All of the organizations in the data that we use below allow for specific disclosure statements that list one or more patents (or pending applications) that may be infringed by a standard. Two of the SSOs in our sample (ETSI and the Open Mobile Alliance (OMA)) require specific disclosures, and the IETF requires specificity unless the disclosure is accompanied by a royalty-free licensing commitment. The ten remaining SSOs also allow general patent disclosure statements, or "blankets". A blanket disclosure indicates that a participant believes it owns relevant IP, without revealing any information about specific patents or patent applications.

Blanket disclosure is clearly less costly for patent holders, since they do not have to search through their patent portfolios to identify relevant IP as the standardization process unfolds. Thus, allowing blanket disclosure can be efficient if the main purpose of a disclosure policy is to reassure prospective implementers that licensing will be an option. On the other hand, blanket disclosure shifts search costs from a patent holder (who presumably has a comparative advantage at finding its own essential patents) onto other interested parties. These other parties include prospective

⁵See National Academies (2013) for additional information on policies governing disclosure and licensing commitments. It is important to note that these policies may change over time, and our data on SSO policies were collected between 2012 and 2014.

licensees who wish to evaluate the scope and value of a firm's dSEPs; other SSO participants seeking to make explicit cost-benefit comparisons of alternative technologies before committing to a standard; and regulators or courts that might use information on a firm's dSEPs holdings to determine reasonable royalties.

Policies that require or encourage specific disclosure typically apply to any patent that an SSO member believes to be technically essential, meaning that it is not possible to implement the standard without infringing the patent.⁶ However, participants are not necessarily required to disclose commercially essential patents, which cover methods of implementation that deliver dramatic cost reductions or quality improvements. In economic terms, a technically essential patent has no substitutes, while a commercially essential patent has at least one (possibly weak) alternative, patented or not. This distinction can be complex in practice. Furthermore, many standards have both mandatory and optional technical features, and specify a menu of choices for certain features, leaving the final choice to implementers.⁷

The timing of IP disclosure is another issue that quickly becomes complicated. Most SSOs encourage early disclosure of essential patents. For example, ETSI seeks disclosures "in a timely fashion" and the ANSI IPR Policy Guidelines (ANSI, 2006) encourage "early disclosure." However, few SSOs provide explicit deadlines or milestones. In practice, disclosure often has two stages: an initial "call for patents" and the subsequent filing of a formal notice or declaration. At most SSOs, there is a "call for patents" at the start of each technical committee meeting, and participants are expected to mention any IPR related to their own proposals (which may or may not become part of the standard), and may also draw attention to patents owned by others. We know of no systematic information that indicates when, or with what degree of specificity, the first stage "call for patents" is answered at any particular SSO.

 $^{^{6}}$ A patent is considered essential if it is infringed by *any* (as opposed to *every*) compliant implementation. For example, in the Compact Disc standard, some patents are infringed by the disc, others are infringed by the player, and some cover both components or a combination thereof. All of these patents are considered essential.

⁷These technology menus that reduce scope for differentiation without mandating a specific technology choice are called *implementation profiles*. One well-known example is the IEEE 802.11 (Wi-Fi) standard, which specifies three possible air interfaces, though only one of them is widely deployed. Most SSOs regard patents that are indispensable for optional features or alternative implementations to be essential, but do not require the patent owner to indicate whether a disclosed patent is essential to a mandatory feature or (only) an optional feature or specific implementation profile. None of the SSOs in our data require participants to indicate whether their IPR covers mandatory features or (only) optional features of a standard.

formally notifies an SSO in writing of dSEPs for a specific standard or draft. Our data come from these letters, which we henceforth refer to as "declarations."

Figure 1 illustrates the complex relationship between key events in the patenting, standard setting and IP disclosure process using two possible scenarios. In the first scenario (top panel), a patent issues before the patented invention is proposed for inclusion in a standard. When an invention is first proposed to the SSO, the owner is usually required to respond to the call for patents at the meeting where this proposal is discussed. Any response to a call for patents would be visible to other meeting participants, but does not leave a public paper trail. The patent holder typically follows up with a formal declaration (which we do observe) sometime after the publication of a draft standard, and preferably before the final specification is approved, though in practice some disclosures occur much later (see, for example, Layne-Farrar, 2014). In the second scenario (bottom panel), all of the key standardization decisions and disclosure events occur while the patent application is being reviewed by the patent office.⁸

2.2 Licensing Commitments

All declarations, regardless of the type or timing of the disclosure, offer some guidance about the licensing terms that an IP owner will offer to prospective standards implementers for essential IP. We refer to this part of the declaration as a licensing commitment.

The most common form of licensing commitment is a promise to license on Reasonable and Non-Discriminatory (RAND) or Fair, Reasonable and Non-Discriminatory (FRAND) terms. There is a substantial legal and economic literature, reviewed by Farrell, Hayes, Shapiro, and Sullivan (2007), and a considerable amount of controversy over the precise meaning of FRAND. At a minimum, it

⁸Figures B-2 and B-3 in the appendix show that a substantial share of the patents in our data are disclosed to an SSO before they are issued by the USPTO. Patent applications are not immediately published for third-party review, and most SSOs have no explicit rule on the timing of formal disclosure. So, if applicants are inclined to delay the formal declaration until after a patent application is published (e.g. so they can make a specific disclosure), the first public notice of essential IPR might happen after a draft standard is already approved. Thus, while formal IPR declarations can provide a great deal of information, it is important to recognize that SSOs may receive them long-after the date when the IPR was first disclosed to a technical committee, or the date when the key technical decisions that determine a patent's essentiality were made. In principle, since most declarations do indicate the relevant standard, one could identify the dates of key technical decisions. However, that information can be hard to find, and the links are often messy, and standards often see improved, updated releases, so we have not taken that step.

implies that an IP owner is required to enter good faith negotiations and grant a license to any firm wishing to implement the standard. Most of the SSOs in our data allow, but do not require, more stringent types of licensing commitments. For example, many firms promise to grant a royalty-free license to any standards implementer, or provide a covenant not to assert their essential patents. Many firms add conditions to their licensing commitments, though SSOs vary in their willingness to allow free-form declarations.⁹

SSO intellectual property policies typically specify a set of procedures for dealing with the rare event that a firm is unwilling to offer a licensing commitment for essential IPR. In most cases, the SSO will halt work on the standard in question, and investigate opportunities to invent-around the essential patents. If these efforts fail, the SSO might stop working on the standard altogether, or withdraw a specification that was already issued. Antitrust authorities might also become involved.¹⁰

The data we examine come from public IP disclosure records, and most SSOs provide a set of standard disclaimers with their disclosure data.¹¹ Beyond common disclaimers, SSOs differ in what they require, what they (explicitly) allow, and what they seem to tolerate in practice.¹²

⁹Common conditions include defensive suspension provisions (which terminate the FRAND commitment if an implementer sues the essential patent holder for infringement) and reciprocity requirements (which make a FRAND commitment conditional on receiving similar terms from any implementer who also holds essential patents).Our sample of declarations contains a wide variety of different licensing conditions, including field-of-use restrictions, and GPL-like provisions that make the offer of a royalty-free license conditional on reciprocal royalty-free commitments from any prospective implementer. Over time, commonly used conditions may become part of an SSO's IPR policy, for example, as an option on a standardized form used to collect declarations. Licensing commitments also vary in scope. For a specific disclosure, the licensing commitment may apply to only the disclosed patents, or members of the same patent family. For a blanket disclosure, the licensing commitment could apply to a particular standard (document), to all work by a particular technical committee (Working Group), or even to the entire SSO. One very common type of declaration combines a specific disclosure with a blanket FRAND commitment that covers all work on a particular standard.

¹⁰Antitrust authorities have brought several cases against firms that conduct "patent ambush" by seeking a license after they failed to disclose essential patents. Recently, courts have also issued a number of rulings that clarify several aspects of FRAND, including the remedies available to the owner of a valid and infringed FRAND-encumbered patent.

¹¹These include: (1) The statements are self-declarations and the SSO takes no responsibility that the list is complete and correct, (2) members agree to reasonable endeavors to identify their own essential IPR, yet do not have an obligation to perform patent searches, (3) it is up to the patent owner and the prospective licensees themselves to negotiate licensing agreements, and (4) the SSO does not handle disputes; in such cases, parties should go to court.

¹²The formal requirements may be part of the IPR policy itself (usually these are binding rules, such as statutes, by-laws, or undertakings), but may also become clear from the administrative procedures, such as templates that firms should use for their declarations, or from the actual declarations that are made public.

2.3 A Model of Disclosure

This subsection develops an economic model of the disclosure process. The model's purpose is twofold: to illustrate some basic trade-offs for SSO participants, and to explain how variation in SSO policies can generate patterns that we observe in the dSEP data.

For simplicity, we assume two players: a firm and an SSO. The SSO wishes to incorporate a new feature into its standard, and the firm holds patents on a technology that may be used to implement that feature.¹³ Standardizing the firm's patented technology will produce an expected surplus of v_1 per implementation, and the best alternative technology (should one exist) yields an expected surplus of v_2 . The firm's payoff can be written as:

$$\pi = \underbrace{\sigma(V + wb)}_{\text{Implementation}} + \underbrace{(1 - \sigma)r}_{\text{Licensing}}$$

where $\sigma \in [0, 1]$ represents the firm's share of the downstream market; $V \in \{v_1, v_2\}$ is the surplus produced by the standard; $w \in \{0, 1\}$ is an indicator that equals one if and only if the SSO standardizes the firms' patented technology; $b \ge 0$ captures the benefits of implementing familiar technology; and r denotes expected royalties from patent licensing. The familiarity benefits b reflect a combination of time-to-market advantages, avoidance of redesign costs, greater compatibility with proprietary complements, and backwards compatibility with the firm's installed base. By assumption, a pure licensor ($\sigma = 0$) receives no benefit from implementing a superior technology (or a more familiar one), whereas firms with a larger share of the implementation market place more weight on those factors. We also assume that v_2 is freely available, so there is no licensing cost if the firm's technology is not chosen.¹⁴

The SSOs' payoff is $V - r + \varepsilon$, where ε is a mean zero random variable that reflects uncertainty (from the firm's perspective) about the objectives of other SSO members.¹⁵ This payoff

¹³For our purposes, it does not matter whether the firm proposed the new feature because it wishes to insert its patent into the standard, or just happens to hold patents for technology that can be used to implement a desirable feature. We use the term feature because patents typically cover a small part of the relevant standard.

¹⁴We can derive similar results under the assumption of Bertrand competition between two patented technologies, but the exposition is simpler for the case of a free and open substitute.

¹⁵The Condorcet (1785) jury model could be invoked to provide micro-foundations for the random component of SSO utility, and we consider the case where the variance of ε shrinks to zero below.

could represent the objectives of the SSO itself, or a reduced-form expression for the preference of other participants in the standardization process.¹⁶ Thus, the benefits of higher V might come directly from implementation, or through the SSO's reputation for creating high quality standards. Similarly, the SSO's distaste for royalties could reflect either the political influence of implementers within the organization, or a belief that royalties reduce the likelihood that a standard will be widely adopted.

The game has three (discrete) time periods:

- At t = 0 the SSO begins developing the new feature, and the firm decides how to disclose its patent. Disclosure consists of an announcement that can be either Blanket or Specific and a licensing commitment that can be either FRAND or Royalty-free.¹⁷ At the start of the standardization process, there is uncertainty about the existence of substitutes for the technology proposed by the firm.
- At t = 1, uncertainty about *ex ante* substitutes is resolved, the firm has another opportunity to disclose, and the SSO selects a technology to use for the new feature.
- At t = 2, ex post substitutes are revealed and the SSO decides whether to incorporate them into the standard, licenses are negotiated and payoffs are realized.

A royalty-free commitment implies that r = 0, and we interpret FRAND as a commitment to the *ex ante* competitive price. The competitive price is established through Nash bargaining that evenly divides any surplus between the patent holder and prospective implementers. The amount of surplus depends on the quality and availability of substitute technologies, whether those substitutes are discovered *ex ante* (t = 1) or *ex post* (t = 2), and whether they infringe the firm's patent. Specifically, we assume that if no substitute has emerged, then at the start of each period (t = 1, 2) the SSO identifies an alternate technology with probability ρ , and that its expected surplus v_2 is drawn from the cumulative distribution F(x). We also assume a cost c of standardizing a

¹⁶Lerner and Tirole (2006) model an SSO's preferences in terms of a parameter that reflects the relative weight attached to the interests of technology sponsors versus users.

¹⁷Assuming that licensing commitments can be of two types – FRAND or royalty-free – simplifies the analysis. In reality, firms might also commit to a price cap. While many economists have suggested that price commitments are desirable, they remain quite rare in practice.

technology that is discovered *ex post*. This switching or coordination cost creates a hold-up problem that many observers take as the primary rationale for SSO intellectual property policies.

A firm's patent is technically essential (e = 1) if it is infringed by all available technologies, and commercially essential (e = 0) when there exists a non-infringing alternative.¹⁸ Following Lerner, Tabakovic, and Tirole (2016), we model the choice between blanket and specific disclosure as a trade-off between obfuscation – which increases the probability of technical essentiality – and enforcement risk. Let δ be an index of patent scope, such that when $\delta = 0$ the patent is inevitably technically essential: it is impossible to implement the desired feature without infringing. When $\delta = 1$, the patent is so narrow that it is trivial to avoid infringement by using a different technology. We assume that the firm can use generic disclosure to obscure the details of its patent, and increase its probability of essentiality. In particular, a standard based on a substitute technology will infringe the firm's patent with probability $1 - \delta$ under specific disclosure and $1 - \delta\theta$ (where $\theta < 1$) under blanket disclosure.

Although specific disclosure reduces the likelihood of technical essentiality, it can strengthen a patent in the eyes of licensors and courts. We capture this idea by assuming that blanket disclosure lowers expected royalties from r to $(1 - \gamma)r$. For example, Lim (2014) suggests that firms favor specific disclosure because antitrust concerns can arise if they sue based on patents that were not disclosed, and because they believe that by declaring a large number of patents they can obtain better leverage in negotiations. The latter belief may be justified if declared essential patent counts are used to apportion royalties in an arbitration or damages in a patent lawsuit.

2.3.1 Equilibrium Disclosure

We characterize the subgame-perfect Nash equilibrium of this disclosure model by solving it backwards. There are two outcomes to consider in the final period: royalties and the decision to switch technologies. The SSO will standardize an alternative technology discovered in period 2 if and only if $v_2 - c > v_1$. Because the firm cannot commit to a non-zero price in period 1, the royalties from

¹⁸This use of the terms technically and commercially essential is somewhat different from the use at certain SSOs. We allow a patent to be either technically or commercially essential ex ante (i.e. before the standard is finalized), whereas most SSOs only view a patent as essential after that decision has been made.

Nash bargaining under a FRAND commitment are:

$$r(v_1, v_2, e) = \begin{cases} \frac{1}{2}v_1 & \text{if } v_2 = 0\\ \frac{1}{2}\max\{v_1, v_2 - c\} & \text{if } v_2 > 0 \text{ and } e = 1\\ \frac{1}{2}(v_1 - \max\{0, v_2 - c\}) & \text{if } v_2 > 0 \text{ and } e = 0 \end{cases}$$

The latter two cases show that when a substitute is found, the firm can benefit if its patent remains technically essential, but will lose bargaining leverage if the substitute does not infringe (though both effects are dampened by switching costs).

We are now ready to move backwards to t = 1 and consider the firm's disclosure decision. There are two cases to consider:

Case 1: No Competition: If no substitute has been found, the firm's technology will be standardized. The firm will offer a FRAND commitment, because that leaves open the possibility of monetizing the patent. The choice between specific and blanket disclosure does not affect the implementation part of the firm's payoff, and therefore depends only on expected royalties. In the appendix we show that the firm will make a specific disclosure if and only if

$$\gamma\left\{(1-\rho)\frac{v_1}{2} + \rho E[r(v_1,1)]\right\} \ge \rho\delta(1-\theta(1-\gamma))E[r(v_1,1) - r(v_1,0)]$$
(1)

where the expectation is taken with respect to v_2 . On the left side of this inequality are the incremental royalties from specific disclosure of a technically essential patent, while the right side measures the expected cost of increased competition from a substitute technology.

Several results follow immediately. A firm with an "ironclad" patent ($\delta = 0$) will always make a specific disclosure. The probability of specific disclosure increases when obfuscation is less effective ($\theta \rightarrow 1$), enforcement risk under blanket disclosure increases ($\gamma \rightarrow 1$), or *ex post* competition becomes less likely ($\rho \rightarrow 0$). In the appendix, we show that specific disclosure increases with the value of the firm's technology.¹⁹ All of these observations can be collected as:

¹⁹The firm's downstream activities do not influence the trade-off, except by making it more "salient" in the sense of these costs and benefits representing a larger share of the firm's total payoff.

Prediction 1. Absent ex ante competition, the firm makes a specific FRAND disclosure if and only if (1) is satisfied, and a blanket FRAND disclosure otherwise. Specific disclosure increases with patent scope $1 - \delta$, patent value v_1 , and enforcement risk γ ; and declines with the probability of ex post competition ρ , and the impact of obfuscation $1 - \theta$.

Case 2: Competition: If a substitute technology emerges ex ante the firm will always make a specific disclosure because any technical uncertainty has been resolved and it prefers to avoid enforcement risk. When its patent is technically essential, the firm will make a FRAND commitment. But if its patent is commercially essential, the firm may opt for a royalty-free licensing commitment to influence the SSO's decision. The royalty free commitment would be unnecessary if FRAND commitments were enforceable, but in the presence of hold-up, an SSO will prefer the (possibly inefficient) substitute when $v_1 - r(v_1, v_2, 0) + \varepsilon_1 < v_2 + \varepsilon_2$.

Let \underline{G} and \overline{G} represent the probability of selecting the firm's technology under a FRAND and royalty-free commitment respectively.²⁰ The firm will make a FRAND commitment if and only if

$$r(v_1, v_2, 0) \ge \frac{\sigma}{1 - \sigma} \frac{\overline{G} - \underline{G}}{\underline{G}} (v_1 - v_2 + b)$$

$$\tag{2}$$

It follows immediately that firms with a larger share of the implementation market (σ) , or who derive more benefits from standardizing a familiar technology (b) are more likely to offer a royaltyfree commitment. Holding v_2 fixed, the firm will make a FRAND commitment with certainty as v_1 grows large. In the limiting case where the is no uncertainty about the SSO's preferences, so $\varepsilon_1 = \varepsilon_2 = 0$, the firm will offer a royalty-free commitment if $v_2 \in [\frac{1}{2}v_1, v_1]$ and $v_2 < c$, or if $v_2 \in [v_1 - c, v_1]$ and $v_2 > c$. We gather all of these observations about disclosure under *ex ante* competition into:

Prediction 2. Under ex ante competition, all disclosures are specific. The probability of a royaltyfree commitment increases with implementation σ and the benefits of standardizing a familiar technology b. When there is no uncertainty about SSO preferences, royalty-free commitments are weakly increasing in the size of the ex post switching cost c.

²⁰Formally, $\underline{G} = Pr(v_1 - v_2 - r > \varepsilon_2 - \varepsilon_1)$ and $\overline{G} = Pr(v_1 - v_2 > \varepsilon_2 - \varepsilon_1)$

Finally, consider the disclosure choice at t = 0, before any competition has emerged. At that time, blanket FRAND disclosure is a dominant strategy for the firm. Blanket disclosure reduces the likelihood of *ex ante* competition, and FRAND preserves the option to monetize the patent. This may explain why some SSOs allow firms to make SSO-wide blanket FRAND licensing commitments.

2.3.2 Discussion

Table 2 summarizes the main results of this model with respect to disclosure. At the start of the standardization process, when there is no competition by assumption, firms naturally prefer the Blanket FRAND option. As the SSO's decision approaches, they could face several scenarios. When there is competition from substitute technologies, firms will make a specific disclosure that is FRAND if they have a "strong" (i.e. either technically essential or high-value) patent, and royalty-free if the patent is weak or the implementation benefits of familiarity are large. When there is no *ex ante* competition the firm will make specific FRAND disclosure for "strong" (i.e. broad or high-value) patents, and a blanket FRAND disclosure for weaker patents.

Disclosure policies: The model predicts that broader and more valuable patents are more likely to produce a specific disclosure. Thus, if an SSO mandates specific disclosure (which is equivalent to setting $\gamma = 1$ in our model), we would expect the average value of disclosed patents to fall, and fewer patents to remain technically essential. Below, we provide evidence of "overdisclosure" at ETSI, which has adopted a mandatory specific disclosure rule.

We can also use the model to consider a policy that removes the blanket FRAND option. Increased disclosure specificity will produce more *ex ante* competition, leading to a decline in *ex post* technical essentiality and a larger number of royalty-free commitments. These predictions are similar to outcomes at the IETF, where many Working Groups have a *de facto* prohibition on blanket FRAND disclosures, as described in Contreras (2016).

Extensions and implications: One natural extension of our model is to assume that firms must determine whether they own potential SEPs. Many observers (e.g., Biddle, 2015) suggest that search costs are in fact substantial, and provide an important rationale for the blanket disclosure option. In our model, these costs can enter through γ , making blanket disclosure more attractive relative to specific.²¹

Finally, in the empirical analysis below, we focus on two outcomes: citation and litigation. Although this model of disclosure is focused on the *selection* process that produces our dataset of declared essential patents, it can easily be linked to those outcomes. In particular, we expect that more valuable patents (higher v_1 and lower δ) receive more citations and exhibit a larger increase in citations following disclosure (because they have a greater chance of becoming technically or commercially essential). We also expect more valuable patents to have a higher litigation rate, unless they are offered on royalty-free terms. The latter prediction can be derived, for example, within the Priest and Klein (1984) model of litigation.

3 Disclosure Characteristics

This section uses our novel database of intellectual property declarations to document a number of stylized facts about the standardization process at thirteen major SSOs. The data contain 45,349 disclosures (general or specific licensing statements) that can be grouped into 4,970 declarations (statements submitted to a single SSO by a single firm on a given date).²² Appendix A provides additional information about the dataset.

Figure 2 graphs the total number of declarations in our data, starting in 1985. The figure exhibits two striking features: the number of declarations (and amount of disclosed IP) has grown dramatically over time, and there was a sharp increase in disclosure size around 2000. The increase in disclosure size is linked to a relatively small number of declarations that list very large numbers of patents, particularly at ETSI. But the overall pattern is one of a rapidly increasing number of disclosures, and a rapidly expanding base of declared essential patents.

Simcoe (2007) discusses four possible explanations for this trend. First, in the mid-1990s expec-

²¹Another extension would be to allow for the creation of a "profile" that incorporates both technologies, leaving the final decision to implementers. If the profile creates no loss in overall compatibility, this option should reduce the incentive to offer royalty-free licensing commitments, because a firm can always implement the more familiar technology in cases where $v_1 < v_2 < v_1 + b$. However, a more realistic model might incorporate some risk of coordination failure, so that V declines in expectation when the SSO fails to make a clear choice between competing options.

²²Tables B-1 and B-2 show the most active firms in our data, in aggregate and by SSO. The ten most active firms account for 33% of the declarations (and an even larger share of dSEPs), but we observe a total of 926 unique organizations that make one or more disclosures, and the "long tail" of small organizations is collectively substantial.

tations about the enforcement of these policies may have changed due to a pair of court cases filed by the U.S. Federal Trade Commission.²³ In particular, the outcome of *Dell Computer* suggested that firms that failed to disclose essential IP could lose the right to assert their patents, and this naturally increased the incentive to comply with disclosure policies. Second, the trend may reflect the increasing importance of several shared technology platforms governed by SSOs in our sample, notably the Internet (associated with IETF), cellular telephony (ETSI) and wireless networking (IEEE). As these groups develop more standards, this naturally leads to more IP disclosure. The increase in patenting, especially within the US, offers a third potential explanation for the disclosure boom, though we observe that the number of dSEPs is growing even faster than the number of information and communications technology patents. Finally, the trend in disclosure may reflect a trend towards vertical dis-integration in the ICT sector that is closely linked to the rise of shared platform technologies such as the Internet. Upstream technology developers naturally rely more on patents, and the notable success of licensing-based companies such as Qualcomm may have spawned a certain amount of imitation.

Table 3 examines disclosure characteristics by SSO. The first column in this table shows that the distribution of declarations across SSOs is very uneven. While several SSOs have 500 or more declarations, others have only a handful. For this reason, we pool the organizations in some of the analyses below. The last column in Table 3 shows this grouping. Our first group are the three "Big I" international Standards Developing Organizations, IEC, ISO and ITU. Our second group contains the regional umbrella organizations CEN/CENELEC for Europe and ANSI for the US, along with the Broadband Forum. IEEE, ETSI and IETF each constitute their own group. The final group consists of several smaller forums that develop mobile telecommunications standards.

The second column in Table 3 shows variation in the share of blanket declarations that list no specific patent or application numbers. Overall, roughly half of all declarations are blankets. The SSO with the lowest share is ETSI, which has a policy of mandatory specific disclosure. The average disclosure size at ETSI is almost 40 patents, which is four times larger than the next largest SSO, and the total amount of IP disclosed at ETSI is over half our sample of dSEPs. Other differences

 $^{^{23}}$ In Re Dell Computer and FTC vs. Rambus.

in the size and frequency of disclosure across SSO may reflect the scope of the work carried out within the SSO, the different IP policies summarized in Table 1, and differences in the patenting propensity of participating firms.

The next set of columns in Table 3 focus on the terms of licensing commitments. As noted above, the overwhelming majority (89%) of disclosures offer a FRAND commitment (in some cases because that is the only option allowed by an SSO). Overall, 9 percent of licensing commitments are royalty free, and we observe only a handful that either withhold a commitment or provide specific licensing terms and conditions. When looking across SSOs at the distribution of licensing commitments, the clear outlier is the IETF, where more than one third of the declarations provide a royalty-free commitment. Many IETF Working Groups have a stated a preference for royalty free standards, though others have been willing to consider royalty-bearing technology if justified on technical merits. Our model suggests that royalty-free disclosures emerge only if there is ex*ante* competition for inclusion in the standard, which requires knowledge of relevant IP relatively early in the standardization process, before design decisions have become entrenched. Thus, it is interesting to note that the last two columns show that patents are generally disclosed earlier at the IETF – on average six months before they even issue.

Figure 3 illustrates the distribution of elapsed time between patent application (or issuance) and disclosure to an SSO in our sample. Overall there is considerable dispersion. On the one hand, many patents are disclosed 5 or more years after they issue, suggesting that invention preceded standardization by a considerable period of time. On the other hand, we can see that almost half of the disclosed patents applied for after 2000 (when US patent applications first began to be published) are disclosed *before* the patent issues. The disclosure of potential dSEPs to an SSO before the patent issues illustrates one reason that some SSOs have given for their resistance to explicit pricing commitments during the standardization process: it is not yet clear what the claims of the issued patent will say.

Finally, in order to examine the predictions from our theoretical model within a regression framework, we created a variable that captures whether a firm is primarily a "downstream" standards implementer, as opposed to an "upstream" licensor or component vendor. While any such distinction is inherently somewhat arbitrary, we found it relatively easy to classify the most active firms in our data into a handful of business model categories, as illustrated in Table 4, and have made the data public so that interested readers can experiment with alternative classification schemes.²⁴

Table 5 presents coefficients from linear probability (OLS) models of the two choice variables in our theoretical model: specific versus blanket disclosure, and royalty-free versus FRAND commitments. Because all of the explanatory variables are dummies, each coefficient can be interpreted as a percentage-point change in the probability of the outcome variable.²⁵ The estimates in column (1) show that upstream firms are less likely to offer a royalty-free licensing commitment, as predicted by our model. Unclassified firms are indistinguishable from downstream firms who are closer to the implementation market. Column (2) adds SSO dummies, and we see that this correlation declines in magnitude, but remains statistically significant. Not surprisingly, there is also a large and statistically significant coefficient on the IETF dummy.

Columns (3) and (4) Table 5 show that upstream licensors are also more likely to offer blanket disclosures, and that blanket disclosure is less prevalent at ETSI and IEEE.²⁶ Interestingly, blanket disclosure is used at IETF as much as ANSI, even though blanket disclosure creates a strong preference for royalty-free licensing at the former SSO.

4 Declared Essential Patents (dSEPs)

This section examines the declared essential patents contained in our data. While the declarations list patents from many countries, we limit our patent-level analyses to a group of 6,723 granted US patents that were either declared essential, or share a common priority application with a European declared essential patent.²⁷ The United States was the most common issuing country in

²⁴The long tail of organizations that were either too diverse or too difficult to classify comprise 63 percent of all claimants, but only 16 percent of disclosures and 4 percent of the declared essential patents in the data set.

²⁵Table B-3 shows that we obtain nearly identical estimates of the marginal effects from a logit specification.

²⁶The coefficient for ETSI in the blanket regression is identified because there are a very small number of SSO-wide blanket FRAND commitments included in our data set, even though firm's still must specifically declare to ETSI any patent they intend to enforce.

 $^{^{27}}$ The algorithm to identify US patents that shared a common priority application with a declared essential patent had four steps: (1) Take the appln_id of all DOCDB family members for each dSEP, (2) for applications identified in step 1, find the appln_id for the parent application of any continuations, (3) for applications identified in step 1 and

our overall dataset, and limiting the analysis to US patents keeps the presentation and interpretation of statistics relatively simple. Henceforth, we refer to this sample as dSEPs.

As a point of comparison, we also created two "control" samples. The first group of comparison patents was selected by randomly choosing an undeclared US patent with the same primary (3 digit) technology class, application year, patent type (i.e. regular utility or reissue utility patent) and with roughly the same number of claims as each of the dSEPs.²⁸ This one-to-one matching procedure ensures that the joint distribution of technology classes, application years, patent type and claims is balanced in the two samples. We refer to these patents as Random Matches. For the second comparison group, we also matched on a count of patents in the same DOCDB patent family within one year of the earliest priority date associated with the focal patent. Our goal in creating this second comparison set was to use family size as a proxy for the perceived value of the patent to the applicant – since it is more expensive to file for protection in more countries – without providing too much time for family size to grow, so it does not become a function of essentiality.

To be clear, neither set of "control" patents is meant to provide an estimate of the true counterfactual outcome for dSEPs had they not been declared essential. Rather, these comparison groups yield an estimate of the "average outcome" in a set of patents with similar ages, technical characteristics and perceived importance around the time of application. Rysman and Simcoe (2008) discuss this type of matching in detail, and note that a simple comparison of these groups will measure both selection effects (differences that would exist regardless of standardization) and marginal effects (i.e. differences caused by disclosure and/or standardization).

Because the IP declarations are not an ideal data source in all respects, it is worth reiterating several caveats before presenting our initial patent-level analyses. First, these data do not contain all essential patents, since many SSOs allow blanket disclosure. We know of no easy way to identify undeclared essential patents. Second, our sample of dSEPs almost certainly contains patents that are not truly essential. Both standards and patent applications change over time, so a patent or pending application that was essential to a particular draft may no longer be infringed by the time

^{2,} find the applin_id for the earliest parent application associated with each focal application, (4) identify any issues US patent originating from an application identified in steps 1 through 3.

²⁸For matching on claims, we chose a control patent from the same decile of the cumulative distribution of total claims as the focal dSEP patent.

an SSO settles on the final specification. Firms may also "over declare" out of caution (since nondisclosure could render their IP unenforceable) or because they have a strategic motive to inflate their dSEP counts, possibly with an eye towards future negotiations. Finally, when we examine disclosure timing, it is important to recall that declaration dates are only loosely connected to the underlying standard development process. Depending on the rules of a particular SSO, formal declarations can predate the key technical decisions, occur at roughly the same time, or appear long after a standard is published and diffused.²⁹

All of our patent-level outcomes data come from the USPTO, with the exception of the data on patent litigation, which was obtained from the Thomson Innovation database in December 2015.

4.1 The Significance of dSEPs

Table 6 provides an initial comparison of dSEPs and control patents. Note that all of the dSEPs have a random match, whereas matching on family size (at 1 year) produces a material reduction in sample size. Nevertheless, the results are similar for both comparison groups, and the main message of the table is that dSEPs score higher than controls on a variety of metrics used to proxy for value and technological significance.

The first two rows in Table 6 examine "long run" differences between SSO and Control patents. The first row shows that the probability of litigation in the sample of SSO Patents is four times higher than the random matches (7.27 percent versus 1.76 percent), and more than three times higher than in the family matches.³⁰ The second row shows that SSO Patents are cited as prior art by other US patents 70% more than the random matches and 60% more than the family matches. It is important to note that dSEPs and control patents have the same distribution of application years (and as the table shows, issuance year), so these differences in long-run outcomes are not caused by any difference in exposure to the risk of a citation or a lawsuit. While it is hard to place a value on a forward citation, or understand the precise significance of a particular lawsuit,

²⁹Our database provides details on the underlying technical committee and document wherever possible, and we encourage enterprising researchers to supplement these declarations data with more precise dates of key technical decisions as part of future research.

 $^{^{30}}$ We measure litigation at the level of the individual patent, so a suit that incorporates two or more declared essential patents may be counted more than once.

these measures are widely used and rarely show differences of the size and statistical significance observed in our analysis.

The third row in Table 6 examines the rate of reassignment (i.e. transfer of patent ownership) and finds differences that are statistically significant, but rather small, between dSEPs and control samples. In the fourth row, we see a very large difference in the family size of the dSEPs and the random match comparison group. This suggests that applicants are aware of the value of declared essential patents from a relatively early date, and motivated our construction of the additional family matched control group. Interestingly, even after matching on the size of the international patent family within one year from the priority date, we see a significant difference in the overall family size for dSEPs and family matched controls.

Finally, Table 6 shows that dSEPs have more listed inventors, and make more references to both patent and non-patent prior art. These findings suggest that they are "broader" than the controls, and that applicants were more careful in delineating the underlying innovation (relative to prior patents) in their application. Any large ex ante differences between dSEPs and control patents (e.g. in terms of claims and prior-art references) suggest a large selection effect. In other words, SSOs attract high-value technologies. However, Bekkers, Bongard, and Nuvolari (2011) show that firms often file for patents and submit the underlying technology to an SSO almost simultaneously, so even ex ante value metrics may reflect an SSO's influence.³¹

4.2 Cross-sectional Comparison Between dSEPs and Control Patents

Our next set of patent-level analyses examine how differences in long-run outcomes (i.e. citations and litigation) vary with the "visibility" of disclosures, the business model of the claimant, the SSO, and the type of licensing commitment. We continue to use the randomly matched control sample as a way to adjust for differences in technology class, application year, patent type and the total number of patent claims. However, we now adopt the following regression framework:

 $^{^{31}}$ To see whether "simultaneous" application and disclosure had a large impact on our results, we re-ran the analysis in Table 6 on the sub-sample of dSEPs (and matched controls) in the upper quartile of the application-to-disclosure lag distribution, which were declared 7.7 or more years after their application date. The results of this unreported analysis are quite similar to those reported in Table 6, suggesting that there is a substantial element of selection on observed (to the patent-holder) quality in our sample of dSEPs.

$$Y_{ij} = Declared_i\beta_j + \alpha_j + \lambda_g + \gamma_c + X_i\theta + \varepsilon_i \tag{3}$$

where Y_{ij} is either a citation count or a litigation indicator for patent *i* in group *j*, *Declared_i* is an indicator variable that equals one if patent *i* was declared essential to an SSO, and X_i is a vector of control variables that includes the number of claims, patent references and non-patent prior art references made by the patent. We focus on three groups (indexed by *j*): dSEPs (versus undeclared family members), Licensing Commitments, and SSOs.³² The coefficients λ_g and γ_c are a set of issue-year and technology class fixed-effects, while the coefficients α_j measure differences in control patent outcomes across groups. We are interested in the vector of coefficients β_j that measures a group-specific difference between the SSO and matched control patents.

Table 7 reports estimates of β_j , using both citations and litigation as outcomes.³³ For the citation models, we estimate equation (3) as a Poisson regression with robust standard errors.³⁴ For the litigation outcome, we use a linear probability model.

Columns (1) and (5) in Table 7 compare the "disclosure effect" for patents that were actually listed as dSEPs to the effect for family members that were not specifically declared. We find a statistically significant increase in citations and litigation for both groups, though the effect is much larger for the dSEPs. A coefficient of 0.55 in column (1) indicates that dSEPs receive about 73% more forward citations than the random match controls, compared to around 14% for their family members.³⁵ The coefficient of 5.56 in column (5) indicates that the difference in probability of a lawsuit is 5.6 percentage points.

Columns (2) and (6) in Table 7 examine the relationship between the patent holder's business model and dSEP citation and litigation rates. These regressions omit the matched controls, for which we do not have data on patentee business models. In column (2), we see that patents disclosed by pure-licensors, universities and component producers receive more citations than those

³²When a patent is declared essential to more than one SSO, we assign it to the one where it was first declared.

³³Table 7 focuses on the full sample of SSO Patents and Random Matches, while Table B-4 shows for robustness that we get similar results when focusing on the Family Matched comparison group.

³⁴The is sometimes called the Poisson quasi-likelihood estimator, and using the robust standard errors corrects for any overdispersion in the outcome.

³⁵Poisson coefficients can be translated into a percentage change by exponentiating and subtracting one, i.e. $e^{0.53} - 1 = 0.69$.

disclosed by downstream implementers (the omitted category in our regression). Column (6) shows that firms with upstream business models are also more likely to assert their dSEPs in litigation. These findings are consistent with the idea that upstream technology developers are more reliant on patent monetization as part of their overall business model. Interestingly, we find similar results of even larger magnitude for the group of unclassified patent-holders. One interpretation of the latter finding is that the unclassified firms are relatively small, and consequently face similar incentives to monetize their patents instead of relying on complementary assets for capturing value.

Columns (3) and (7) in Table 7 examine how the citation and litigation of dSEPs vary according to the terms of the licensing commitment. We consider four types of commitment: FRAND; Free (which includes both a royalty-free license and a non-assertion covenant); Terms (for a specific set of conditions, including price) and None. Column (3) shows that the difference in forward citations between dSEPs and random match control patents is largest for commitments to license the patents free of charge. However, the standard errors associated with non-FRAND commitments are all relatively large due to small sample sizes. Column (7) shows how the probability of litigation varies with the terms of the licensing commitment. For patents under a Free licensing commitment, there is no difference in the probability of litigation between the dSEPs and matched control patents. However, the FRAND patents have a 5.1 percentage point increase in litigation probability (roughly 300% compared to the baseline litigation rate for the controls), and the patents with no licensing commitment are 9.6 percentage points more likely to be litigated than their associated control patents.

The fact that royalty free patents are less likely to be litigated may not be surprising: there is little incentive to sue if a patent can be freely infringed (though defensive suspension provisions and applications of the patented technology outside of the scope of the standard may explain why these patents are still litigated in some cases).³⁶ However, the larger citation increase for royalty free declared essential patents suggests a greater willingness to "build on" royalty free technology (as long as one is prepared to accept that relatively common interpretation of patent citations).

³⁶Note that even though a patent may be offered royalty-free when implemented in the context of a specific standard, the owner my ask monetary compensation for that same patent if used in a different context. If that latter scenario results in litigation, it would be recorded in our database.

These results also suggest that FRAND offers some additional degree of certainty relative to patents where no licensing commitment was provided.

Columns (4) and (8) in Table 7 examine differences across the "SSO Groups" defined in Table 3 and discussed above. Column (4) shows that dSEPs receive more citations than their matched controls at every SSO, though the magnitude of the difference varies considerably. The citation gap between declared essential and "average" patents is greatest for the "Other" group containing Open Mobile Alliance, TIA and ATIS, and also at the IETF. The citations gap is notably smaller for ETSI, ANSI, and the Big-I international organizations. This variation in the citation gap may reflect differences in either the selectivity or the "treatment effect" of different SSOs, or more likely a combination of both effects. However, the use of control patents, along with the technologyclass and issue-year fixed effects, should capture any broad differences in citing patterns across technologies and time (i.e. the part of the selection effect that is linked to these observables).

Column (8) examines heterogeneity in litigation rates between dSEPs and control patents. Once again, we see considerable variation across SSOs. The difference in litigation probabilities between Control and SSO Patents is largest at ANSI, where there is a 12.9 percentage point increase in litigation. The gap is smaller at IETF, where one third of the commitments are royalty-free, and at ETSI, where mandatory specific disclosure presumably yields a higher rate of *ex post* nonessentiality.

While one might have expected the estimated citations and litigation coefficients to co-vary positively across SSOs, Table 7 does not show any obvious relationship. For example, ANSI has the largest litigation gap and the second-lowest gap in citations, while the patents declared to IETF are cited at a very high rate relative to their controls, and have one of the smaller litigation gaps. This may say something about the relative efficacy of alternative disclosure policies. However, we remain cautious about placing a causal interpretation on any of these comparisons. In particular, all of the measured "effects" could be explained by unobserved differences in technology or the types of firm participating in different SSOs. Moreover, we have no way of knowing the citation or litigation rates for patents declared under a blanket disclosure.

5 Disclosure Effects

Up to this point, we have emphasized that disclosure timing is not tightly linked to the adoption of a standard. Some patents are disclosed long after a standard has emerged, and in other cases, SSO participants may be aware that sponsors of a proposal own related IP well before a formal declaration is made. Nevertheless, most of the SSOs in our data encourage early disclosure, and the "patent ambush" cases against Dell and Rambus discussed above provide incentives for timely disclosure. If one is willing to assume that disclosure is a reasonable proxy for the timing of standards development (at least over a fairly long time-series), then we can use panel data to further explore the idea that standardization has a causal impact on the long-term outcomes of declared essential patents. This section provides evidence of a "Disclosure Effect" on citations and litigation using difference-in-differences regressions.

5.1 Citation Effects

To explore the relationship between disclosure and citations, we created a panel data set that contains one observation per year for each dSEP and Control patent with an age between -5 and 20 (where age is defined as calendar-year minus issue-year). Our outcome variable is a count of references from all issued patent applications filed in year t to each dSEP or control patent i.

Figure 4 graphs the average annual citation rate by age for dSEP and random match control patents in the raw data. The first panel in this figure shows that dSEPs receive roughly 20% more citations than control patents by the time they issue. This gap widens for about 10 years, as the dSEPs' average annual citation rate climbs from 5 to 6, and the control patent rate stays constant at about 4. The second panel in Figure 4 provides a separate annual citation rate for each SSO, and shows that much of the "bump" in the first panel is linked to two groups: IETF, and the "telecom" group consisting of ATIS, TIA and OMA.

Overall, these graphs suggest that there is *both* a substantial selection effect, whereby dSEPs receive a higher baseline citation rate prior to standardization, and a smaller standardization effect (perhaps concentrated in particular SSOs) whereby citations increase after a patent is declared essential. To further explore the standardization effect, we created an additional set of *citation*

matched control patents that have the same average level and trend in forward citations as the dSEPs. We constructed the citation matched controls by drawing a single patent from the same technology class as each dSEP and having the same number of cumulative cites k years before disclosure (where k = 2, 4, 6... depending on the age of the dSEP at disclosure). Because these patents are constructed to have the same pre-disclosure citation trends, it is more plausible to assume that the citation matched controls provide a valid estimate of the counterfactual post-Disclosure outcomes for the declared essential patents.

Figure 5 plots the coefficients and standards errors from a pair of event study regressions using the dSEPs and their citation matched controls. The underlying regression specification is

$$Cites_{it} = DeclaredEssential_i\beta_k + \alpha_i + \gamma_{ay} + \varepsilon_{it}$$

$$\tag{4}$$

where $DeclaredEssential_i$ is an indicator for a dSEP; α_i is a patent-level fixed effect; and γ_{ay} is a full set of age-by-year effects that should absorb both secular trends in the overall citation rate and the underlying shape of the citation-age distribution. We plot the coefficients β_k , where kindexes years-to-disclosure (i.e. calendar year minus the year when a patent is declared essential), normalizing $\beta_{-2} = 0$. We chose this normalization because both the data and our discussions with standards practitioners suggest that committee members obtain information about potentially essential patents during the year before disclosure, although normalizing $\beta_{-1} = 0$ produces similar results.

The first panel in Figure 5 is based on the complete sample of dSEPs and citation matched controls, using a regression that omits the patent fixed effects (α_i). There are three important features of this graph. First, even without providing a patent-specific intercept, it is apparent that our citation-matching procedure produces a good match in the pre-disclosure levels and trends of citations between the dSEPs and the control group. In particular, none of the β_k for k < -2 is statistically significantly different from zero. Second, we see a sharp increase in cites starting the year before formal disclosure. And third, following disclosure we observe a long-term persistent difference in the citation rate of the dSEPs and citation-matched controls. That is, the coefficients β_k are all statistically different from zero for k = -1 to 10. We interpret this pattern as indicating that the standardization process has a causal impact on the economic and technical importance of declared essential patents.

The second panel in Figure 5 changes the regression specification by adding patent fixed-effects, and more importantly drops the patents declared essential at ETSI and their associated controls. ³⁷ We have plotted the two figures on the same scale to show that dropping ETSI from the estimation sample roughly doubles the size of the "disclosure bump" that is apparent around the time of standardization, and leads to a long-term impact that is substantially higher, at just over half a citation per year.

Table 8 illustrates similar results to Figure 5, only using a more parsimonious regression model, building on the approach developed in Rysman and Simcoe (2008). Our specification is

$$Cites_{it} = PostDisclosure_{it}\beta_i + SSO_i\alpha + \gamma_{ay} + \varepsilon_{it}$$
(5)

where $PostDisclosure_{it}$ is an indicator for a patent that has been declared essential to an SSO. Columns (1) and (2) show how pre-disclosure citation-matching helps address the strong selection issue in these data. If we use the randomly matched control sample, the regression suggests a very strong selection effect of 1.3 citations per year (on a baseline of 2.3 cites per year), but no postdisclosure increase in citations. However, if we switch to the citation matched controls, there is no pre-disclosure difference in cites by construction, and we estimate a 12 percent increase in citations following disclosure to the SSO. In column (3) we add patent fixed effects, and the estimated disclosure effect fall to 0.17 citations per year (around 5 percent).³⁸ However, dropping ETSI from the estimation sample in column (4) leads to a four-fold increase in the estimated disclosure effect.

The results in Table 8 are broadly consistent with the findings in Rysman and Simcoe (2008), and indicate that SSOs produce both a strong selection effect, by choosing patented technologies that are *ex ante* more valuable, as well as a disclosure effect by encouraging coordinated adoption

³⁷Recall that ETSI may have a high rate of "false positive" disclosures perhaps due to its mandatory specific disclosure policy, and that ETSI accounts for more than half of the overall dSEP sample.

³⁸Chabé-Ferret (2016) shows that it is not obvious *a priori* whether we should prefer the specification in column (2) or (3). Because the latter specification includes two high-dimensional vectors of unobserved effects, for both patents (α_i) , and age-years (γ_{ay}) , we estimate (5) via OLS using a Stata package and estimator described in Guimaraes and Portugal (2010).

of those technologies. The two contributions we make relative to that study are the construction of a citation-matched control sample, and the observation that the disclosure effect is dramatically reduced by including ETSI in the estimation sample. We argue that ETSI's mandatory specific disclosure policy is driving this heterogeneity. If this argument is correct, it may be appropriate to view even the result in column (4) as a lower bound on the true disclosure effect, given that all of our SSOs include a share of disclosed patents that are not truly essential.

Our novel data on multiple SSOs and licensing terms also allow us to explore heterogeneous disclosure effects by letting β_j in equation (5) vary with the SSO or the terms of the licensing commitment. Table 9 illustrates the results of this approach. In columns (1) and (2) we can see that the citation effects of disclosure are concentrated among dSEPs, with no statistically significant impact for undeclared family members of the dSEPs. This suggests either a selection effect, whereby the disclosed patents are more important, or that the visibility afforded by disclosure matters for attracting citations. Interestingly, as we will see below, the family members do experience a post-disclosure change in litigation propensity too.

Columns (3) and (4) in Table 9 examine heterogeneity across different types of licensing commitment. Not surprisingly, we find results similar to Table 8 for the FRAND patents that comprise 90% of the estimation sample. Estimates for the FREE, Specific and No Committment groups are all positive but imprecisely estimated. Table B-5 reports estimates from the same set of regressions using Self Citations as the outcome variable. There, we find the largest effect for patents disclosed under a Royalty Free licensing commitment. While the terms of the commitment are clearly endogenously selected by the patent holder, one interesting interpretation of this finding is that companies may be more likely to offer free commitments when they also hold a number of proprietary complements (i.e. the citing patents).

Finally, in Column (5) we allow the disclosure effect to vary by SSO. The most notable finding here is the *negative* disclosure effect for patents declared essential to ETSI. It is also interesting that the disclosure effect at IETF is not statistically significant, even though Figure 4 suggest that patents disclosed to IETF are among the most highly cited. One possible explanation is that a policy encouraging early explicit disclosure and royalty free licensing commitments may increase the rate of false positives through explicit "design around" of any IP viewed as problematic. Setting aside ETSI and IETF, we find larger effects at ANSI and the mobile consortia (ATIS, TIA, OMA), a somewhat smaller and less precisely estimated effects at the Big-I organizations and IEEE.

Overall, if one is willing to maintain the assumptions that citations reflect value and that disclosure is a reasonable proxy for essentiality, these results suggest that SSOs are *both* selecting high quality patents and contributing to their long-term importance. In the next sub-section, we will see that SSOs are performing less well at the related task of mitigating conflict over declared essential IP.

5.2 Litigation Effects

Our final set of analyses will examine the relationship between disclosure and litigation. A simple divergent expectations model of litigation (e.g. Priest and Klein, 1984) predicts litigation if and only if $B(r_p - r_d) > C$, where B represents the stakes or size of the market, r_p and r_d are respectively the expected court-ordered royalty rate of the patent owner and of the defendant, and C is the net cost of a trial (i.e. litigation expenses less any costs of settling the case). Our empirical exercise is motivated by the idea that disclosure and incorporation into a standard can increase B, as suggested by the citation results above, while licensing commitments may reduce the gap in expectations $(r_p - r_d)$, leading to a decline in the probability of litigation, which can be written as $P[r_p - r_d > \frac{B}{C}]$.

The data consist of a patent-year panel that retains all never-litigated patents, and all litigated patents only up to the year of their first lawsuit. Dropping patent-year observations that post-date the initial suit for a given patent simplifies the setup of our hazard models, and allows us to ignore the complexities that emerge when considering how outcomes of one suit impact future litigation propensity for the same patent.

Figure 6 shows the 20-year cumulative hazard of litigation for declared essential and random matched control patents. The dramatic divergence over time illustrates the same gap in litigation probabilities that we saw with the cross-sectional results in Section 4. However, where the cross-sectional models report a difference in litigation rates averaged over patents at different ages, this Figure shows that the difference in the propensity to litigate dSEPs versus controls grows larger

over time. By age 20, the cumulative difference in litigation probabilities is considerably larger than the 5 to 7 percentage point difference reported in Section 4, reflecting the fact that litigation probabilities increase over time for declared essential patents, and that we have more "young" patents in the entire sample.

We now examine the relationship between disclosure-timing and litigation. A patent that is litigated prior to its disclosure suggests that patent characteristics are causing selection into the dSEP group, whereas an increase in litigation following disclosure is more consistent with the idea that SSOs help boost patent value, and therefore the probability of assertion and subsequent disputes.

To measure the link between disclosure and litigation, we estimate linear probability models that include a complete set of patent-age and calendar-year effects to control for the baseline hazard and any time-trends in the overall patent litigation environment. The basic specification is:

$$Litigation_{it} = PostDisclosure_{it}\beta_i + \gamma_a + \lambda_y + X_{it}\theta + \varepsilon_{it}$$
(6)

where $Litigation_{it}$ equals 100 in any year where a patent is first litigated, so coefficients represent a percentage-point increase in the hazard rate. The parameters γ_a measure age effects (or equivalently the baseline hazard), starting in the grant-year when a patent is first eligible for assertion. The parameters λ_y are calendar year effects, and the vector of controls X_{it} includes Claims, Patent References and Non-Patent References (which are all fixed at patent grant), as well as lagged citations and a dummy for Reassignment, which indicates a change in patent ownership. Table 10 presents our initial results.

We begin by focusing on the full sample of dSEPs, omitting all controls. The coefficient in column (1) shows that the probability of first-lawsuit for a dSEP increases by 0.28 percentage points following disclosure, controlling for age, and calendar-year time trends. In column (2) we add time-invariant controls and find little change in the estimated impact of disclosure on litigation. Column (3) adds time-varying controls for lagged cites and reassignment. Although these controls may introduce an endogeneity problem if disclosure influences citations and reassignment, the coefficient on $PostDisclosure_{it}$ does not change. The very large coefficient on reassignment is

of independent interest, because it indicates a 1.2 percentage point in the annual litigation rate following a change in ownership. This might be either a selection effect, whereby more important patents are bought and sold, or evidence that the market for dSEPs is leading to increased litigation.

Columns (4) and (5) in Table 10 re-introduce the citation-matched control sample, and use a difference-in-differences specification to examine the litigation rate of dSEPs before and after disclosure relative to the controls. In column (4) we see that dSEPs are 0.24 percentage points more likely to be litigated than the controls *before* disclosure, and that this rate increases by 0.21 percentage points following disclosure. Column (5) shows that the correlation between reassignment and litigation is stronger for dSEPs than citation-matched controls, and increases substantially following disclosure.

Overall, the results in Table 10 provide further evidence that SSO's are *both* selecting patents that have a high propensity for assertion, and influencing the likelihood of a lawsuit. In terms of the divergent expectations model described above, dSEPs have a high initial value (B) that increases following disclosure.

Our final set of empirical results examines the role of licensing commitments in potentially mitigating the effect of disclosure on litigation, and they are presented in Table 11. Columns (1) through (3) focus on the full sample of dSEPs, with no additional controls. In column (1), we find that litigation increases for both declared essential patents and their family members that are not actually disclosed. The second column presents some evidence in-line with priors regarding the role of licensing commitments. For patents disclosed under a royalty-free licensing commitment, there is no change in litigation rates. Indeed, the point estimate is negative. Patents disclosed under FRAND terms see a 0.24 percentage point increase in the litigation hazard. This is similar to the estimate for patents disclosed with specific licensing terms and conditions, although the small sample of specific patents leads to imprecise estimates. The most interesting result in column (2) is the large coefficient for patents that are disclosed with no licensing commitment. These patents experience a 1 percentage point increase in the annual probability of litigation. In terms of the simple divergent expectations model of litigation, these results suggest that while $P[r_p - r_d > \frac{B}{C}]$ declines more for FREE than FRAND commitments, a FRAND commitment is still better at aligning expectations than the absence of a licensing commitment.

Column (3) examines heterogeneity in the link between disclosure and litigation across SSO groups. We find a large statistically significant correlation for ANSI, the Big-I organizations, and IEEE. There is no evidence of a correlation between disclosure and litigation for ETSI and IETF. The latter result is interesting because it suggests at least two different intervening mechanisms. At ETSI, the absence of a relationship may be due to the specific disclosure policy encouraging many "false positives" (i.e. disclosure of marginal patents), and efforts targeted at designing around. The IETF, on the other hand, has a strong culture of favoring standards that are not IP-encumbered, as evidenced by its large share of royalty-free licensing commitments.

Columns (4) through (6) in Table 11 add the citation matched control sample, and include a dummy for patents in the dSEP sample. As above, we continue to see a 0.2 percentage point selection effect, indicating that dSEPs are more likely to be litigated than citation-matched controls prior to disclosure. Adding controls reduces the size of the disclosure effect for undisclosed family members of dSEPs. While the general pattern of results for licensing commitments is the same, the coefficient for patents with no commitment falls in magnitude and loses its statistical significance.

The general finding that disclosure is correlated with litigation naturally raises the question of whether this is evidence of actual or attempted patent holdup. If one is willing to assume that disclosure is a reasonable proxy for the timing of standardization, an increase in litigation rates is certainly consistent with the idea that declared essential patent holders are *trying* to capture some of the value created by widespread implementation of a standard. However, we cannot observe whether plaintiffs are seeking royalties that exceed the *ex ante* value of the patented technology, or whether the settlements and remedies that emerge from these cases systematically exceed the appropriate benchmark. Moreover, the large selection effects that we find in our cross-sectional models suggest that many dSEPs would have a relatively high litigation rate even if they were not incorporated into a standard, and we cannot disprove the claim that time-varying unobserved factors may be driving both disclosures and litigation. Nevertheless, if one views SSO intellectual property policies through a contractual lens, our view is that both the high overall dispute rate, and the positive correlation between disclosure and litigation, call into question the presumption that

these contracts are "optimally incomplete" as some observers have argued (e.g., Tsai and Wright, 2015).

6 Conclusion

SSOs adopt IP disclosure and licensing policies to promote widespread diffusion of standards that may incorporate intellectual property rights. This paper provides an overview of disclosure policies, describes a novel database containing information on declared essential IPRs, and illustrates some of the ways that these data can be used. The number of IP declarations in our sample of 13 major SSOs has been steadily increasing for the last two decades, perhaps reflecting the increasing importance of standards and open technology platforms to the ICT sector. We show that the 6,633 declared essential US patents in our data score much higher than a set of "average" patents with similar age and technology profiles on a variety of indicators of patent value and technical significance. We also show that the difference between declared essential patents and their matched controls varies across SSOs, licensing commitments and disclosure timing.

Using a set of control patents that is matched to the dSEPs based on their pre-disclosure citation patterns, we find evidence that disclosure and incorporation into a standard increase both citations rates and the probability that a patent is asserted in litigation in US courts. Exploring heterogeneity in these results uncovers a number of interesting patterns. The citation and litigation effects are smaller for two SSOs – ETSI and the IETF – and we argue that this reflects significant differences in their underlying policies. ETSI has a mandatory specific disclosure policy that leads to a large rate of false positives (i.e. patents that are not truly essential to the standard) in our sample of declared essential patents. This leads to smaller estimated disclosure effects. At the IETF, we see earlier disclosures, and a much higher number of royalty-free licensing commitments, and argue that this reflects a culture of encouraging *ex ante* competition among alternative technologies during the standardization process, leading to fewer cites when a disclosed patent is circumvented, and lower litigation rates when it is available for free.

Our novel data also allow us to describe how changes in citation and litigation rates vary with the terms of licensing commitments. Consistent with the prior in a large theoretical literature on the topic, litigation increases after disclosure more for patents disclosed under FRAND terms then royalty free terms, and more for patents that have no licensing commitment than for FRAND encumbered IP. Interestingly, we see a large increase in self-citation to patents declared under royalty-free terms, and future research might explore the idea that this reflects a strategic decision to offer essential IP for free when a firm owns a large stock of proprietary complements.

Our findings suggest several novel hypotheses and avenues for future research. First, we document a substantial increase in dSEPs in recent years. Future research might examine the relative contribution of various factors to this recent growth pattern. A second stylized fact that clearly emerges from our analysis is the key role played by dSEPs in these industries. Compared to an average patent with similar observable characteristics, these patents score considerably higher on a range of metrics that are correlated with value or importance. A key question for evaluating the relative role of different institutional rules in supporting standardization, and the potential for patent hold-up is whether these differences were caused by inclusion in a standard, or reflect a selection effect whereby SSOs and firms identify technologies that were already on their way to prominence (e.g. patents with a high technical merit). While Rysman and Simcoe (2008) use citations and the timing of IP disclosures to address part of this question, much more could be done. Efforts to link IP disclosures to particular standards, and to identify the dates of key technical decisions (as in Bekkers, Bongard, and Nuvolari, 2011) promise to yield better estimates of causal effects, and to show how they vary across SSOs, markets and technologies. As noted in the introduction, this paper offers a first look at a new data source that we are making public. Many of our results are descriptive, and we hope others will soon use these data to study questions related to standard setting, intellectual property strategy and the economics of the ICT sector.

References

- ANSI (2006): "ANSI Essential Requirements: Due process requirements for American National Standards," http://www.ansi.org (accessed January 2009).
- BARON, J., T. POHLMANN, AND K. BLIND (2016): "Essential Patents and Standard Dynamics," Research Policy, 45(9), 1762–1773.
- BEKKERS, R., R. BONGARD, AND A. NUVOLARI (2011): "An empirical study on the determinants of essential patent claims in compatibility standards," *Research Policy*, 40(7), 1001–1015.
- "Five BIDDLE, В. (2015):Reasons Why Patent Disclosure in Standards-Setting Organizatiaons Doesn't Work What To Do Instead)," Working Paper, (and https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2669893.
- CHABÉ-FERRET, S. (2016): "Bias of Causal Effect Estimators Using Pre-Policy Outcomes," Workign Paper.
- CONDORCET, M. (1785): Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale.
- CONTRERAS, J. (2016): "A Tale of Two Layers: Patents, Standardization, and the Internet," Denver University Law Review, 93(4).
- DRANOVE, D., AND G. JIN (2010): "Quality Disclosure and Certification: Theory and Practice," Journal of Economic Literature, 48(4), 935–963.
- FARRELL, J., J. HAYES, C. SHAPIRO, AND T. SULLIVAN (2007): "Standard Setting, Patents and Hold-Up," Antitrust Law Journal, 74, 603–670.
- FUNG, A., M. GRAHAM, AND D. WEIL (2007): Full Disclosure. Cambridge University Press.
- GUIMARAES, P., AND P. PORTUGAL (2010): "A Simple Feasible Alternative Procedure to Estimate Models with High-Dimensional Fixed Effects," *Stata Journal*, 10(4), 628–649.
- KANG, B., AND R. BEKKERS (2015): "Just-in-time patents and the development of standards," *Research Policy*, 44(10), 1948–1961.
- KUHN, J. M., B. N. ROIN, AND N. C. THOMPSON (2016): "Causal Inference on Patent Protection," Working Paper.
- LAYNE-FARRAR, A. (2014): "Assessing IPR Disclosure Within Standard Setting: An ICT Case Study," in Modern Trends Surrounding Information Technology Standards and Standardization Within Organizations, ed. by K. Jacobs. IGI Global.
- LEMLEY, M. (2002): "Intellectual Property Rights and Standard Setting Organizations," California Law Review, 90, 1889–1981.
- LERNER, J., H. TABAKOVIC, AND J. TIROLE (2016): "Patent Disclosures and Standard-Setting," NBER Working Paper No. 22768.

- LERNER, J., AND J. TIROLE (2006): "A Model of Forum Shopping," American Economic Review, 96(4), 1091–1113.
- LIM, D. (2014): "Standard Essential Patents, Trolls and teh Smartphone Wars: Triangulating the End Gmae," *Penn State Law Review*, 119.
- NATIONAL ACADEMIES (2013): Patent Challenges for Standard-Setting in the Global Economy: Lessons from Information and Communications Technology. National Academy Press.
- PRIEST, G. L., AND B. H. KLEIN (1984): "The Selection of Disputes for Litigation," Journal of Legal Studies, 13, 1–55.
- RYSMAN, M., AND T. SIMCOE (2008): "Patents and the Performance of Voluntary Standard Setting Organizations," *Management Science*, 54(11), 1920–1934.
- SIMCOE, T. (2007): "Explaining the Increase in Intellectual Property Disclosure," in Standards Edge: The Golden Mean, ed. by B. Group, pp. 260–295.
- SIMCOE, T., S. GRAHAM, AND M. FELDMAN (2009): "Competing on Standards? Entrepreneurship, Intellectual Property and Platform Technologies," *Journal of Economics and Management Strategy*, 18, 775–816.
- TSAI, J., AND J. WRIGHT (2015): "Standard Setting, Intellectual Property Rights, and the Role of Antitrust in Regulating Incomplete Contracts," *Antitrust Law Journal*, 80(1), 157–183.

Tables and Figures

<u>SSO</u>	General patent disclosure statement ('blanket')	Allowed licensing commitments	Explicitly allowed licensing commitment options	Scope of the licensing commitment
ANSI	Not specified (8)	RF; FRAND; non-assertion	Not specified	Not specified
ATIS	Allowed	RF; FRAND	- Reciprocity - RF-reciprocity (3)	A specified ATIS Forum, an ATIS Committee, an ATIS Document OR only the disclosed patents (at the choice of the declarant)
Broadband Forum	Allowed (although specific patent disclosure is 'desired')	Reciprocal RF Reciprocal FRAND		A BF Technical Report (TR) A BF Working Text (WT)
CEN	Allowed (5)	RF; FRAND	- Reciprocity - RF-reciprocity (3)	A CEN Deliverable
CENELEC	Allowed (5)	RF; FRAND	- Reciprocity - RF-reciprocity (3)	A CENELEC Deliverable
ETSI	Not allowed (though there is a general licensing statement since 2009) (4)	FRAND	- Reciprocity - For own contributions only (in case of general licensing statement.) (2)	Specific statement: Disclosed patents, with some exceptions. General licensing statement: A specified deliverable or a specified 'ETSI Project' or any 'ETSI Project'
IEC (1)	Allowed (5)	RF; FRAND	- Reciprocity - RC-reciprocity (3)	An IEC deliverable
IEEE	Allowed	RF; FRAND; non-assertion	- Licensing fees (ex-ante) - Sample of licensing contract	A specified IEEE 'Standard' or a IEEE 'Project' OR only the disclosed patents (at the choice of the declarant)
IETF	Not allowed (unless when accompanied by an RF commitment)	RF; FRAND; non-assertion	- Reciprocity - Any licensing information	The disclosed patents, or, in case of a RF blanket statement, a specific of any IETF contribution (7)
ISO (1)	Allowed (5)	RF; FRAND	- Reciprocity - RF-reciprocity (3)	An ISO Deliverable
ITU	Allowed (not allowed when unwilling to license)	RF; FRAND	- Reciprocity - RF-reciprocity (3)	An ITU Recommendation
ОМА	Not allowed	Reciprocal FRAND		An (Draft) Technical Specification
TIA	Allowed	RF; FRAND	- Reciprocity	With a general patent disclosure statement: A 'Designated Document Number' or 'Designated Committee Documents' or 'All TIA Documents'. With a specific_patent disclosure statement: only the disclosed patents (6) OR the same categories in the general statement (at the choice of the declarant)

Table 1: SSO Intellectual Property Policies

⁽¹⁾ Includes JTC-1 activities. (2) For General IPR Licensing Declarations, ETSI allows the declarant to restrict its commitment only to IPRs contained in its own technical contributions. (3) These SSOs provide the option to make an explicit RF commitment, and the option to make a less restrictive FRAND commitment. (4) ETSI's general licensing statement (known as "GL") allows participants to commit to license any essential patents at FRAND terms, but does not indicate any belief that a participant actually owns essential patents, and does not replace the obligatory disclosure of specific patents. (5) If the patentee submits a refusal to license, a specific patent statement is "strongly desired" by ISO, IEC, CEN and CENELEC. (6) There is a requirement that the list of disclosed patents must include all essential patents for that standard. (7) There is an option to limit to standards-track IETF documents. (8) In the ANSI baseline policies, disclosures are not obligatory, but ANSI-accredited SSOs may include them in their procedures.

	Competition	No Competition
Early $(t=0)$	Blanket FRA	ND
Late $(t = 1)$	<u>Specific</u> Free (weak patent, implementer) FRAND (strong patent, licensor)	<u>FRAND</u> Blanket (weak patent) Specific (strong patent)

Table 2: Disclosure Model Predictions

SSO Group	2	9	2	2	2	3	1	4	5	1	1	9	9		ge number
Lag (Years) Grant-Disc	0.4	-0.1	-1.8	1.2	3.0	2.0	2.6	1.0	-0.5	4.4	2.0	2.0	6.1	1.6	ize is the avera
Disclosure App-Disc	3.0	3.4	2.6	5.3	5.3	5.5	5.9	4.2	3.5	7.5	5.0	5.4	8.6	5.0	ber). Mean S
cent) None	4	7	4	0	0	0	0	2	9	1	0	0	3	2	ation num
erms (Pero Specific	IJ	1	0	0	0	0	0	1	0	0	0	0	0	1	ent applic
nent To Free	×	x	6	0	0	0	2	2	37	3	9	0	-	6	or pat
Commitr FRAND	83	84	87	100	100	100	98	95	57	96	94	100	96	89	r EPO patent
Unique IPR	273	217	44	5	4	3,839	402	712	694	341	586	295	94	6,761	l as a US o
Mean Size	1.3	5.1	5.6	4.2	0.4	39.2	3.9	2.6	2.7	2.3	1.9	9.2	1.4	7.8	(defined
Percent Blanket	57	66	26	0	73	10	55	46	57	64	68	0	91	52	specific IPR.
Total Declarations	346	66	23	5	11	669	362	716	821	519	927	100	282	4,910	clarations list no
OSS	ANSI	ATIS	BBF	CEN	CENELEC	ETSI	IEC	IEEE	IETF	ISO	ITU	OMA	TIA	Total	Blanket de

Table 3: Disclosure Summary Statistics

of specific IPR per non-blanket disclosure. "Free" licensing commitments include both royalty-free pledges and non-assertion covenants. Disclosure lag measure elapsed time between application/grant and formal declaration. SSO Group defines a set of related SSOs whose disclosed IPR is pooled in later regressions.

Business Model	Examples	Category	Claimants (Percent)	Declarations (Percent)	Patents (Percent)
Pure upstream R&D, patent holding	Dolby, DTS, InterDigital	U	2.7	3.0	9.8
Universities, public research institutes	Columbia Univ., Fraunhofer Inst.	U	2.6	2.8	0.5
Components (incl. semiconductors)	Qualcomm, Intel Harting	U	6.6	11.5	18.2
Individual Patent owner		U	0.7	0.3	0.1
Software and s/w- based services	Microsoft, Sun, Oracle	D	3.1	5.4	4.9
Product & equipment, suppliers, integrators	Ericsson, Nokia, Dell, HP	D	15.1	50.2	55.9
Service providers (telecom, radio, etc.)	Vodafone, BBC, Comcast	D	3.0	8.5	5.4
SSO, consortia, technology promoters	Konnex Assoc., ETSI	D	0.3	0.2	0.1
Instruments, testing and Measurement	Tektronix, Rhode & Schwarz	D	2.0	1.8	0.8
Too small or diverse to classify		0	63.8	16.3	4.4

Table 4: Business Model Categories

Business model categories: U = Upstream; D = Downstream; O = Other/unclassified.

Outcome Specification	Royalty O	Free (%) LS	Blanket (%) OLS		
	(1)	(2)	(3)	(4)	
Unclassified	-0.3 $[1.2]$	$1.2 \\ [1.1]$	-0.8 [2.1]	-4.0 [2.1]	
Upstream	-6.3 [1.0]**	-2.3 [0.9]**	7.6 $[2.0]^{**}$	6.1 [1.8]**	
BIG-I		-2.6 $[1.5]$		7.0 [2.9]*	
ETSI		-6.7 $[1.4]^{**}$		-46.1 [3.0]**	
IEEE		-4.6 $[1.5]^{**}$		-9.6 [3.2]**	
IETF		30.0 [2.2]**		1.6 [3.2]	
OTHTEL		-4.0 $[1.5]**$		10.9 $[3.4]^{**}$	
Disc. Year Effects	Yes	Yes	Yes	Yes	
Observations R-squared	4,731	4,731	4,731	4,731	
-it-squareu	0.02	0.21	0.01	0.14	

Table 5: Disclosure Models

Robust standard errors in brackets. *Significant at 5%; **significant at 1%. The omitted business model is "Downstream" and the omitted SSO is ANSI.

	Random Matches				Family Matches			
	Control	dSEP	T-stat	Norm Diff	Control	dSEP	T-stat	Norm Diff
Percent litigated	1.76	7.29	15.58	0.19	2.16	6.86	12.35	0.16
Forward citations	39.29	67.77	16.40	0.20	40.38	64.08	13.06	0.17
Reassigned Dummy	0.28	0.30	3.13	0.04	0.26	0.31	6.50	0.08
Family Size	4.47	13.09	33.98	0.41	8.76	10.72	6.35	0.08
Family Size (1 year)					7.34	7.50	0.74	0.01
Inventors (count)	2.44	2.76	10.93	0.13	2.53	2.76	7.06	0.09
Patent References	21.05	29.32	8.88	0.11	24.50	29.38	4.67	0.06
Non-patent References	4.63	9.30	11.80	0.14	6.06	9.28	7.04	0.09
Claims	22.70	23.23	1.68	0.02	22.64	23.00	1.09	0.01
Application year	1999	2000	0.57	0.01	2000	2000	0.27	0.00
Issue year	2003	2003	0.00	0.00	2003	2003	0.00	0.00
Observations	6,723	6,723			5,872	5,872		

Table 6: dSEPs vs. Matched Control Patents

Random Matches are a 1-1 match to dSEPs based on patent type (utility or reissue), grant year, 3-digit US primary technology class, and number of claims. Family Matches additionally match on the number of applications in the patent's DOCDB patent family within one year of its priority date. The normalized difference of sample means $\overline{X_1}$ and $\overline{X_2}$ is defined as $(\overline{X_1} - \overline{X_2})/(\sigma_{X_1}^2 + \sigma_{X_2}^2)^{\frac{1}{2}}$.

Outcome Specification		Forward Pois	Citations			Percent 1 Ol	Litigated LS	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
SEP Family	0.13 [0.04]**				3.42 [0.52]**			
Declared SEP	0.55 $[0.03]$ **				5.56 $[0.43]$ **			
Upstream		0.22 [0.04]**				3.29 [0.73]**		
Unclassified		0.36 [0.08]**				9.61 [2.33]**		
Declared SEP * FRAND			0.47 $[0.03]$ **				5.10 [0.38]**	
Declared SEP * Free			0.67 [0.09]**				-0.54 $[0.67]$	
Declared SEP * Terms			0.56 [0.14]**				$6.89 \\ [4.44]$	
Declared SEP * None			0.47 $[0.17]$ **				9.60 $[3.05]$ **	
Declared SEP * ANSI				0.25 [0.11]*				12.06 [2.22]**
Declared SEP * Big-I				0.22 [0.10]*				6.39 [1.38]**
Declared SEP * ETSI				0.27 [0.10]**				3.83 [1.09]**
Declared SEP * IEEE				0.41 [0.10]**				7.46 $[1.41]$ **
Declared SEP * IETF				0.61 [0.11]**				2.58 [1.28]*
Declared SEP * Other				0.93 $[0.11]^{**}$				8.61 [1.76]**
Grant Year Effects Patent Class Effects Additional Controls	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes
Observations (Pseudo) R-squared	$13,\!446 \\ 0.45$	$6,723 \\ 0.49$	$\substack{13,446\\0.44}$	$13,\!446 \\ 0.46$	$13,\!446 \\ 0.06$	$6,723 \\ 0.08$	$13,\!446 \\ 0.06$	$13,\!446 \\ 0.06$

Table 7: Cross Sectional Citation and Litigation Regressions

Robust standard errors in brackets. *Significant at 5%; **significant at 1%. Omitted business model category is "Downstream." Additional Controls are log of 1 plus the number claims, patent references and non-patent references.

Outcome		Citati	ons_{it}	
Specification		OI	LS	
Estimation Sample	Random Match	Cite Matched	Cite Matched	$\begin{array}{c} \mathrm{Drop} \\ \mathrm{ETSI} \end{array}$
	(1)	(2)	(3)	(4)
PostDisclosure	-0.13 $[0.08]$	0.34 [0.09]***	0.17 [0.06]**	0.65 $[0.10]^{**}$
Declared Essential	1.33 $[0.09]^{***}$	$0.07 \\ [0.10]$		
Patent Fixed Effects Age-Year Effects	No Yes	No Yes	Yes Yes	Yes Yes
$E[Citations_{it}]$	2.35	2.81	2.81	3.03
Observations Patents R-squared	$167,461 \\ 13,384 \\ 0.08$	$160,279 \\ 12,200 \\ 0.06$	$160,279 \\ 12,200 \\ 0.60$	$74,728 \\ 5,604 \\ 0.60$

Table 8: Citation Diff-in-Diffs

Outcome			Citations _{it}		
Specification			OLS		
Estimation Sample	Cite Matched	$\begin{array}{c} \mathrm{Drop} \\ \mathrm{ETSI} \end{array}$	Cite Matched	$\begin{array}{c} \mathrm{Drop} \\ \mathrm{ETSI} \end{array}$	Cite Matched
	(1)	(2)	(3)	(4)	(5)
PostDisclosure * Family	-0.01 $[0.09]$	$0.08 \\ [0.19]$			
PostDisclosure * dSEP	0.22 [0.07]**	0.76 $[0.11]^{**}$			
PostDisclosure * FRAND			0.17 [0.06]**	0.70 $[0.11]^{**}$	
PostDisclosure * FREE			$0.20 \\ [0.18]$	$0.20 \\ [0.19]$	
PostDisclosure * TERMS			$0.58 \\ [0.53]$	$0.68 \\ [0.51]$	
PostDisclosure * None			$0.25 \\ [0.66]$	$0.20 \\ [0.67]$	
PostDisclosure * ANSI					1.29 $[0.35]^{**}$
PostDisclosure * Big-I					0.55 $[0.13]^{**}$
PostDisclosure * ETSI					-0.25 [0.07]**
PostDisclosure * IEEE					0.40 [0.15]**
PostDisclosure * IETF					0.33 [0.20]
PostDisclosure * Other					1.99 [0.31]**
Patent Fixed Effects Age-Year Effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
$E[Citations_{it}]$	2.81	3.03	2.81	3.03	2.81
Observations	160,279	74,728	$160,\!279$	74,728	160,279
Patents B squared	12,200	5,604	12,200	5,604	12,200
	0.00	0.00	0.00	0.00	0.00

Table 9: Citation Diff-in-Diffs: Heterogeneous Effects

Outcome		Liti	gation Indic	ator					
Specification	Linear Probability (OLS)								
Estimation Sample	Declared SEP	Declared SEP	Declared SEP	Cite Matched	Cite Matched				
	(1)	(2)	(3)	(4)	(5)				
PostDisclosure	0.28 [0.10]**	0.24 [0.10]*	0.23 [0.10]*	0.21 [0.06]**					
Reassigned			1.22 [0.12]**		0.36 $[0.07]^{**}$				
Declared * Reassigned					0.80 [0.14]**				
$\ln(\text{Patent Refs})$		$0.07 \\ [0.04]$	$0.05 \\ [0.04]$						
$\ln(\text{Non-patent Refs})$		0.14 $[0.04]$ **	0.14 [0.04]**						
$\ln(\text{Claims})$		0.33 [0.04]**	0.24 [0.04]**						
$\ln(\operatorname{Cites}_{t-1})$			0.16 [0.03]**						
Declared Essential				0.24 [0.04]**	0.25 [0.03]**				
Age Effects Year Effects	Y Y	Y Y	Y Y	Y Y	Y Y				
Observations Patents Lawsuits	$70,625 \\ 6,691 \\ 473$	$70,625 \\ 6,691 \\ 473$	$70,625 \\ 6,691 \\ 473$	$156,640 \\ 12,196 \\ 513$	$156,640 \\ 12,196 \\ 513$				

Table 10: Litigation Hazard Models

Robust standard errors (clustered on patent) in brackets. *Significant at 5%; **significant at 1%. Patents are dropped from the panel after first litigation event. Outcome equals 100 in litigation year, so coefficients are the average percentage point increase in patent-year probability of a lawsuit.

Outcome			Litigation	n Indicator		
Estimation Sample	Declared SEP (1)	Declared SEP (2)	Declared SEP (3)	Cite Matched (4)	Cite Matched (5)	Cite Matched (6)
PostDisclosure * dSEP	0.24 [0.10]*			0.27 $[0.06]^{**}$		
PostDisclosure * Family	0.26 [0.11]*			0.03 [0.07]		
PostDisclosure * FRAND		$0.24 \\ [0.10]*$			0.21 [0.06]**	
PostDisclosure * FREE		-0.28 $[0.15]$			-0.20 [0.13]	
PostDisclosure * Terms		$0.37 \\ [0.39]$			$0.44 \\ [0.37]$	
PostDisclosure * None		1.00 [0.44]*			$0.57 \\ [0.40]$	
PostDisclosure * ANSI			0.64 $[0.23]^{**}$			0.82 [0.23]**
PostDisclosure * Big-I			0.33 [0.14]*			0.44 $[0.12]^{**}$
PostDisclosure * ETSI			$0.08 \\ [0.10]$			$0.06 \\ [0.06]$
PostDisclosure * IEEE			$0.34 \\ [0.14]^*$			0.27 [0.12]*
PostDisclosure * IETF			$0.06 \\ [0.15]$			-0.02 [0.12]
PostDisclosure * Other			0.42 [0.19]*			$0.30 \\ [0.17]$
Declared Essential				0.19 $[0.04]^{**}$	0.19 [0.04]**	0.19 [0.04]**
$\log(\text{Patent Refs})$	0.07 [0.04]	$0.06 \\ [0.04]$	0.06 [0.04]	0.03 [0.02]	0.03 [0.02]	0.03 [0.02]
$\log(\text{Non-patent Refs})$	0.14 $[0.04]^{**}$	0.14 [0.04]**	0.14 $[0.04]^{**}$	0.05 $[0.02]^{**}$	0.06 [0.02]**	0.06 [0.02]**
$\log(\text{Claims})$	0.33 $[0.04]^{**}$	0.33 $[0.04]^{**}$	0.32 $[0.04]^{**}$	0.15 [0.02]**	0.16 [0.02]**	0.15 $[0.02]^{**}$
Age Effects Year Effects	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y
Observations Patents Lawsuits	70,625 6,691 473	70,625 6,691 473	$70,625 \\ 6,691 \\ 473$	$156,598 \\ 12,194 \\ 513$	$156,598 \\ 12,194 \\ 513$	156,598 12,194 513

Table 11: Litigation Hazards: Heterogeneous Effects

Robust standard errors (clustered on patent) in brackets. *Significant at 5%; **significant at 1%. Patents are dropped from the panel after first litigation event. Outcome equals 100 in litigation year, so coefficients are the average percentage point increase in patent-year probability of a lawsuit.

Figure 1: Two Disclosure Timing Scenarios

Figure 2: SSO IPR Disclosures: 1985 to 2010

Figure 3: Disclosure Timing

Figure 4: Citation Age Distribution (by SSO)

Figure 5: Disclosure Event Studies

Figure 6: Cumulative Litigation Hazard for SSO and Cite-Matched Controls

Appendix A: The Declared Essential Patent (dSEP) Database

The data used in this paper were collected from the publicly available archives of thirteen major SSOs as of March 2011. The data were then cleaned, harmonized, and all disclosed USPTO or EPO patents or patent applications matched against patent identities in the PATSTAT database. The resulting data set is available for download, and anyone is free to use the data, provided that any resulting publication includes a citation to this paper.³⁹ The remainder of this appendix provides summary information and variable definitions for the dSEP database.

Overview

The dSEP database consists of a "Disclosures" table and a "Patents" table. The Disclosures table contains 45,349 records, where each record refers to a single patent, patent application or blanket disclosure statement made to a specific SSO on a specific date for a specific standard. The number of records in the dSEP Disclosure table is greater than the number of statements submitted to a single SSO by a single firm on a given date – what we call "declarations" in the paper – because each declaration may include multiple patents and/or blankets, referring to one or more standards.⁴⁰ The "Patent" table contains 6,900 records, where each record links a declared essential USPTO or EPO patent in our data set to the unique patent application identifier in the April 2014 release of the EPO's PATSTAT database.

³⁹Although we took the greatest care in compiling the data, the authors cannot be held legally responsible for any error or inaccuracy.

 $^{^{40}}$ While some SSO archives are organized around disclosure events and other are not, our disclosure events are constructed from the data in a uniform way.

Variable	Description
RECORD_IDENTIFIER	Unique ID for a firm-SSO-date-IPR, where an "IPR" may be a patent, patent application or blanket statement.
DISCLOSURE_EVENT	Unique ID for a firm-SSO-date. Disclosure events can refer more than one standard.
SSO	Name of Standard setting organization.
PATENT_OWNER (HAR- MONIZED)	Cleaned and harmonised name of disclosing organization (may differ from owner for third- party disclosures). Accounts for different spellings, but not changes in ownership.
PATENT_OWNER (UN- HARMONIZED)	Name of the disclosing organization as it appears in the original disclosure.
DATEYR/MONTH/DAY	Year/Month/Day of that formal disclosure was submitted to SSO.
STANDARD	Name of the standard (if provided in the original disclosure).
COMMITTEE_PROJECT	Name of the committee for disclosed IPR (if provided).
TC/SC/WG_name	Name of Technical Committee, Standardization Committee or Working Group (if provided).
BLANKET_TYPE	Indicates scope of blanket disclosures: (0) No blanket, (1) Blanket for all SDO activities, (2) Blanket for a project, committee, subcommittee or technical committee, (3) Blanket for a specific standard or technical specification.
BLANKET_SCOPE	Name of the project, subproject, standard or technical specification that a blanket refers to (requires that BLANKET_TYPE have the value 2 or 3).
LICENSING_ COMMIT-	Licensing commitment with respect to the disclosed patents
MENT RECIPROCITY	Indicates that licensing commitment is offered conditional on licensee reciprocity (this condi- tion may be automatically implied for some SSOs).
THIRD_PARTY	Indicates that disclosure was made by a third party.
COPYRIGHT	Indicates that disclosed IPR is a copyright instead of a patent.
PATENT_OFFICE	Patent office of the disclosed patent: US(PTO), EP(O), OR "OTHER"
FOR_OTHER_COUNTRIES	Name of Country when PATENT_OFFICE equals "OTHER"
SERIAL_CLEANED	Standardized serial number of US or EP patent application that was provided in the original disclosure (if any). To translate some serial numbers, we relied on http://www.uspto.gov/web/offices/ac/ido/oeip/taf/filingyr.htm
PUB_CLEANED	Standardized publication of US or EP patent that was provided in the original disclosure (if any).
TYPE	Type of patent information matched to PATSTAT: USPTO serial number, EPO serial number, USPTO publication number or EPO publication number.
MANUAL_REMOVAL	Indicates that publication or serial number was cleaned and formatted, but found to refer to a wrong patent in PATSTAT and thus removed.
PATSTAT_2014APRIL _APPLN_ID	Link to PATSTAT unique patent application ID (appln_id).

Table A-1: Variable Definitions for the dSEP Disclosures Table

Table A-2: Variable Definitions for the dSEP Patents Table

Variable	Description
appln_id	Inique patent application ID (links to PATSTAT).
appln_auth	Patent office (US or EP).
appln_nr	Application number at the patent office.
appln_title	Title of the patent application
appln_filing_date	Application filing date.
appln_nr_epodoc	Harmonized number from PATSTAT that allows the application to be linked to other databases, such as the free EPO Espacenet web interface.
inpadoc_family_id	Unique ID for the INPADOC family of the disclosed patent application. INPADOC families group national and international patents sharing at least one priority document.
docdb_family_id	Unique ID for the DOCDB family of the disclosed patent application. DOCDB families group national and international patents having precisely the same set of priority documents.
associated publications	All publications associated with this patent application as present in PATSTAT. In general, the codes 'A', B1', 'B2' refer to granted patents, whereas 'A1', 'A2' refer to published patent applications. See the national patent office documentation for more details.

Appendix B: Mathematical Appendix

To derive equation (1), we can write the expected royalties under specific and blanket disclosure as follows:

$$E[r|\text{Specific}] = (1 - \sigma)[(1 - \rho)\frac{v_1}{2} + \rho(\delta E[r(v_1, 0)] + (1 - \delta)E[r(v_1, 1)])]$$
$$E[r|\text{Blanket}] = (1 - \sigma)(1 - \gamma)[(1 - \rho)\frac{v_1}{2} + \rho(\delta\theta E[r(v_1, 0)] + (1 - \delta\theta)E[r(v_1, 1)])]$$

Taking the difference and simplifying, we have that E[r|Specific] > E[r|Blanket] if and only if

$$\gamma\left\{(1-\rho)\frac{v_1}{2} + \rho E[r(v_1,1)]\right\} \ge \rho\delta(1-\theta(1-\gamma))E[r(v_1,1) - r(v_1,0)]$$

From the expression for royalties under Nash bargaining, we have $E[r(v_1, 1)] = \frac{v_1}{2}F(v_1 + c) + \int_{v_1+c}^{\infty} (x-c)dF(x)$ and $E[r(v_1, 1) - r(v_1, 0)] = \int_{c}^{\infty} (x-c)dF(x)$. Plugging these expressions into (1) yields:

$$\gamma \left((1-\rho)\frac{v_1}{2} + \rho \left[v_1 F(v_1+c) + \int_{v_1+c}^{\infty} (x-c) dF(x) \right] \right) > \rho \delta(1-\theta(1-\gamma)) \int_{c}^{\infty} (x-c) dF(x)$$
(A-1)

Differentiating with respect to v_1 reveals that the left side of this inequality is increasing in v_1 while the left side is constant, so increasing value leads to a larger probability of specific disclosure. The other results for γ , δ , θ follow from inspection.

Appendix C: Supplemental Tables and Figures

Company	Disclosures	Cum. Pct.
Nokia	283	5.76
Nortel Networks	235	10.55
Qualcomm	233	15.30
Cisco Systems	228	19.94
Ericsson	148	22.95
Motorola	122	25.44
Siemens	115	27.78
AT&T	101	29.84
Huawei Technologies	89	31.65
IBM	81	33.30
Alcatel	66	34.64
France Telecom	65	35.97
Microsoft	65	37.29
Philips	63	38.57
Alcatel Lucent	53	39.65
Total*	4,910	100.00

Table B-1: Disclosures by Firm

Disclosure is defined as a unique Company-Date-SSO combination. *The dSEP data contains disclosures from 926 unique companies.

Figure B-1: Cumulative Litigation Hazard by SSO

ANSI			ISO/IEC/ITU		
1.	IBM	23	Nokia	70	
2.	Nortel Networks	22	Siemens	52	
3.	AT&T	19	Qualcomm	42	
4.	Qualcomm	18	France Telecom	34	
5.	Hewlett Packard	9	Nortel Networks	32	
6.	Cisco Systems	9	Fujitsu	31	
7.	Alcatel Lucent	9	Ericsson	29	
8.	McDATA Corp	7	NTT	29	
9.	Motorola	7	Philips	27	
10.	Ericsson	6	Motorola	27	
	Unique firms: 186	385	Unique firms: 487	1,808	
	ETSI		IEEE		
1.	Nokia	70	Cisco Systems	38	
2.	Qualcomm	54	Nortel Networks	35	
3.	Siemens	43	Nokia	34	
4.	Motorola	38^{-3}	Motorola	18	
5.	Nokia Siemens Networks	30	Broadcom	17	
6.	Ericsson	25	IBM	15	
7.	Alcatel	24	Philips	15	
8.	Huawei Technologies	19	Qualcomm	14	
9.	Samsung Electronics	19	AT&T	13	
10.	Nortel Networks	18	Huawei Technologies	13	
	Unique firms: 145	699	Unique firms: 248	716	
	IETF		ATIS/TIA/OMA	1	
1.	Cisco Systems	147	Nortel Networks	87	
2.	Nokia	71	Qualcomm	81	
3.	Ericsson	53	Nokia	34	
4.	Nortel Networks	41	Ericsson	25	
5.	Huawei Technologies	33	Motorola	19	
6.	Microsoft	31	AT&T	16	
7.	Qualcomm	24	Siemens	8	
8.	AT&T	21	NEC	8	
9.	Certicom	19	Cisco Systems	7	
10.	Alcatel Lucent	18	Philips	7	
	Unique firms: 139	821	Unique firms: 119	481	

Table B-2: Top 10 Firms by SSO Group

Data from 1985 to 2011.

Outcome Specification	1[Royalty Free] Logit		1[Bla Lo	nket] git
	(1)	(2)	(3)	(4)
Unclassified	-0.002 [0.011]	$0.015 \\ [0.010]$	-0.008 $[0.021]$	-0.042 [0.022]
Upstream	-0.051 [0.008]**	-0.021 [0.008]**	0.076 [0.020]**	0.072 [0.022]**
BIG-I		-0.021 [0.013]		0.071 [0.029]*
ETSI				-0.459 [0.029]**
IEEE		-0.038 [0.013]**		-0.097 $[0.033]^{**}$
IETF		0.285 [0.024]**		0.017 [0.033]
OTHTEL		-0.036 [0.014]*		0.110 $[0.035]^{**}$
Disc. Year Effects	Yes	Yes	Yes	Yes
Observations Pseudo R-squared	$4,731 \\ 0.05$	$4,033 \\ 0.25$	$\begin{array}{c} 4,731\\ 0.01\end{array}$	4,731 0.11

Table B-3: Disclosure Logit Marginal Effects

Robust standard errors in brackets. *Significant at 5%; **significant at 1%. The omitted business model category is "Downstream" and the omitted SSO is ANSI.

Outcome Specification	Forward Citations Poisson		Per	cent Litiga OLS	ated	
	(1)	(2)	(3)	(4)	(5)	(6)
SEP Family	$0.06 \\ [0.05]$			3.27 [0.55]**		
Declared SEP	0.47 $[0.03]^{**}$			4.80 [0.44]**		
Declared SEP * FRAND		0.39 $[0.03]^{**}$			4.47 [0.40]**	
Declared SEP * Free		0.52 [0.09]**			-0.82 [0.60]	
Declared SEP * Terms		0.48 [0.14]**			$6.59 \\ [4.73]$	
Declared SEP * None		$0.40 \\ [0.17]^*$			10.35 $[3.22]^{**}$	
Declared SEP * ANSI			$0.22 \\ [0.12]$			12.82 $[2.24]^{**}$
Declared SEP * Big-I			$\begin{array}{c} 0.19 \\ [0.11] \end{array}$			6.55 $[1.34]^{**}$
Declared SEP * ETSI			$0.19 \\ [0.10]$			3.36 [1.00]**
Declared SEP * IEEE			0.38 [0.11]**			7.80 $[1.38]^{**}$
Declared SEP * IETF			0.56 $[0.11]$ **			3.17 [1.22]**
Declared SEP * Other			0.95 $[0.12]^{**}$			8.87 [1.78]**
Grant Year Effects Patent Class Effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Observations (Pseudo) R-squared	$\begin{array}{c} 11,744\\ 0.44\end{array}$	$\begin{array}{c} 11,744\\ 0.43\end{array}$	$\begin{array}{c} 11,744\\ 0.45\end{array}$	$\begin{array}{c} 11,744\\ 0.05 \end{array}$	$\begin{array}{c} 11,744\\ 0.05 \end{array}$	$\begin{array}{c} 11,744\\ 0.06\end{array}$

Table B-4: Cross Sectional Citation and Litigation for Family Matched Sample

Robust standard errors in brackets. *Significant at 5%; **significant at 1%.

Outcome	$\operatorname{SelfCitations}_{it}$				
Specification	Cite	Drop	OLS Cite	Drop	Cite
Sample	Matched	ETSI	Matched	ETSI	Matched
	(1)	(2)	(3)	(4)	(5)
PostDisclosure * Family	$0.03 \\ [0.02]$	$0.06 \\ [0.05]$			
PostDisclosure * dSEP	0.09 $[0.02]^{**}$	0.08 $[0.02]^{**}$			
PostDisclosure * FRAND			0.07 [0.02]**	0.07 [0.02]**	
PostDisclosure * FREE			0.27 [0.07]**	0.26 [0.07]**	
PostDisclosure * TERMS			$0.01 \\ [0.13]$	$0.05 \\ [0.13]$	
PostDisclosure * None			$0.06 \\ [0.03]^*$	$0.06 \\ [0.03]$	
PostDisclosure * ANSI					$0.14 \\ [0.06]*$
PostDisclosure * Big-I					$0.04 \\ [0.02]$
PostDisclosure * ETSI					0.07 [0.03]*
PostDisclosure * IEEE					0.09 [0.04]*
PostDisclosure * IETF					0.17 [0.05]**
PostDisclosure * Other					$0.06 \\ [0.04]$
Patent Fixed Effects	Yes	Yes Voc	Yes	Yes	Yes
nge-itai Enceis	169	169	105	169	169
$E[SelfCitations_{it}]$	0.27	0.24	0.27	0.34	0.27
Observations Patents	160,279 12 200	74,728 5.604	160,279 12 200	74,728 5.604	160,279 12 200
R-squared	0.45	0.44	0.45	0.44	0.45

Table B-5: Diff-in-Diffs for Self Citations

Outcome	$Citations_{it}$				
Specification	Poisson				
Estimation Sample	Random Match	Cite Matched	Cite Matched	Drop ETSI	
	(1)	(2)	(3)	(4)	
PostDisclosure	-0.02 [0.04]	0.12 [0.03]**	0.08 [0.02]**	0.19 [0.03]**	
Declared Essential	0.56 [0.04]**	$0.02 \\ [0.03]$			
Patent Fixed Effects Age-Year Effects	No Yes	No Yes	Yes Yes	Yes Yes	
Observations Patents	$167,461 \\ 13,384$	$160,279 \\ 12,200$	$154,716 \\ 11,647$	$74,728 \\ 5,402$	

Table B-6: Citation Diff-in-Diffs

Outcome			Citations _{it}		
Specification	<u></u>	D	Poisson	Ð	<u></u>
Estimation	Cite Matched	Drop ETSI	Cite Matched	Drop ETSI	Cite Matched
, ampio	(1)	(2)	(3)	(4)	(5)
	(-)	(-)	(*)	(-)	(*)
PostDisclosure * Family	-0.07 [0.04]	-0.01 [0.06]			
PostDisclosure * dSEP	$0.01 \\ [0.02]$	0.17 [0.03]**			
PostDisclosure * FRAND			$0.00 \\ [0.02]$	0.17 $[0.03]^{**}$	
PostDisclosure * FREE			-0.12 [0.06]*	-0.13 $[0.06]*$	
PostDisclosure * TERMS			0.39 $[0.14]^{**}$	0.39 $[0.13]^{**}$	
PostDisclosure * None			$0.10 \\ [0.19]$	$0.06 \\ [0.20]$	
PostDisclosure * ANSI					0.42 $[0.10]^{**}$
PostDisclosure * Big-I					0.22 [0.05]**
PostDisclosure * ETSI					-0.15 [0.03]**
PostDisclosure * IEEE					0.06 [0.05]
PostDisclosure * IETF					-0.02 [0.06]
PostDisclosure * Other					0.32 [0.05]**
Patent Fixed Effects	Yes	Yes	Yes	Yes	Yes
Year Effects	Yes	Yes	Yes	Yes	Yes
Age Polynomial	Yes	Yes	Yes	Yes	Yes
Observations Patents	$150,531 \\ 11,047$	$70,316 \\ 5,081$	$150,531 \\ 11,047$	$70,316 \\ 5,081$	$150,531 \\ 11,047$

Table B-7: Diff-in-Diffs Poisson

Outcome	Litigation Indicator					
Estimation Sample	Declared SEPs					
Specification	Cox	Cox	Logit	Logit		
	(1)	(2)	(3)	(4)		
PostDisclosure	$0.25 \\ [0.13]^+$	$0.24 \\ [0.14]^+$	0.35 [0.13]**	0.32 [0.14]*		
$\ln(\text{Patent Refs})$		$0.03 \\ [0.06]$		$0.06 \\ [0.06]$		
$\ln(\text{Non-patent Refs})$		0.15 [0.04]**		0.17 $[0.04]^{**}$		
$\ln(\text{Claims})$		0.37 [0.07]**		0.39 [0.07]**		
$\ln(\operatorname{Cites}_{t-1})$		0.27 [0.05]**		0.26 $[0.05]^{**}$		
Reassigned		1.27 $[0.10]^{**}$		1.31 [0.10]**		
Age Effects Year Effects	na Y	na Y	Y Y	Y Y		
Marginal Effect (%)			0.23	0.21		
Observations	$63,\!934$	$63,\!934$	$70,\!625$	$70,\!625$		
Patents	6,659	6,659	6,691	6,691		
Lawsuits	441	441	473	473		

Table B-8: Litigation Hazard Robustness