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Diff-in-Diffs Setup

RQ: What is the effect of T ∈ {0, 1} on Y ?

Suppose we have Before (YB) and After (YA) data

Three intuitive estimators
1 Treatment vs. Control: E [YA|T = 1]− E [YA|T = 0]

2 Before vs. After: E [YA|T = 1]− E [YB |T = 1]

3 Diff-in-Diffs: E [YA − YB |T = 1]− E [YA − YB |T = 0]

DD + parallel trends assumption ⇒ causal estimate

E [Y 1
A − YB |T = 0︸ ︷︷ ︸

Observed

] = E [Y 0
A − YB |T = 1︸ ︷︷ ︸

Counterfactual

]
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John Snow (1854)



Card & Kruger (1994)



Popular Variations on Diff-in-Diffs

DD as Linear Regression

E [Yit ] = α0 + α1Treatedi + λPostt + βTreatedi ∗ Postt

Two-way Fixed-effects (TWFE) Specification

E [Yit ] = αi + λt + βPostTreatedit

Event Study Specification

E [Yit ] = αi + λt +
∑

k βk1[t − TreatmentYeari = k]

Plot dynamic treatment effects βk (normalizing β−1 = 0)

“Pre trends” falsification test: H0 : βk = 0 for k ≤ −1
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So What is the Problem?

Recent econometrics literature has emphasized two issues with DD:

1 Violations of parallel trends assumption

2 Identification under staggered adoption

Takeaway: If you are willing to assume parallel trends, and do not
have staggered adoption, previous DD estimators work fine!



1 Violations of Parallel Trends

2 Problems With Staggered DD

3 New Estimators for Staggered DD

4 Working Example



The Power of Parallel Trends



The Power of Parallel Trends



What to do about ∦ trends?

Keep in mind, parallel trends is a maintained assumption

Enlarge the standard errors?

“An Honest Approach to ‖ Trends” (Rambachan & Roth, WP)

User specified close-to-parallel trends ⇒ set identification

Relax our rhetoric

Failing to reject pre-trends 6= “Proving” parallel trends!!!

Authors: Don’t over-sell your noisy falsification tests

Referees: Don’t be Manichean about pre-trend testing
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Implications of Staggered Adoption

Staggered Adoption ⇒ units i have different treatment dates

Consider the DD and TWFE regressions:
1 E [Yit ] = α0 + α1Treatedi + λPostt + βTreatedi ∗ Postt
2 E [Yit ] = αi + λt + βPostTreatedit

Can’t estimate (1), because Postt is undefined for controls...

but can estimate (2), even without a control group!!

Key Point: Differences in treatment timing produce new comparisons,
and therefore new sources of identification.
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Goodman-Bacon (2019)

TWFE β is a weighted average of 2 x 2 DD’s

Three Group Example: Early, Late & Never Treated



Components of the GB Decomposition



GB Decomposition Theorem

Weights, sk , reflect sample size and treatment-variance for each
“timing group” k



Goodman-Bacon Takeaways

1 GB is not a method or solution to biased TWFE estimates

The Stata/R “bacondecomp” module is a diagnostic tool

2 GB highlights key problem with Staggered DD

TWFE uses early-treated as control group for late-treated!

...which is also why we can estimate β without controls

3 Points towards excluding “forbidden comparisons”

Callaway and Sant’Anna (aggregation)

Borusyak, Jaravel and Spiess (imputation)

Matching with pseudo-treatment
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Good News! Staggered DD Estimates are

(Probably) Conservative

DD late =

(α− 0)− (β + α− α) = α− β < α
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Callaway and Sant’Anna (JOE 2021)

Let Gi be treatment cohort of unit i (Gi =∞ for Controls)

C&S define group-time average treatment effects

DD(G ,T ) = E [YT − YT0|T0 < Gi < T ]− E [YT − YT0|T < Gi ]

Construct β̂DD as weighted average of DD(G ,T )’s

Basic idea: aggregation of “clean” 2 x 2’s

Researcher chooses weights ⇒ many possibilities

Loop over (G ,T0,T )⇒ slow on large panels

Paper discusses issues with inference (SEs)

Wooldridge (2021) shows how to recover DD(G ,T )’s from OLS
with many interacted fixed effects
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Borusyak, Jaravel and Spiess (2021, WP)

1 Estimate TWFE model using untreated observations

Y 0
it = αi + λt + Xitθ

2 Calculate (imputed) treatment effect for treated observations

DDit = Yit − Ŷ 0
it

3 Construct β̂DD as weighted average of DDit ’s

Weighting choices ⇒ researcher DOF

Faster than C&S, but need to store αi
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Stacked Difference-in-Differences

Deshpande & Li (2019), Cengiz et al (2019)

1 Choose a time-window (tpre , tpost)

2 For each treatment cohort G create a new dataset containing

Periods G − tpre to G + tpost for treated cohort

All units not treated over same time period

3 Stack datasets (indexed by c) into one large panel

4 Estimate E [Ycgpit ] = αcg + λcp + βPostTreatedit

where αcg , λcp are dataset-by-group and -period effects



DD as Matching

1 For each treated i , pick a similar control ⇒ 1:1 match

Coarsened matching (CEM) or propensity score

2 Estimate DD or TWFE model. Done.

Exact matching yields NTreated “clean” DD’s

Should you match on Y0 and/or pre-trends?

It depends. Chabe-Ferret (JOE 2015) ⇒ FE and matching are
not complementary
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I have a DD Paper. What Should I do?

Simultaneous Adoption ⇒ “old” DD or TWFE

Can add matching / weighting to address selection

Sequential Adoption

Large Ni / many controls ⇒ exact matching

Large Ni / mostly treated ⇒ BJS

Small Ni / mostly treated ⇒ C&S or Stacked DD

Leading use case for new estimators: Impact of policy adopted by
most states at different times (e.g. smoking bans)
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Rysman & Simcoe (MS 2008)

What is the impact of technology standardization on “patent value”?

Sample of patents “declared essential” (Ti = 1) to SSOs

Controls (Ti = 0) matched on vintage and tech-class

Panel Data: i = Patent, t = Year

Outcome Yit = Citation count

Disclosure years ⇒ staggered treatment

Data & Code: http://people.bu.edu/tsimcoe/data

http://people.bu.edu/tsimcoe/data


Baseline 2 x 2 DD

. reg cites PostTreat TreatGroup PostPeriod, cluster(pat)



Baseline DD with Year Effects

. reg cites PostTreat TreatGroup i.year, cluster(pat)



Two-Way Fixed Effects

. xtreg cites PostTreat i.year, fe i(pat) robust



Matching + DD

. xtreg cites PostTreat PostPeriod i.year, fe i(pat) robust



Borusyak, Jaravel & Spiess (Imputation)

. net install did imputation . replace TreatYr = . if
(TreatGroup==0)
. did imputation cites pat id year TreatYr, autosample



Callaway & Sant’Anna (GT Effects)

. net install csdid

. replace TreatYr = 0 if (TreatGroup==0)

. csdid cites, ivar(pat id) time(year) gvar(TreatYr)

. estat simple
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