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Continuous model for vocal fold oscillations to study the effect of feedback
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In this work we study the effects of delayed feedback on vocal fold dynamics. To perform this study, we
work with a vocal fold model that is made as simple as possible while retaining the spectral content charac-
teristic of human vocal production. Our results indicate that, even with the simplest explanation for vocal fold
oscillation, delayed feedback due to reflected sound in the vocal tract can lead to extremely rich dynamics.
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I. INTRODUCTION

The opposed membranes at the base of the human v
tract are the source of voiced sounds. Airflow induced ins
bility of this structure, known as the vocal folds, modulat
the airflow, giving rise to a sequence of pressure pul
which propagate in the vocal tract and are radiated as so
The modeling of vocal fold oscillations has a long and ri
history. The assumptions of modern models of the vo
folds can be traced to the seminal work of Ishizaka a
Flanagan@1#. Interested in the problem of achieving a rea
istic synthesis of voiced sounds, they built a very succes
model of two coupled masses, which is used almost 30 y
after its publication@2#. Although the authors of this mode
also mention the importance of understanding the crit
parameters of the mechanism in order to address the dia
sis of voice disorders, it has been pointed out that the
parameters in the model have been difficult to relate to a
tomical features@3#. Keeping the simplicity of the two-mas
model, Story and Titze introduced a three-mass model
allows a better connection between physiological and mo
parameters@4#. This model builds upon the work of Hiran
@5#, who stressed the importance of understanding vocal
tissue properties in order to properly explain the onset
vocal fold oscillations.

In brief summary, the simplest models@6,3# are one-mass
models in which the vocal folds are modeled by a one-m
spring driven by airflow with inertial coupling to the voca
tract, i.e., the air column acts like a mass of air that is ac
erated and decelerated as a unit. The more complex mo
@7,8# include several masses. Intermediate between these
tremes lies a different approach presented by Titze in@3#.
This approach consists in letting the vocal folds support
experimentally observed ‘‘flapping’’ motion. With thi
model, only one second-order equation is needed to de
realistic onset conditions for the oscillations in terms of p
rameters that could easily be checked through experime
measurements. The model also shows how passive effec
the vocal tract might affect the dynamics of the folds.
should be pointed out that, although nonlinear terms w
discussed, large-amplitude oscillations were beyond the
terest of the work. In particular, the nonlinear effects due
vocal fold collision were explicitly omitted. Titze’s mode
for flapping motion will be discussed in some detail in t
next section.
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In all these models, the separation of source and filte
assumed. In this framework, the vocal system is formed
an active nonlinear source of sound~oscillatory glottis!
which excites a passive linear filter~vocal tract!. The propa-
gation of sound in the filter cannot influence the vocal fo
dynamics except passively. In terms of the usual electric
cuit analogy, the source-filter separation is based on the
pothesis that the glottis output impedance is much larger t
the vocal tract input impedance. The hypothesis holds un
normal speech conditions: the mean glottal area is m
smaller than the input cross section of the vocal tract, and
fundamental frequency of the glottis is below the first fo
mant ~resonance! of the tract @9#. Within the source-filter
theory, it is possible to address the existence of subharm
behavior in vocal production, as in newborn cries@10# and
some forms of throat singing@23#. In general, the interpreta
tion of subharmonic effects has been carried out in terms
two-mass models for the vocal folds@2,11#.

In this work, the source-filter separation does not app
We study the effects of delayed feedback on vocal fold
namics. Feedback arises when the glottal system is cou
to the vocal tract, and pressure reverberations are allowe
go back to the folds and perturb their dynamics after a ti
delay given by sound speed. The source-filter separa
does not hold here, as the glottal oscillations are perturbe
the pressure they created in the vocal tract. The dynam
equations for the glottis and the equations for the pressur
the vocal tract must then be solved simultaneously.

We adopt Titze’s flapping model@3#. The flapping model
represents a reasonable compromise between a realisti
scription and complexity, keeping the essentials of vocal f
physics within only one second-order dynamical equati
The motivation of our choice is dynamical in nature. T
two- and three-mass models have a phase space dimen
ality ~four and six, respectively! that allows us to find com-
plex solutions such as period doubling, even disregarding
effect of feedback. Since we are interested in exploring
complexity that the feedback might induce in the dynam
of the folds, it is important, as a first step, to work with
system which, for low coupling, displays a very simple~two-
dimensional! dynamics. Differential equations with delay~as
will arise in the study of the effect of feedback on the d
namics of the folds! are a complex field within the theory o
nonlinear systems@12#. Therefore, we choose to make o
first explorations in the field separating the sources of co
©2001 The American Physical Society01-1
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plexity ~high dimensionality of the dynamics of the fold
and eventual effects associated with the feedback!.

The work is organized as follows. In Sec. II, the flappi
model presented by Titze in@3# will be reviewed. In Sec. III,
we discuss the dynamical properties of relaxation osci
tions, in order to propose reasonable nonlinear dissipa
terms that extend the flapping model to study limit cyc
beyond the threshold of oscillation. In Sec. IV, the solutio
of this extended model in phase space with feedback
discussed. Sec. V contains our conclusions.

II. MODEL FOR VOCAL FOLD OSCILLATIONS

In order to study the physical mechanisms behind sm
amplitude oscillations in the vocal folds, Titze proposed
simple model@3#. The idea is that sustained oscillations ar
whenever the energy transfer from the airflow to the fo
overcomes the dissipative losses. This transfer can
achieved if the driving force exerted by the glottal pressur
larger when the folds are opening than when the folds
approaching each other. Titze observed that this requirem
is met when the vocal folds assume an oscillation charac
ized by a ‘‘flapping’’ motion. That is to say, if the voca
cords have a convergent profile while opening and a div
gent profile while closing, the pressure on the membra
will gain in energy.

The flapping motion is obtained in a simple way: the v
cal folds are assumed to support a longitudinal travel
wave on their surface, in addition to the lateral oscillation
their centers of mass. The assumption of a flapping motio
based on experimental evidence@3,5,22#. Videostroboscopy
showed a longitudinal traveling wave propagating on the
cal fold surface, possibly due to a displacement of muco
tissue traveling upward in the glottis.

As displayed in Fig. 1, a trapezoidal prephonatory glo
is assumed. For small-amplitude oscillations, the mo
reads

Mx91Kx1Bx85Pg , ~1!

wherex stands for the departure of the midpoint of the fol
from the prephonatory profile andPg denotes the spatial av
erage of the glottal driving pressure, which has a nonunifo
profile. M, K, andB are the mass, stiffness, and damping p
unit area of the fold, lumped at the midpoint of the glott
As stated above, the model further assumes that muc
tissue surface waves propagate on the vocal fold sur
from bottom to top at speedcw . In this way, a purely kinetic
argument lets us write the glottal areas at entry and exit
respectively,

a152Lg~x011x1tx8!, ~2!

a252Lg~x021x2tx8!, ~3!

where 2Lgx01 and 2Lgx02 are the prephonatory glottal area
at entry and exit, andt[T/(2cw) denotes the time that i
takes the surface wave to travel half the way from bottom
top. Lg is the glottal length in the anteroposterior directi
~perpendicular to the plane of the paper!.
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The last ingredient in the building of this model is th
construction of a relationship between the geometric profi
and the pressure. Assuming that the relationship betw
pressure and profiles of static configurations is a good
proximation for oscillatory regimes~see@3#!, it can be writ-
ten that

Pg5Pi1~Ps2Pi !~12a2 /a12ke!/kt ~4!

5Pi1~Ps2Pi !S Dx012tx8

x011x1tx8
D , ~5!

wherePs stands for the subglottal~lung! pressure,Pi stands
for the input pressure at the vocal tract,Dx0[x012x02, and
ke'0.1, kt'1.1 are phenomenological coefficients.

Computing the stationary solutions of the resulting d
namical equation, and linearizing around the physica
meaningful one, it is possible to write the analytical con
tions in which sustained oscillations arise. This occurs wh
the negative dissipation induced by the flow@measured by
the coefficient ofx8 after expanding Eq.~5!# overcomes the
viscous dissipation of the system~controlled by the param-
eterB). For realistic parameter values, the oscillation thre
old for the lung pressure reads

PL
th'S x01

2

2x012Dx0
DB

t
. ~6!

Simple as it is, this model achieves a reasonable pre
tion of the onset conditions for oscillations in terms of phy
cally measurable parameters@3,13#, and a simple mathemati
cal framework to describe the basic mechanisms involv

FIG. 1. Frontal section of the flapping model for the vocal fol
~taken from @3#!. Dashed line: trapezoidal prephonatory glott
Solid line: surface wave of mucosal tissue traveling upwardT
stands for vocal fold thickness.
1-2
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CONTINUOUS MODEL FOR VOCAL FOLD . . . PHYSICAL REVIEW E64 056201
The model, however, was not conceived to work beyo
small oscillations: the saturation mechanisms responsible
stopping the folds at the returning points are absent. Ma
ematically, almost any numerical integration will give rise
a collision of the trajectory with the singular line in pha
space defined byx011x1tx850. The exceptions involve
initial conditions in the one-dimensional manifold tending
the point in the singular line in whichDx012tx850.

Numerical simulations of more complex models@14# re-
produce adequately the characteristic skewness of gl
wave forms. This skewness can be described as a se
time derivative of the wave form larger~smaller! than zero
for most of the opening~closing! phase. Therefore the que
tion arises: is it possible to dress this simple model, wh
accounts reasonably for the onset conditions of oscillatio
with nonlinear saturation terms that extend the model to
clude the returning points of the oscillation within a contin
ous dynamical system? Is it possible to reproduce with
dressed model the qualitative shape of the glottal osc
tions? To accomplish our task, we need to introduce cont
ous nonlinear dissipations that allow us to explore Titz
flapping model beyond the onset. These terms will,
course, be caricatures of the nonlinear dissipations that
needed to model fold collisions. In order to answer the
questions we will present a brief review of relaxation osc
lations, which can be omitted by the expert reader.

III. RELAXATION OSCILLATIONS

What are the minimal ingredients needed to achieve s
cessive jumps between two states~e.g., ‘‘open’’ and
‘‘closed’’ ! with a continuous model? One of the most impo
tant achievements of nonlinear dynamics has been the
sentation of paradigmatic equations with solutions that
able to mimic a dynamical property of interest. A typic
example is the mechanism known as ‘‘relaxation osci
tion,’’ conceived to model precisely successive jumps
tween two states.

In order to model an oscillation in terms of a dynamic
system, at least two variables are needed. What characte
a relaxation oscillation is the existence of two different tim
scales for the dynamics of each variable. The simplest
ample was provided by van der Pol in 1926@15#. It involves
two dynamical variablesu andv, related through the follow-
ing equations:

u85v2u31u, ~7!

v852eu, ~8!

wheree is a small real parameter. The dynamics is simple
understand in the casee50: the variablev becomes a pa
rameter, and the bifurcation diagram for the first equation
displayed in Fig. 2~a!. The fixed points in the solid line
branches are stable, while the fixed points in the dashed
branch are unstable. Therefore, in this limit, the variableu
~known as thefast variable! relaxes to one of the stabl
states, determined by the~constant! value of v. For 0,e
!1, however, the system slowly moves close to the cu
given byv5u32u ~which is the solution in the casee50).
05620
d
or
h-

tal
nd

h
s,
-

is
-

u-
s
f
re
e
-

c-

re-
e

-
-

l
zes

x-

o

is

ne

e

As shown in Fig. 2~b!, when the trajectory is close to th
lower branchv slowly increases as a function of time, un
the tangent of the branch is vertical. At this point, the syst
rapidly jumps close to the upper branch, andv begins to
slowly decrease with time. A second jump occurs when
tangent to the upper branch is vertical, this time to the low
branch, and the system continues alternating between ‘
per’’ and ‘‘lower’’ states.

If a model is built from Newton’s laws, it will naturally be
stated in terms of a second-order equation:

x95 f ~x,x8,t !. ~9!

It is natural then to ask what kind of nonlinear terms~and
parameter values! are needed to obtain relaxation oscillatio
in a second-order dynamical system. Let us identify the v
ableu in the relaxation oscillator with the variablex in our
dynamical system Eq.~9!. By virtue of Eq.~7!, its time de-
rivative is x85v2u31u. Therefore, its second time deriva
tive is x95v823u2u81u8. In this way, our second-orde
dynamical system reads

x952ex23x2x81x8. ~10!

The interpretation of this equation is clear in physic
terms: it describes the dynamics of a particle subjected
small restitution term2ex, a linear positive dissipation

FIG. 2. Relaxation oscillator.~a! Bifurcation diagram for Eq.~7!
in the casee50: fixed points in variableu as a function ofv
~treated as a parameter!. Stable fixed points are represented by so
lines, unstable fixed points by dashed lines.~b! Phase space for the
relaxation oscillator, Eqs.~7! and ~8!.
1-3
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f ext5x8, and a negative dissipationf d523x2x8. The linear
positive dissipation term represents an external force
phase with the velocity, accounting for the transfer of ene
to the system, while the negative dissipation term becom
important as the dynamical variablex travels far from the
position of equilibriumx̄[0. This nonlinear term is respon
sible for the saturation that avoids a divergence of the flo
since the negative linear dissipation causes a loss of stab
of the fixed point. With this term, it is possible to generate
wave form with a second time derivative larger~smaller!
than zero for most of the opening~closing! phase@see Fig.
3~b! below#.

IV. THE EXTENDED MODEL

In this section we will analyze the structure of the so
tions of Titze’s flapping motion model@3#, extended with a
nonlinear dissipative forcef d5B@11C(x2 x̄)2#x8. As
stated in the previous section, this term accounts for a h

FIG. 3. Extended model, without coupling to the vocal tract.~a!
Phase space. Dashed straight line: singular line. Dotted line: tra
tory tending to the special point on the singular line. Solid lin
limit cycle and main trajectories tending to it.~b! Corresponding
time series ofx ~limit cycle!. Fundamental frequency of oscillatio
is F05100 Hz. Parameter values are lung pressurePL

515 000 dyn/cm2, stiffnessK5250 kdyn/cm3, damping coeffi-
cientsB5100 (dyn segment)/cm3 and C5105 cm22, vocal fold
mass M50.45 g/cm2, prephonatory positionsx0150.1 cm and
x0250.09 cm, vocal fold lengthLg51.4 cm ~anteroposterior di-
rection!, vocal fold thicknessT50.4 cm ~along the flow!, surface
wave velocitycw5100 cm/s, andt[T/(2cw)52 ms.
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dissipation whenever the absolute value of the depar
from the stationary positionx̄ is large. In the first place, we
begin by inspecting the structure of the solutions of t
model without coupling to the tract@i.e., we will consider
that the vocal tract input pressure in Eq.~5! is the atmo-
spheric pressure,Pi50#. Equation~1! therefore will read

Mx91Kx1B@11C~x2 x̄!2#x85
Dx012tx8

x011x1tx8
PL .

~11!

Clearly, the nonlinear dissipation is negligible at the on
of the oscillations. But once the fixed point loses its stabil
a limit cycle is observed. In Fig. 3~a!, several trajectories are
displayed. The dashed straight line is the singular line
which x011x1tx850. There is a point on this singular lin
in which the numerator of the forcing term is also zer
Dx012tx850; the dotted line represents a one-dimensio
trajectory that tends to this singular point. This trajecto
defines the boundary of the basin of attraction of the lim
cycle. Dynamically, the singular point behaves as a sad
point and, by reducing the value ofB, we can increase the
size of the limit cycle, reducing its distance in phase sp
from the singular point as much as we want. The correspo
ing time trace ofx is displayed in Fig. 3~b!.

Until this point, the glottal system has been conside
open to the atmosphere, i.e.,Pi50. A more accurate picture
is the following: Fluctuations in the glottal flowU induce
fluctuations in the pressure at the input of the vocal tract,
forward waves propagate this perturbation. With vario
time delays, the reflections of the propagating sound w
return to the base of the vocal tract, and add to the orig
perturbations of pressure. To account for this feedback
fect, the solution of the problem requires a treatment
which both the source system and the passive filter are
multaneously solved.

At frequencies below the first formant of the vocal tra
the source of pressure perturbations at the input of the v
tract s(t) is proportional to the time variation of the glotta
flow U(x), through a coefficient called inertance@18#. This
is Newton’s law for the vocal tract air column:

s~ t !5I
dU

dt
, ~12!

where the inertance isI 5rL/A, L and A being vocal tract
length and cross section, respectively (r is air density!.
When a pressure wave propagates through a vocal
whose cross section varies along its length, then the pres
wave passes through a medium whose inertance locally
pends on the cross section of the vocal tract. Variations
inertance give rise to reflections at the boundary betw
sections of different inertance. To reproduce vowels, wh
depend on articulation of the shape of the vocal tract, i
customary to approximate the tract by a set of tubes~at least
two!. In this situation, the pressure wave generated at
input of the vocal tract is partially reflected and partia
transmitted at each interface between consecutive tubes

c-
:

1-4
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CONTINUOUS MODEL FOR VOCAL FOLD . . . PHYSICAL REVIEW E64 056201
the interface between the last tube and the atmosphere
wave is partially reflected and partially emitted toward t
atmosphere.

For the sake of simplicity, in this work we set the voc
tract to be uniform. That is, the vocal tract is modeled b
single tube of uniform diameter. Although unrealistic, it
the simplest choice to account for the effects of feedb
with vocal tract coupling. Callinga(t) andb(t) the forward
and backward pressure waves in the vocal tract~respec-
tively!, the equations accounting for the boundary conditio
are

Pi~ t ![a~ t !5s~ t !1b~ t2t1!, ~13!

b~ t !5ga~ t2t1!, ~14!

whereg accounts for the reflection coefficient of the inte
face between the end of the vocal tract and the atmosp
~if no losses,g521), andt1[L/cs is the time it takes for a
sound wave to travel the vocal tract lengthL @16,17#.

In this way, we can study the effect of feedback on t
oscillations of the glottis. Notice that this treatment depa
from the source-filter theory of voiced sound productio
Since feedback is neglected without great detriment in
models of speech described in the Introduction, it is imp
tant to confirm that for realistic parameter values of norm
speech the effect of feedback is negligible. We expect,
small inertance~i.e., low coupling, glottis connected to
wide tube!, that the input pressure fluctuations in the tra
will not qualitatively affect the dynamics of the glottis. Th
result will be, in our simple model, an oscillation of th
average glottal size which can be embedded in two dim
sions. A different scenario will occur for high values of th
coupling between the glottis and the tube. The input press
will not only be high: it will be the result of adding th
source fluctuations and the waves that are reflected at
interfaces of the vocal tract. Therefore, complex solutions
delay differential equations can be expected to occur@19#.

In order to examine the effect of feedback on the glo
oscillations, we inspect the projection of the glottal dynam
onto the (x,x8) coordinates. For low values of the couplin
between the source and the vocal tract, a simple oscilla
will take place. We then take a Poincare´ section@12#, and
check if for higher values of the coupling more than o
intersection occurs. We call the number of intersections
the flow with the Poincare´ plane theperiod of the glottal
solution.

Fig. 4 displays the results of integrating our model f
different values of the parametersL,I describing the uniform
vocal tract. They axis indicates the degree of coupling~in-
ertance! and thex axis is inversely proportional to the fre
quency of the first formant of the tube, while the shadi
level stands for the period of the orbit. This choice of para
eter representation is inspired by the problem of forced n
linear oscillators, for which different regions of paramete
space correspond to different lockings between the forc
and the autonomous oscillator@20#. In this representation, we
do find structures that resemble this dynamical scenna
For low values of the coupling, the system is in what we c
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a period-1 state: the projection of the glottal dynamics o
the (x,x8) plane is a non-self-intersecting curve. That is,
normal speech values for the inertance (I ,0.06 g/cm4, i.e.,
vocal tract cross sectionA.0.3 cm2) a period-one oscilla-
tion of normal speech is recovered for a realisticL
517.5 cm. Note thatA'0.3 cm2 is a typical value for nor-
mal speech for the epilarynx tube, the first section of
vocal tract@21#.

As coupling is increased, we find frequency ranges
which subharmonic glottal oscillations occur. The largest
gion of subharmonic solutions is one for which a period
solution arises. This solution is born in a period doubli
bifurcation: no matter where we choose to take a Poinc´
section the flow intersects it at two points. In Fig. 5~a! we
display an oscillation in the (x,x8) space for the period-2
region, at the valuesL517.5 cm andI 50.081 g/cm4 ~i.e.,
vocal tract cross sectionA50.25 cm2, about 80% of a nor-
mal area!. The time series ofx is displayed in Fig. 5~b!. In
Fig. 5~c!, we show the pressure fluctuations at the exit of
vocal tract as a function of time. Notice that beyond t
supraharmonics~small oscillations mounted on the one co
responding to the fundamental frequency!, the halved-
frequency subharmonic can be seen by simple inspection
either Fig. 5~b! or Fig. 5~c!. For these parameter values, th
pressure fluctuations due to feedback account for appr
mately 30% of the glottal pressure.

FIG. 4. Extended model, with coupling to the vocal tract a
feedback. Regions of periodicity in (L,I ) parameter space. Thex
axis~vocal tract lengthL) is inversely proportional to the frequenc
of the first formant of the tube. Lengthening~shortening! of the tube
brings the formants toward lower~higher! frequencies. They axis
~vocal tract inertanceI ) stands for the degree of coupling. A stron
ger coupling to the vocal tract is achieved through a narrowing
the tube. Parameter values are the same as in Fig. 3, exceptt
50.2 ms; in addition,g520.9, air densityr50.001 14 g/cm3,
and sound velocitycs535 000 cm/s. The regions in paramet
space correspond to values in which solutions of period 1, 2, 3,
4 can be found. The large region labeledothers/nonperiodiccorre-
sponds to values of the parameters where periodic solutions o
riod larger than 4 and nonperiodic solutions can be found.
1-5
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RODRIGO LAJE, TIM GARDNER, AND G. B. MINDLIN PHYSICAL REVIEW E64 056201
For a vocal tract length slightly different~and higher val-
ues of the coupling!, period-4 solutions bifurcate from th
period-2 ones. We report also regions of period-3 a
period-6 solutions~not shown here, out of scale!.

The existence of period doubling bifurcations has alrea
been reported in the literature of the human voice. In@22#,
subharmonic responses were reported as a male speake
instructed to perform a given vocal maneuver. A ripple str
ture similar to the one shown in Fig. 5~b! was observed in the
subharmonic cycle of the folds. Yet, in this case, the vid
stroboscopic view of the cycle showed a left-right differen
between the folds: an asymmetrical motion, possibly caus
the bifurcation. Another example of period doubling bifurc
tion in the human voice was reported in the Kargyraa style
harmonic chant~for a review, see@23#!. In this case, the

FIG. 5. Period-2 solution, for parameter valuesL517.5 cm and
I 50.081 g/cm4 from Fig. 4. Fundamental frequency of oscillatio
~halved at the bifurcation! is F0/2572 Hz. ~a! Limit cycle in
(x,x8) space.~b! Corresponding time series ofx. A similar ripple
structure is reported experimentally in@22#. ~c! Corresponding time
series of the pressure at the exit of the vocal tract.
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second frequency was associated with a second sourc
vibration ~the false vocal folds!. With the subharmonic
tongues displayed in Fig. 4, delayed feedback would then
a third possible mechanism for subharmonic solutions of
vocal fold dynamics.

It is possible to go beyond the numerical simulation
understand the nature of the mechanism behind the crea
of these solutions once the coupling between the glottis
the vocal tract is introduced. Notice that the boundary c
ditions ~14! are effectively acting as delay terms in the d
ferential equation. It is possible then to study the linear lo
of stability of the equilibrium position of the glottis, an
Hopf-Hopf interactions will be found. Solutions like the one
reported in this work were reported in a similar dynamic
scenario@19#.

V. CONCLUSIONS

In this work, we have analyzed a simple model for voi
production. This model is based on the flapping model p
posed in@3#. Nonlinear dissipative terms were introduced
mimic the high dissipation at large values of departure fr
equilibrium, with a choice of coefficients that reproduce t
characteristic shape of the dynamics of the folds. This mo
needs no coupling to the tract to sustain oscillations. In t
situation, its dynamics is very simple: at most, nonlinear
laxation oscillations are present. On the other hand,
model allows us to study in a very natural way the effect
delayed feedback when the glottis and the vocal tract
coupled. Our explorations indicate that, in solving simul
neously the dynamical equations of the folds and the p
sure reverberations in the tract, interesting dynamics can
found. The organization of solutions strongly resembles w
is observed in periodically forced nonlinear oscillato
tongues of subharmonic solutions can be found in a par
eter space which accounts for the degree of coupling an
characteristic time of the ‘‘forcing.’’

The production of voiced sounds is a very complex pro
lem which displays many interesting phenomena of fluid d
namics. Therefore, any low-dimensional model impli
strong approximations. The spirit of this work is to study t
effect of feedback in a system which is, before the coupl
to the vocal tract, as simple as possible. Our results indic
that even in this case the dynamics can be extremely r
Many situations have been reported in which subharmo
behavior exists in vocal production, from newborn cries
some styles of throat singing. It is not clear that in the
cases the effect of feedback alone can explain the beha
It should always be kept in mind that models of seve
masses as well as models based on the nonlinear intera
between modes of the folds can generate subharmonic s
tions, even in the absence of feedback. In this work,
found that the effect of feedback alone is enough, for reas
able parameter values, to introduce a rich variety of subh
monic solutions.
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