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Continuous model for vocal fold oscillations to study the effect of feedback
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In this work we study the effects of delayed feedback on vocal fold dynamics. To perform this study, we
work with a vocal fold model that is made as simple as possible while retaining the spectral content charac-
teristic of human vocal production. Our results indicate that, even with the simplest explanation for vocal fold
oscillation, delayed feedback due to reflected sound in the vocal tract can lead to extremely rich dynamics.
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[. INTRODUCTION In all these models, the separation of source and filter is
assumed. In this framework, the vocal system is formed by
The opposed membranes at the base of the human vocah active nonlinear source of sour{dscillatory glottis
tract are the source of voiced sounds. Airflow induced instawhich excites a passive linear filtérocal tracj. The propa-
bility of this structure, known as the vocal folds, modulatesgation of sound in the filter cannot influence the vocal fold
the airflow, giving rise to a sequence of pressure pulsedynamics except passively. In terms of the usual electric cir-
which propagate in the vocal tract and are radiated as sounduit analogy, the source-filter separation is based on the hy-
The modeling of vocal fold oscillations has a long and richpothesis that the glottis output impedance is much larger than
history. The assumptions of modern models of the vocathe vocal tract input impedance. The hypothesis holds under
folds can be traced to the seminal work of Ishizaka anchormal speech conditions: the mean glottal area is much
Flanagan1]. Interested in the problem of achieving a real- smaller than the input cross section of the vocal tract, and the
istic synthesis of voiced sounds, they built a very successfuundamental frequency of the glottis is below the first for-
model of two coupled masses, which is used almost 30 yeammant (resonance of the tract[9]. Within the source-filter
after its publication 2]. Although the authors of this model theory, it is possible to address the existence of subharmonic
also mention the importance of understanding the criticabehavior in vocal production, as in newborn crj@d9] and
parameters of the mechanism in order to address the diagneeme forms of throat singin@3]. In general, the interpreta-
sis of voice disorders, it has been pointed out that the keyion of subharmonic effects has been carried out in terms of
parameters in the model have been difficult to relate to anawo-mass models for the vocal fold2,11].
tomical feature$3]. Keeping the simplicity of the two-mass In this work, the source-filter separation does not apply.
model, Story and Titze introduced a three-mass model thatve study the effects of delayed feedback on vocal fold dy-
allows a better connection between physiological and modetamics. Feedback arises when the glottal system is coupled
parameter$4]. This model builds upon the work of Hirano to the vocal tract, and pressure reverberations are allowed to
[5], who stressed the importance of understanding vocal folgjo back to the folds and perturb their dynamics after a time
tissue properties in order to properly explain the onset oflelay given by sound speed. The source-filter separation
vocal fold oscillations. does not hold here, as the glottal oscillations are perturbed by
In brief summary, the simplest modé¢,3] are one-mass the pressure they created in the vocal tract. The dynamical
models in which the vocal folds are modeled by a one-masequations for the glottis and the equations for the pressure in
spring driven by airflow with inertial coupling to the vocal the vocal tract must then be solved simultaneously.
tract, i.e., the air column acts like a mass of air that is accel- We adopt Titze's flapping mod¢B]. The flapping model
erated and decelerated as a unit. The more complex modaispresents a reasonable compromise between a realistic de-
[7,8] include several masses. Intermediate between these egeription and complexity, keeping the essentials of vocal fold
tremes lies a different approach presented by Titz¢3in  physics within only one second-order dynamical equation.
This approach consists in letting the vocal folds support arfhe motivation of our choice is dynamical in nature. The
experimentally observed “flapping” motion. With this two- and three-mass models have a phase space dimension-
model, only one second-order equation is needed to derivality (four and six, respective)ythat allows us to find com-
realistic onset conditions for the oscillations in terms of pa-plex solutions such as period doubling, even disregarding the
rameters that could easily be checked through experimentaiffect of feedback. Since we are interested in exploring the
measurements. The model also shows how passive effects aomplexity that the feedback might induce in the dynamics
the vocal tract might affect the dynamics of the folds. Itof the folds, it is important, as a first step, to work with a
should be pointed out that, although nonlinear terms wersystem which, for low coupling, displays a very simgeo-
discussed, large-amplitude oscillations were beyond the indimensional dynamics. Differential equations with deléys
terest of the work. In particular, the nonlinear effects due towill arise in the study of the effect of feedback on the dy-
vocal fold collision were explicitly omitted. Titze’s model namics of the foldsare a complex field within the theory of
for flapping motion will be discussed in some detail in thenonlinear system§12]. Therefore, we choose to make our
next section. first explorations in the field separating the sources of com-
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plexity (high dimensionality of the dynamics of the folds,
and eventual effects associated with the feedpack

The work is organized as follows. In Sec. ll, the flapping
model presented by Titze i8] will be reviewed. In Sec. I,
we discuss the dynamical properties of relaxation oscilla- :
tions, in order to propose reasonable nonlinear dissipation NIFGOSAL TISVE %—XOZA—‘
terms that extend the flapping model to study limit cycles a,,B
beyond the threshold of oscillation. In Sec. IV, the solutions :

X . : VOCAL

of this extended model in phase space with feedback are FOLD
discussed. Sec. V contains our conclusions. BODY
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Il. MODEL FOR VOCAL FOLD OSCILLATIONS T

In order to study the physical mechanisms behind small-
amplitude oscillations in the vocal folds, Titze proposed a
simple mode([3]. The idea is that sustained oscillations arise ~— Xq
whenever the energy transfer from the airflow to the folds :
overcomes the dissipative losses. This transfer can be
achieved if the driving force exerted by the glottal pressure is
larger when the folds are opening than when the folds are LS
approaching each other. Titze observed that this requirement :
is met when the vocal folds assume an oscillation character-
ized by a “flapping” motion. That is to say, if the vocal FIG. 1. Frontal section of the flapping model for the vocal folds
cords have a convergent profile while opening and a diver{taken from[3]). Dashed line: trapezoidal prephonatory glottis.
gent profile while closing, the pressure on the membrane§olid line: surface wave of mucosal tissue traveling upward.
will gain in energy. stands for vocal fold thickness.

The flapping motion is obtained in a simple way: the vo- ) _ ) o ) )
cal folds are assumed to support a longitudinal traveling The last ingredient in the building of this model is the
wave on their surface, in addition to the lateral oscillation ofconstruction of a relationship between the geometric profiles
their centers of mass. The assumption of a flapping motion ignd the pressure. Assuming that the relationship between
based on experimental evideni®5,22. Videostroboscopy Pressure and profiles of static configurations is a good ap-
showed a longitudinal traveling wave propagating on the voRroximation for oscillatory regimetsee[3]), it can be writ-
cal fold surface, possibly due to a displacement of mucosden that
tissue traveling upward in the glottis.

As displayed in Fig. 1, a trapezoidal prephonatory glottis Pyg=Pi+ (Ps—Pi)(1—az/a;—ke)/k; 4
is assumed. For small-amplitude oscillations, the model
reads AXxg+27X’
=P+ (Ps—P)| ———— |, ®
X1t X+ 7X

Mx"+Kx+Bx' =Py, (1)

where P4 stands for the subglottédlung) pressureP; stands

wherex stands for the departure of the midpoint of the folds .
P P for the input pressure at the vocal trasitg=Xg;— Xg2, and

from the prephonatory profile al denotes the spatial av- . 01
erage of t?]e%lottal dr?(/ir?]g pres;??e, which has a?\onuniforn&mo'l’ k‘él'l are phgnomenolog|cal coefficients. .

profile. M, K, andB are the mass, stiffness, and damping per C_omputmg t.he staﬂonary s.ol.ut|ons of the resultmg dy-
unit area of the fold, lumped at the midpoint of the glottis. namlqal equatlor_l, .and I|'near|zmg. around the . phy3|cal!y
As stated above, the model further assumes that mucos ean_mgful_ one, It IS p055|bl_e tc_> write _the an_alytlcal condi-
tissue surface waves propagate on the vocal fold surfac ons in which sustained oscillations arise. This occurs when

. .. the negative dissipation induced by the flpmeasured by

from bottom to top at speeti, . In this way, a purely kinetic - , )
argument lets us write the glottal areas at entry and exit aéhe C°e‘°f'9'ef't ofx after expanding Eq(5)] overcomes the
Viscous dissipation of the systefoontrolled by the param-

respectively, - S
P y eterB). For realistic parameter values, the oscillation thresh-
a;=2L4(Xo1+ X+ 7X'), (2)  old for the lung pressure reads
=2L 4(Xgp+X— 7X") ©) Xb1 B
a, g(Xo2 7X'), pth~| 2= |Z (6)
L 2X01_ AXO 7'.

where 24X, and 24X, are the prephonatory glottal areas

at entry and exit, and=T/(2c,,) denotes the time that it Simple as it is, this model achieves a reasonable predic-
takes the surface wave to travel half the way from bottom taion of the onset conditions for oscillations in terms of physi-
top. L4 is the glottal length in the anteroposterior direction cally measurable paramet¢@13], and a simple mathemati-
(perpendicular to the plane of the paper cal framework to describe the basic mechanisms involved.
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The model, however, was not conceived to work beyond
small oscillations: the saturation mechanisms responsible fo(a@)
stopping the folds at the returning points are absent. Math-
ematically, almost any numerical integration will give rise to
a collision of the trajectory with the singular line in phase
space defined bygy;+x+7x'=0. The exceptions involve
initial conditions in the one-dimensional manifold tending to
the point in the singular line in whichxy,+27x'=0.
Numerical simulations of more complex modé¢lst] re-
produce adequately the characteristic skewness of glotta
wave forms. This skewness can be described as a secor
time derivative of the wave form largésmalle)y than zero
for most of the openingclosing phase. Therefore the ques-
tion arises: is it possible to dress this simple model, which
accounts reasonably for the onset conditions of oscillations b)
with nonlinear saturation terms that extend the model to in-
clude the returning points of the oscillation within a continu-
ous dynamical system? Is it possible to reproduce with this
dressed model the qualitative shape of the glottal oscilla-
tions? To accomplish our task, we need to introduce continu- =
ous nonlinear dissipations that allow us to explore Titze's
flapping model beyond the onset. These terms will, of
course, be caricatures of the nonlinear dissipations that ar
needed to model fold collisions. In order to answer these
guestions we will present a brief review of relaxation oscil-
lations, which can be omitted by the expert reader. ’ e v

fixed points u

IIl. RELAXATION OSCILLATIONS FIG. 2. Relaxation oscillatofa) Bifurcation diagram for Eq(7)
in the casee=0: fixed points in variableu as a function ofv

What are the minimal ingredients needed to achieve sudireated as a parameteStable fixed points are represented by solid
cessive jumps between two statés.g., “open” and lines, unstable fixed points by dashed lings.Phase space for the
“closed”) with a continuous model? One of the most impor- relaxation oscillator, Eqg7) and(8).
tant achievements of nonlinear dynamics has been the pre-
sentation of paradigmatic equations with solutions that aré\s shown in Fig. 2b), when the trajectory is close to the
able to mimic a dynamical property of interest. A typical lower branchv slowly increases as a function of time, until
example is the mechanism known as ‘“relaxation oscilla-the tangent of the branch is vertical. At this point, the system
tion,” conceived to model precisely successive jumps be+apidly jumps close to the upper branch, amdoegins to
tween two states. slowly decrease with time. A second jump occurs when the

In order to model an oscillation in terms of a dynamical tangent to the upper branch is vertical, this time to the lower
system, at least two variables are needed. What characterizeganch, and the system continues alternating between "up-
a relaxation oscillation is the existence of two different timeper” and “lower” states.
scales for the dynamics of each variable. The simplest ex- If a model is built from Newton’s laws, it will naturally be
ample was provided by van der Pol in 1926). It involves  stated in terms of a second-order equation:
two dynamical variables andv, related through the follow-

ing equations: X"=f(x,x",1). 9
u'=v—ud+u, (7) It is natural then to ask what kind of nonlinear terifasmd

parameter valugsre needed to obtain relaxation oscillations

v'=—eu, (8 in a second-order dynamical system. Let us identify the vari-

ableu in the relaxation oscillator with the variabiein our
wheree is a small real parameter. The dynamics is simple tagynamical system Eq9). By virtue of Eq.(7), its time de-
understand in the case=0: the variablev becomes a pa- rivative isx’=v—u®+u. Therefore, its second time deriva-
rameter, and the bifurcation diagram for the first equation igjve is x"=v’—3u?u’+u’. In this way, our second-order
displayed in Fig. 23). The fixed points in the solid line dynamical system reads
branches are stable, while the fixed points in the dashed line

branch are unstable. Therefore, in this limit, the variable X"=—ex—3x°x" +x’. (10)
(known as thefast variable relaxes to one of the stable
states, determined by thgonstant value ofv. For 0<e The interpretation of this equation is clear in physical

<1, however, the system slowly moves close to the curveerms: it describes the dynamics of a particle subjected to a
given byv=u®—u (which is the solution in the case=0).  small restitution term—ex, a linear positive dissipation

056201-3



RODRIGO LAJE, TIM GARDNER, AND G. B. MINDLIN PHYSICAL REVIEW E64 056201

40 ' ' ' ' dissipation whenever the absolute value of the departure
(@) 20 - J from the stationary positior is large. In the first place, we
. begin by inspecting the structure of the solutions of this
0F e model without coupling to the tradi.e., we will consider
2 \”\\_ that the vocal tract input pressure in E®) is the atmo-
2 07 T spheric pressure?;=0]. Equation(1) therefore will read
e wlk ~;:::\<:,‘ /\ i
.. B s AXxg+ 27X’
0 - 1 MX"+Kx+B[1+C(Xx—X)* X' = ———
N Xo1+ X+ 7’
80 1 1 1 1 T (11)
-0.12 -0.08 -0.04 0 0.4 0.08

Clearly, the nonlinear dissipation is negligible at the onset
of the oscillations. But once the fixed point loses its stability
0.02 ' ' ' ' a limit cycle is observed. In Fig.(8), several trajectories are
displayed. The dashed straight line is the singular line in
which Xg;+x+ 7x"=0. There is a point on this singular line
in which the numerator of the forcing term is also zero:
Axqy+27x"=0; the dotted line represents a one-dimensional
trajectory that tends to this singular point. This trajectory
defines the boundary of the basin of attraction of the limit
cycle. Dynamically, the singular point behaves as a saddle
point and, by reducing the value & we can increase the
size of the limit cycle, reducing its distance in phase space
L L L ' from the singular point as much as we want. The correspond-

0.1 0.1 o O 0.14 015 ing time trace ofx is displayed in Fig. &).
Until this point, the glottal system has been considered

FIG. 3. Extended model, without coupling to the vocal tréaX.  open to the atmosphere, i.€;,=0. A more accurate picture
Phase space. Dashed straight line: singular line. Dotted line: traje¢s the following: Fluctuations in the glottal flow induce
tory tending to the special point on the singular line. Solid line: flyctuations in the pressure at the input of the vocal tract, and
limit cycle and main trajectories tending to {b) Corresponding forward waves propagate this perturbation. With various
time series o (limit cycle). Fundamental frequency of oscillation time delays, the reflections of the propagating sound wave
is Fo=100 Hz. Parameter values are lung pressufe  retyrn to the base of the vocal tract, and add to the original
=15000 dyn/crf, stiffnessK=250 kdyn/cnd, d%Tp'“g coeffi-  herturbations of pressure. To account for this feedback ef-
cientsB=100 (dyn segment)/cfand C=10> cm " vocal fold o4 “the solution of the problem requires a treatment in
mass M =0.45 g/cf, prephonatory positionsg;=0.1 cm and i ton btk the source system and the passive filter are si-
X02=0.09 cm, vocal fold lengthLy=1.4 cm (anteroposterior di- multaneously solved
rection, vogal fold thicknessr=0.4 cm (along the flow, surface At frequencies beiow the first formant of the vocal tract,
wave velocityc, =100 cm/s, and=T/(2c,) =2 ms. the source of pressure perturbations at the input of the vocal
tract s(t) is proportional to the time variation of the glottal

— ! ; iccinaticfn — 247 ;
fex=X", and a negative dissipatidy=—3x“x". The linear  f4\ U(x), through a coefficient called inertanfts]. This
positive dissipation term represents an external force ing Newton’s law for the vocal tract air column:
phase with the velocity, accounting for the transfer of energy

to the system, while the negative dissipation term becomes du
important as the dynamical variabletravels far from the s(t)=1 Gt

position of equilibriumx=0. This nonlinear term is respon-

sible for the saturation that avoids a divergence of the flow : . .

since the negative linear dissipation causes a loss of stabili here the inertance 'B_.pL/A' L andA b.elng'vocal t.ract
ngth and cross section, respectively {s air density.

of the fixed point. With this term, it is possible to generate aWhen a pressure wave propagates through a vocal tract

wave form with a second time derivative largemaliey whose cross section varies along its length, then the pressure
than zero for most of the openir(glosing phase[see Fig. 1ong gth, P
wave passes through a medium whose inertance locally de-

3(b) below]. : e .
pends on the cross section of the vocal tract. Variations in

inertance give rise to reflections at the boundary between

IV. THE EXTENDED MODEL sections of different inertance. To reproduce vowels, which

) ) ) depend on articulation of the shape of the vocal tract, it is

In this section we will analyze the structure of the 30|U'customary to approximate the tract by a set of tulzgseast

tions of Titze's flapping motion mod¢B], extended with @  two). In this situation, the pressure wave generated at the

nonlinear dissipative forcefy=B[1+C(x—x)?]x’. As input of the vocal tract is partially reflected and partially
stated in the previous section, this term accounts for a higkransmitted at each interface between consecutive tubes. At

0.01

X in cm

-0.01

(12
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the interface between the last tube and the atmosphere, th
wave is partially reflected and partially emitted toward the
atmosphere.

For the sake of simplicity, in this work we set the vocal
tract to be uniform. That is, the vocal tract is modeled by a
single tube of uniform diameter. Although unrealistic, it is _
the simplest choice to account for the effects of feedback§
with vocal tract coupling. Calling(t) andb(t) the forward
and backward pressure waves in the vocal tri@espec-
tively), the equations accounting for the boundary conditions
are :

rtance | in g/

inel

Pi(t)y=a(t)=s(t)+b(t—7q), (13

b(t)=ya(t—1), (14

16 16.5 17 175 18 18.5 19

where y accounts for the reflection coefficient of the inter-
vocal tract length L in cm

face between the end of the vocal tract and the atmosphere

(if no losses,y=—1), andr;=L/cs is the time it takes for a FIG. 4. Extended model, with coupling to the vocal tract and
sound wave to travel the vocal tract lengtf16,17). feedback. Regions of periodicity ir_(I) parameter space. The

In this way, we can study the effect of feedback on theaxis(vocal tract length.) is inversely proportional to the frequency
oscillations of the glottis. Notice that this treatment departf the first formant of the tube. Lengthenitghortening of the tube
from the source-filter theory of voiced sound production.brings the formants toward lowehighep frequencies. Thg axis
Since feedback is neglected without great detriment in thévocal tract inertancé) stands for the degree of coupling. A stron-
models of speech described in the Introduction, it is imporger coupling to the vocal tract is achieved through a narrowing of
tant to confirm that for realistic parameter values of normathe tube. Parameter values are the same as in Fig. 3, except for
speech the effect of feedback is negligible. We expect, for=0-2 ms; in addition,y=—0.9, air densityp=0.00114 g/cr,
small inertance(i.e., low coupling, glottis connected to a and sound velocitycs=35000 cm/s. The regions in parameter
wide tube, that the input pressure fluctuations in the tractSPace correspond to values in_which solutions of per_iod_l, 2,3, and
will not qualitatively affect the dynamics of the glottis. The 4 can be found. The large region labelettiers/nonperiodicorre-
result will be, in our simple model, an oscillation of the sponds to values of the parametgrs Whgre periodic solutions of pe-
average glottal size which can be embedded in two dimenr-'Od larger than 4 and nonperiodic solutions can be found.
sions. A different scenario will occur for high values of the
coupling between the glottis and the tube. The input pressura period-1 state: the projection of the glottal dynamics onto
will not only be high: it will be the result of adding the the (x,x') plane is a non-self-intersecting curve. That is, at
source fluctuations and the waves that are reflected at tHermal speech values for the inertant¢e<0.06 g/cnf, i.e.,
interfaces of the vocal tract. Therefore, complex solutions offocal tract cross sectioA>0.3 cnt) a period-one oscilla-
delay differential equations can be expected to o¢tay. tion of normal speech is recovered for a realistic

In order to examine the effect of feedback on the glottal=17.5 cm. Note thaf~0.3 cnt is a typical value for nor-
oscillations, we inspect the projection of the glottal dynamicamal speech for the epilarynx tube, the first section of the
onto the &,x’) coordinates. For low values of the coupling vocal tract[21].
between the source and the vocal tract, a simple oscillation As coupling is increased, we find frequency ranges for
will take place. We then take a Poincasection[12], and  which subharmonic glottal oscillations occur. The largest re-
check if for higher values of the coupling more than onegion of subharmonic solutions is one for which a period-2
intersection occurs. We call the number of intersections oBolution arises. This solution is born in a period doubling
the flow with the Poincarglane theperiod of the glottal  bifurcation: no matter where we choose to take a Poincare
solution. section the flow intersects it at two points. In Figapwe

Fig. 4 displays the results of integrating our model fordisplay an oscillation in thex;x') space for the period-2
different values of the parametdrsl describing the uniform  region, at the valuek=17.5 cm and =0.081 g/cri (i.e.,
vocal tract. They axis indicates the degree of couplifig-  vocal tract cross sectioA=0.25 cnf, about 80% of a nor-
ertance and thex axis is inversely proportional to the fre- mal area. The time series oK is displayed in Fig. &). In
quency of the first formant of the tube, while the shadingFig. 5c), we show the pressure fluctuations at the exit of the
level stands for the period of the orbit. This choice of param~ocal tract as a function of time. Notice that beyond the
eter representation is inspired by the problem of forced nonsupraharmonicg¢small oscillations mounted on the one cor-
linear oscillators, for which different regions of parametersresponding to the fundamental frequepcyhe halved-
space correspond to different lockings between the forcingrequency subharmonic can be seen by simple inspection, in
and the autonomous oscillat®0]. In this representation, we either Fig. §b) or Fig. 5c). For these parameter values, the
do find structures that resemble this dynamical scennarigpressure fluctuations due to feedback account for approxi-
For low values of the coupling, the system is in what we callmately 30% of the glottal pressure.
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30 ' - ' ' second frequency was associated with a second source of
(a) ok | vibration (the false vocal folds With the subharmonic
tongues displayed in Fig. 4, delayed feedback would then be
10 . a third possible mechanism for subharmonic solutions of the
vocal fold dynamics.
or 1 It is possible to go beyond the numerical simulation to
understand the nature of the mechanism behind the creation
of these solutions once the coupling between the glottis and
20 | 1 the vocal tract is introduced. Notice that the boundary con-
. . . . ditions (14) are effectively acting as delay terms in the dif-
0 001 0 0.01 0.02 0.03 ferential equation. It is possible then to study the linear loss
x in om of stability of the equilibrium position of the glottis, and
Hopf-Hopf interactions will be found. Solutions like the ones
reported in this work were reported in a similar dynamical
scenarig19].

x* in cm/s

-10 T

(b)

V. CONCLUSIONS

X in cm

In this work, we have analyzed a simple model for voice
production. This model is based on the flapping model pro-
posed in[3]. Nonlinear dissipative terms were introduced to
mimic the high dissipation at large values of departure from
equilibrium, with a choice of coefficients that reproduce the
0.1 0.11 0.12 0.13 0.14 0.15 characteristic shape of the dynamics of the folds. This model
time in s needs no coupling to the tract to sustain oscillations. In this
situation, its dynamics is very simple: at most, nonlinear re-
laxation oscillations are present. On the other hand, this
model allows us to study in a very natural way the effect of
delayed feedback when the glottis and the vocal tract are
coupled. Our explorations indicate that, in solving simulta-
neously the dynamical equations of the folds and the pres-
sure reverberations in the tract, interesting dynamics can be
1000 found. The organization of solutions strongly resembles what
is observed in periodically forced nonlinear oscillators:
2000 | i tongues of subharmonic solutions can be found in a param-
\ \ \ . eter space which accounts for the degree of coupling and a
0.1 0.11 012 013 0.14 0.15 characteristic time of the “forcing.”

time 1n s . . .
The production of voiced sounds is a very complex prob-

FIG. 5. Period-2 solution, for parameter valies 17.5 cmand lem which displays many interesting phenomena of fluid dy-
=0.081 g/cn from Fig. 4. Fundamental frequency of oscillation namics. Therefore, any low-dimensional model implies
(halved at the bifurcationis Fo/2=72 Hz. (a) Limit cycle in  strong approximations. The spirit of this work is to study the
(x,x") space.(b) Corresponding time series af A similar ripple  effect of feedback in a system which is, before the coupling
structure is reported experimentally[i22]. (c) Corresponding time  to the vocal tract, as simple as possible. Our results indicate
series of the pressure at the exit of the vocal tract. that even in this case the dynamics can be extremely rich.

, ) ) Many situations have been reported in which subharmonic
For a vocal tract length slightly differetand higher val-  popayior exists in vocal production, from newborn cries to

ues of the coupling period-4 solutions bifurcate from the gyme styles of throat singing. It is not clear that in these

period-2 ones. We report also regions of period-3 andiages the effect of feedback alone can explain the behavior.
period-6 solutiongnot shown here, out of scale It should always be kept in mind that models of several
The existence of period doubling bifurcations has alreadynagses as well as models based on the nonlinear interaction
been reported in the literature of the human voice[2B],  penyeen modes of the folds can generate subharmonic solu-
subharmonic responses were reported as a male speaker YWR%s, even in the absence of feedback. In this work, we
instructed to perform a given vocal maneuver. A ripple Structqng that the effect of feedback alone is enough, for reason-

ture similar to the one shown in Fig(t§ was observed inthe 516 narameter values, to introduce a rich variety of subhar-
subharmonic cycle of the folds. Yet, in this case, the videoy,qnic solutions.

stroboscopic view of the cycle showed a left-right difference
between the folds: an asymmetrical motion, possibly causing
the bifurcation. Another example of period doubling bifurca-

tion in the human voice was reported in the Kargyraa style of This work was partially funded by UBA, CONICET, and
harmonic chant(for a review, sed23]). In this case, the Fundacim Antorchas.

2000 b

1000

pressure at the exit of the vocal tract in dyn/cm 2
=]
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