
Downloade
Instantaneous frequency decomposition: An application to
spectrally sparse sounds with fast frequency modulations

T. J. Gardnera) and M. O. Magnasco
Laboratory of Mathematical Physics, The Rockefeller University, 1230 York Ave, New York, New York 10021

~Received July 2002; Revised 6 January 2005; accepted 11 January 2005!

Classical time–frequency analysis is based on the amplitude responses of bandpass filters,
discarding phase information. Instantaneous frequency analysis, in contrast, is based on the
derivatives of these phases. This method of frequency calculation is of interest for its high precision
and for reasons of similarity to cochlear encoding of sound. This article describes a methodology for
high resolution analysis of sparse sounds, based on instantaneous frequencies. In this method, a
comparison between tonotopic and instantaneous frequency information is introduced to select filter
positions that are well matched to the signal. Second, a cross-check that compares frequency
estimates from neighboring channels is used to optimize filter bandwidth, and to signal the quality
of the analysis. These cross-checks lead to an optimal time–frequency representation without
requiring any prior information about the signal. When applied to a signal that is sufficiently sparse,
the method decomposes the signal into separate time–frequency contours that are tracked with high
precision. Alternatively, if the signal is spectrally too dense, neighboring channels generate
inconsistent estimates—a feature that allows the method to assess its own validity in particular
contexts. Similar optimization principles may be present in cochlear encoding. ©2005 Acoustical
Society of America.@DOI: 10.1121/1.1863072#

PACS numbers: 43.60.Ac, 43.60.Hj, 43.58.Ta, 43.64.Bt@ADP# Pages: 2896–2903
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I. INTRODUCTION

Time–frequency analysis is a general methodology
representing sound in two dimensions, time and freque
This is an intuitive representation, evinced by the evolut
of the musical score, which since ancient times has sho
time horizontally and pitch vertically. Time–frequenc
analysis is limited by the uncertainty principle: the resoluti
of frequency measurements is inversely proportional to
resolution of temporal measurements,1 so the time–
frequency plane has a fundamental ‘‘granularity.’’ Howev
while this limit holds for signals drawn from arbitrary en
sembles, special classes of signals may have features pe
ting a higher resolution analysis.

Many methods exist for the analysis of sparse sign
i.e., those composed of a number of well-separated to
with limited amplitude and frequency modulation rates. F
example, Greenewalt employed periodicity analysis to gr
success in his classic study of the acoustics of bird so2

One family of methodologies for the analysis of sparse s
nals is based on the calculation of instantane
frequencies—the phase derivatives of a complex fi
bank.3–9 Though these methods are capable of represen
sparse signals with high precision, they require prior inf
mation about the analyzed signal to choose the positions
bandwidth of the filters that contribute to the analysis.7,8,10A
general method for optimizing these parameters remain
open problem.11

Instantaneous frequency decomposition~IFD! provides a
methodology for optimizing the parameters of an instan

a!Current address: MIT E19-528, Cambridge, Massachusetts 02139.
tronic mail: tgardner@mit.edu
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neous frequency analysis, without reference to any prior
formation about the analyzed signal. The method consist
two phases: an expansive phase in which the input sign
split through bandpass filtering into a highlyredundantarray
of channels, and a contractive phase, in which the redun
channels are checked for agreement, or ‘‘consensus’’ and
lapsed back together.Consensus between neighboring cha
nels indicates the quality of the local frequency estimat
and is used to guide optimization of filter bandwidths. If the
signal is sufficiently sparse, the time–frequency represe
tion generated by the IFD will track the individual comp
nents of the signal with high precision. If not, poor conse
sus measures signal the failure of the method.

While our purpose in this article is to describe a prac
cal tool for the high-precision analysis of sparse sounds,
worthwhile to note its biological motivation. In one of th
earliest views of cochlear function, frequency is determin
by the spatial, or tonotopic, position of active auditory ner
fibers.12–14 An alternative form of frequency coding can b
found in the phase-locked responses of auditory hair cell15

for frequencies below 4 kHz, auditory nerve fibers prefere
tially initiate action potentials at particular phases of t
driving force. Licklider in 1951 suggested that the interva
between phase-locked spikes leads to a second represen
of frequency that is independent of the spatial arrangem
of auditory fibers.16 This representation of sound has be
experimentally and conceptually supported throu
neurophysiology,17,18 psychophysics,19–21 and functional
brain imaging.22,23 The method of instantaneous frequen
decomposition is conceptually related to this spike-inter
based coding in the auditory nerve, and provides a ration
for combining tonotopic and phase information in a sing
analysis, and for comparing frequency estimates from a
c-
117(5)/2896/8/$22.50 © 2005 Acoustical Society of America
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Downloade
dundant array of phase-locked channels. In this meth
cross-checks between tonotopic and phase information d
mine which filters contribute to the analysis, and compa
sons among neighboring channels guide optimization of
analyzing bandwidth. It is possible that similar computatio
are made in the course of neural auditory processing.14,24

II. METHOD

A. Definitions

The continuous Gabor transform, also known as
short-time Fourier transform, is defined in terms of the sig
to be analyzeds, a windowing functionw, time t, and fre-
quencyf 1:

Gw~ t, f !5E s~t!w~t2t !ei2p f ~t2t ! dt. ~1!

Gaussian windows are used throughout this article:

w5e2~ t2t0!2/s2
. ~2!

The temporal spread of this function,Dt, defined in terms of
second moments, isAp/2s, and a complementary relation
found for the frequency spread of its Fourier transform:D f
5(1/A2p)(1/s). Together, they define the uncertainty pri
ciple D f Dt51/2. For all other windowing functions,1

D f Dt.1/2. Throughout the text, the termbandwidthrefers
to D f .

Each frequencyf of the Gabor transform provides on
‘‘channel’’ in the IFD analysis. In polar form,

Gw~ t, f !5aw~ t, f !eifw~ t, f !. ~3!

The instantaneous frequencyof each channel is defined as

f w
i 5

1

2p

]fw~ t, f !

]t
. ~4!

For each channel, instantaneous frequency can be estim
from the local period of oscillation, drawn from interva
between maxima or zero crossings of the signal. In this fo
instantaneous frequency is calculated from information
mologous to the intervals between phase-locked spikes in
auditory nerve. Instantaneous frequency is calculated ana
cally as follows:

]fw~ t, f !

]t
5

] Im~ ln„Gw~ t, f !…!

]t
5ImF]Gw~ t, f !/]t

Gw~ t, f ! G . ~5!

From this expression, a formula in terms of the windowi
function w and its derivativew8 follows:7

f w
i ~ t, f !5 f 2ImFGw8~ t, f !

Gw~ t, f ! G 1

2p
. ~6!

The current method is designed for signals that aretonal,
defined in terms of smooth, time-dependent frequenc
Fk(t) and amplitudesak(t) as follows:

s~ t !5 (
k51

N

ak~ t !sin„fk~ t !…, ~7!

fk~ t !52pE
t50

t

Fk~t!dt. ~8!
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J. Gardn

d 09 Aug 2011 to 128.197.37.243. Redistribution subject to ASA license or 
d,
er-
i-
e
s

e
l

ted

,
-

he
ti-

s

A signal of this form isseparableif the Gabor transform, at
each time and frequency, receives significant energy fr
only one tone@one element of the sum in Eq.~7!#.8 Signals
analyzed in this method must beseparable, and must have
limited frequency and amplitude modulation rates. For se
rable signals with sufficiently slow frequency and amplitu
modulations, instantaneous frequenciesf w

i (t, f ) of a well-
chosen bandwidth provide excellent estimates of the
quency contours of the signal,Fk(t). This is demonstrated in
the following sections.5

We use the termsparseto refer toseparablesignals that
are modulated slowly enough to be resolved thorough ins
taneous frequency analysis. Instantaneous frequency de
position provides a method for finding the optimum ban
width of analysis, and estimatingak(t) and Fk(t), the
amplitude and frequency contours of each component. If
method is applied to signals that are not separable, or sig
with frequency and amplitude modulations that are too fa
the signal is not resolved, instantaneous frequencies do
track the signal frequenciesFk(t), and the method signals it
own error. The following sections illustrate what this mea

One class oftest signalsused in this article consist of a
sum of tones with periodic frequency modulations:

eiv0tei ~A/v!cos~vt !. ~9!

Through the Jacobi–Anger expansion, a periodically mo
lated tone can be represented as a single frequency ac
panied by an infinite sum of sidebands:

ei ~A/v!cos~vt !5 (
n52`

`

i nJnS A

v Deinvt, ~10!

whereJn(z) are the Bessel functions of the first kind. Th
relationship is referred to in the following sections.

B. Instantaneous frequency decomposition

The method of instantaneous frequency decomposi
consists of a central processing structure, an outer optim
tion loop, and a final quality check. The central process
structure computes instantaneous frequencies for channe
a filter bank of fixed bandwidth and applies a cross-che
between tonotopic and phase information to determine wh
filters contribute to the analysis. The optimization loop co
pares frequency estimates from neighboring channels to
erate a measure that we callconsensus, and uses this measur
to optimize the analyzing bandwidthD f . The quality check
uses the same measure of consensus to indicate specifi
gions of the time–frequency plane where the signal is w
resolved, and other regions where high spectral density le
to a failure of the frequency estimates.

1. Raw instantaneous frequency analysis

In the first stage of the analysis,uGw(t, f )u is computed
for each time and a dense set of frequencies, according to
~1!, for some initial choice of bandwidth. In this analysis, th
distinct values off are referred to as ‘‘channels.’’

Instantaneous frequency representation involves
remapping of the amplitudesuGw(t, f )u to new positions in
the time–frequency plane, namely„t, f w

i (t, f )…, where f w
i is

the instantaneous frequency of channelf at timet, calculated
2897er and M. Magnasco: Instantaneous frequency decomposition
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Downloade
from Eq.~6!. This first step, the raw instantaneous frequen
analysis, has been described in detail elsewhere.5

When applied to separable signals with slow modu
tions, positions (t, f ) that are far from the signal tones a
mapped onto the signal tones. This is illustrated in the
lowing figure. Figure 1 contains an analysis of two sign
according to this remapping rule. The first signal consists
two equal amplitude tones, each of which is frequen
modulated with a peak to peak modulation depth of 70 H
over a period of 14 ms. The second signal is white noise.
frequency estimates generated from each channel pro
one continuous line in each figure.@To avoid confusion, note
that in panel~a!, many lines overlap, leading to the appea
ance of a continuous distribution.# For the white noise signal
each channel responds to a slightly different portion of
white-noise spectrum, leading to a spread in frequency c
tours estimated from neighboring channels. The structur
this web of lines is sensitive to the bandwidth of the filt
bank.

2. Tonotopic cross-check

The darkest lines in Fig. 1, panel~a!, fall on the correct
frequency contours of the signal. The lighter gray lines t
deviate from the correct contour are generated by filt
whose central frequencies are far from the primary frequ
cies in the signal. A qualitative explanation of this is as f
lows: for an unmodulated tone, off-center filters perfec
detect the true frequency, but for modulated tones, off-ce
filters distort the signal. Modulated signals have a broad
quency spread@Eq. ~10!#, and off-center filters truncate thi
broad frequency representation more drastically than c
tered filters.

The signal representation is improved by establishin
notion of ‘‘jurisdiction’’ for each channel. Whenever instan
taneous frequencyf w

i (t, f ) is far from the center of channe
~f!, this estimate is discarded. That is, foru f w

i (t, f )2 f u.C,
the local estimatef w

i (t, f ) does not contribute to the analysi
The constantC we call thelocking window. When this crite-
rion is applied to a dense array of filters, discarding chann
that are not ‘‘in lock’’ is no loss, since for each portion of th
signal, there is some channel that is positioned correc
~The number of channels locking onto a single pure tone

FIG. 1. Raw or unrefined IFD analysis for a two-tone signal~a! and white
noise~b!. The filter bank contains an independent filter every 10 Hz, eac
which has a frequency bandwidthD f 5220 Hz. The dimensions of the sma
rectangle in panel~a! indicate this bandwidth,D f , and the corresponding
temporal resolution of the filter as determined by the uncertainty princi
Dt51/2D f . Pixel intensity is scaled according to the logarithm of pow
and ranges over the top 20 dB of signal power.
2898 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J
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the redundancyof the filter bank, and in this manuscrip
redundancies are on the order of 10, so every frequency
gion is densely covered with similar filters.!

Figure 2 illustrates the effect of applying this criterion
the signals analyzed in Fig. 1. Any instantaneous frequen
coming from outside the locking windowC5D f /2 are not
drawn in the figure. Each panel in this figure contains
equivalent number of channels, but in Fig. 2, panel~a!, most
channels are excluded by the locking criterion. Those t
remain in the analysis condense onto two frequency c
tours. In contrast, the spread of frequencies in the analys
the white noise signal@panel~b!# indicates a failure of agree
ment among neighboring channels, and thus a violation
the central assumption that the signal is sparse. Sim
though it may be, this ‘‘blind’’ cross-check between ton
topic and phase information significantly improves the ana
sis of rapidly modulated sparse signals.

C. Bandwidth optimization through consensus

The previous section describes analysis at a fixed ba
width. To further optimize the analysis, particularly for
signal with unknown properties, this bandwidth must be a
justed to the signal. Figure 3 illustrates the result of vario
bandwidth choices in the analysis of a two-tone signal. F
the standard representation of the signal, the optimum fi
width yields Fig. 3, panel~b!. For this signal, a range of filte
widths around this optimum yield the same time–frequen
analysis~not shown!. Much wider filter widths as in Fig. 3,
panel~a!, introduce interactions between the two tones, a
much narrower filter widths@~c! and ~d!# yield a gradual
transition from the modulated tone representation to the s
of sideband representation defined by Eq.~10!. In panels~a!
and ~c!, poorly matched filters lead to detailed structures
lines that are sensitive to the precise bandwidth of
analysis—a ‘‘fragile’’ representation of the signal.

Bandwidth is optimized by minimizing the linewidth, o
consensusof the frequency estimates. This optimization c
utilize a number of different objective measures of chan
consensus. In this article, consensus is defined in terms o
interval between instantaneous frequency estimates f
neighboring channels that are ‘‘in lock’’~previous section!.
Specifically, consensus is the median value of 1/u f w

i (t, f a)
2 f w

i (t, f b)u, where f a and f b are center frequencies fo
neighboring channels that are ‘‘locked’’ at timet.

f

:

FIG. 2. The single channel tonotopic cross-check improves pitch track
The same analysis as in Fig. 1, after applying a locking windowC5D f /2
5110 Hz. This cross-check removes frequency lines produced by off-ce
channels.
. Gardner and M. Magnasco: Instantaneous frequency decomposition
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This measure performs best when frequency estim
with insignificant amplitude are excluded from the calcu
tion of consensus. In practice, information is drawn on
from channels whose instantaneous amplitude is greater
the median instantaneous amplitude over all channels.

Figure 4 demonstrates that this measure is maximize
the optimum bandwidth for the signal discussed in Fig.
For the sparse signals analyzed in this paper the optim
bandwidth is found at a single, well-defined maximum
this measure of cross-channel consensus. Bandwidth op
zation through consensus can, in principle, be generalize

FIG. 3. Instantaneous frequency analysis requires bandwidth optimiza
The analysis of a signal consisting of the sum of two frequency modul
tones. One tone is centered at 2.2 kHz, the other at 2.8 kHz. Each to
modulated with peak to peak variations in frequency of 70 Hz, at a perio
14 ms. The filter bank follows the design used in Fig. 2, but the bandw
D f of the filtering~indicated by the gray rectangle in each figure! varies for
each panel as follows:~a! 550 Hz;~b! 270 Hz;~c! 80 Hz; ~d! 10 Hz. @Each
rectangle covers the area defined by Gabor uncertainty, though the rect
in panel~d! only covers half the actual time scale due to the limited dim
sions of the figure.# Filters that are too wide, as in panel~a!, introduce
interactions among signal components. Filters that are too narrow@panels~c!
and ~d!# lose temporal resolution.

FIG. 4. The optimum bandwidth is derived from the consensus maxim
The cross-channel consensus is plotted as a function of the filter bank b
width, for the two-tone signal analyzed in Fig. 3.
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J. Gardn
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D. Quality checks through consensus

This analysis can be applied to sparse sounds—sou
whose tonal components are separable and modulated s
ciently slowly. Fast modulations imply extended frequen
representations, so modulated tones with separable ce
frequencies may nevertheless have significant freque
overlap due to their modulations. To illustrate why fa
modulations require wideband analysis, consider a pure t
at frequencyv that is periodically modulated in amplitude a
a lower frequencyv2 . This signal, cos(vt)cos(v2t) is equiva-
lent to (1/2)cos„(v2v2)t…1(1/2)cos„(v1v2)t…, and to ac-
curately represent it within a single band, a filter centered
v must have a frequency bandwidth of at least 2v2 .

Similarly, Eq. ~10! reveals that a single tone with per
odic frequency modulation involves a sum of sidebands w
an infinite extent in frequency. Any bandpass filtering w
involve truncations of the sum, and the severity of the tru
cation depends on the center frequency and bandwidth o
filter, as well as the time scale and amplitude of the mo
lations. If a signal is sparse by our definition, the truncat
of frequency modulations at the optimum bandwidth is ne
ligible, and neighboring channels produce very similar
sults. Alternatively, if the signal is not sparse, truncation
significant, leading to distinct frequency estimates in diff
ent channels. For this reason, the magnitude of the cr
channel consensus indicates the degree of error in the an
sis.

Figure 5 demonstrates a correlation between cro
channel consensus and frequency error for a family of
signals. Each signal in the set consists of two frequen
modulated tones separated by a fixed interval, as illustra
in Fig. 3. For large intervals between tones and slow mo
lation rates, the signal is spectrally sparse and can be
solved with the IFD method. For small intervals betwe
tones and fast modulation rates, the tones overlap and e
in the analysis increases. To generate the figure, the optim
bandwidth is first determined for each signal by maximizi
consensus, as described in the previous section. At the
mum bandwidth, rms error between the known signal cont
and the IFD estimate is plotted against the median conse
value over the time–frequency plane. When modulation ra
are too fast to resolve, consensus measures decrease.

In addition to averaged quality measures, consen
within local regions of the time–frequency plane can in
cate well-resolved signal components within a larger ana
sis. ~Even the white noise analysis in Fig. 2 displays wh
appear to be ‘‘caustics,’’ or regions of high agreement b
tween nearby filters, though the overall analysis is charac
ized by low consensus.!

In summary, consensus between redundant channe
used to guide bandwidth optimization, and to signal the qu
ity of the final analysis. In principle, local consensus me
sures can be used to find spectrally sparse components w
more complex signals, or to adapt a bandwidth separately
different regions of the time–frequency plane.
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III. RESOLUTION AND PRECISION

Understanding the limits of the method requires int
ducing a distinction betweenresolutionandprecision, a dis-
tinction well developed in, e.g., microscopy. Precision is
accuracy with which the position of a given object can
computed, while resolution is the smallest distance at wh
two objects may be discriminated as distinct.

A. Resolution

The IFD analysis requires that the bandwidth of the
ters be narrower than the separation between adjacent
quency components. Since the time accuracy of the ana
is inversely proportional to bandwidth, the IFD resolution
constrained by a variant of the Fourier uncertainty relatio

DT D f min>
1

2
, ~11!

whereD f min is now the minimum separation between ad
cent frequency components, andDT the effective time reso-
lution with which frequency changes can be tracked.

The resolution limit of the IFD method can also be d
scribed in terms of the maximum modulation rates that
be resolved for a given separation of frequency compone
One example of this limit is as follows: for frequency mod
lations that are faster than the depth of modulation (A<v)
in Eq. ~10!, D f /2 must be greater than the modulation ratev,
otherwise sidebands of the modulated signal are seve
truncated.

FIG. 5. The consensus measure indicates the degree of error in frequ
estimates. Test signals consist of two rapidly modulated tones simila
those illustrated in Fig. 3. The peak to peak modulation depth varie
uniform steps from 100–400 Hz, modulation rate from 20–300 Hz. T
interval between the tones is varied in uniform steps from 1200 Hz to 1
Hz. The analysis employs 500 uniformly spaced channels from 0–3 k
The bandwidth is first optimized for each signal, according to the autom
procedure described in the text. At the optimum bandwidth, the me
value of consensus is plotted against the median error of frequency
mates, based on the known signal content. For the most rapidly modu
signals~3 ms modulation period!, the rms error in frequency estimates
only 10 Hz. This precision can be compared with the frequency uncerta
of standard Gabor analysis that must be roughly 300 Hz to accommodat
temporal responses that would resolve 3 ms features.
2900 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J
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B. Precision

As for other methods specialized for sparse sounds,
can achieve high precision in both time and frequen
whereas general Fourier analysis is limited by the unc
tainty principle. For example, frequency errors for the s
nals analyzed in Fig. 5 range from less than 1 Hz to 10
whereas the time scale of modulations in these signals im
a classical frequency uncertainty as high as 300 Hz.

Figure 6 contains an explicit comparison with classic
frequency uncertainty for a family of test signals. To produ
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FIG. 6. A comparison of general time–frequency precision based on s
tral derivative pitch tracking~SD! with IFD estimates. The rms error in pitch
tracking is plotted as a function of the modulation rate of the test sign
The analyzed signal contains modulated tones centered on 1100, 2000
2900 Hz. Each tone is independently modulated with fast freque
modulations—200 Hz peak to peak in panel~a! and 40 Hz peak to peak
modulations in~b!. The optimum time scale of the windowing function i
the Fourier analysis was determined and used in this comparison~21 ms!.
~In the spectral derivative analysis, the windowing functions are pro
spheroidal sequences.! The fixed bandwidth IFD analysis uses Gaussi
windows of duration 1.6 ms. The IFD analysis~like many other methods
adapted to sparse signals! achieves a pitch tracking precision that can
orders of magnitude sharper than the resolution of general Fourier ana

FIG. 7. Vocal illustrations: analysis of a whistle in a canary song. Panel~a!
contains a windowed short-time Fourier analysis or sonogram with the
lowing parameters: analyzing window 23 ms, 80% overlap. Panel~b! con-
tains an IFD analysis with channels of bandwidthD f 5600 Hz, spaced 20
Hz apart. The locking window for this analysis isD f /2. Panels~c! and ~d!
contain close-up views of a frequency instability in the whistle. Pixel inte
sities for all four panels were scaled from white~30 dB below the maximum
power! to black ~maximum power! according to the logarithm of signa
power. The fundamental resolution of classical time–frequency anal
(D f Dt.1/2) is indicated by the gray rectangle in panel~c!.
. Gardner and M. Magnasco: Instantaneous frequency decomposition
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this figure, frequency contours of the test signals are e
mated based on either IFD or a short-time Fourier met
~zero crossings of multitaper spectral derivatives25–27!. The
rms error in frequency contour estimation was then cal
lated. Over a range of modulation rates, the IFD analysis
fixed bandwidth achieves a precision of frequency estima
one or two orders of magnitude sharper than the resolutio
general Fourier analysis.

Enhanced resolution for sparse signals is not surpris
Any method specialized for sparse sounds will outperform
more general time–frequency analysis. For specific sig
ensembles, specialized applications of Fourier analysis
also outperform the limits of the general method. For e
ample, in the analysis of sparse signals, frequency cont
can be more precisely localized by interpolating the Fou
estimates between frequency bins.28 Comparisons have bee
made among methods of Fourier interpolation29,7 and mea-
sures of instantaneous frequency. In the vicinity of a spec
peak, instantaneous frequency measures meet or excee
precision of pitch tracking achieved through Four
interpolation.29,7

Relative to other specialized methods, the primary
vantage of the IFD method is the generality conferred
redundancy and cross-check. No information is needed a
the analyzed signal to apply the method. If the signal is s
ficiently sparse, an optimized analysis is found without r
erence to the signal character.

FIG. 8. Vocal illustrations: analysis of a fragment of operatic voice. Pa
~a! contains a windowed short-time Fourier analysis using a 42 ms slid
window. Panel~b! contains the instantaneous frequency decomposit
D f 570 Hz. Pixel intensities for both panels are scaled from white~30 dB
below the maximum power! to black ~maximum power! according to the
logarithm of signal power. As in previous figures, the resolution of
uncertainty principle is indicated by the gray rectangle in the figure.

FIG. 9. Vocal illustrations: analysis of the word ‘‘woman.’’ Panel~a! con-
tains a windowed short-time Fourier analysis using a 21 ms sliding wind
Panel~b! contains the instantaneous frequency decomposition,D f 570 Hz.
Pixel intensities for both panels are scaled from white~40 dB below the
maximum amplitude! to black ~maximum amplitude! according to the log
power of the signal.
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J. Gardn
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C. Analysis of voice signals

This final section illustrates three applications of the IF
method to the analysis of vocal signals. Figure 7 illustrate
comparison with general time–frequency analysis for a s
lable in a canary song. The syllable consists of a sum
tones of very narrow spectral definition. The frequency
stabilities of the whistle, expanded in panels~c! and~d!, are
resolved in detail. The fine structure revealed in tonal b
song is useful for generating more accurate studies of vo
production and perception. In a variety of experiments, bi
have demonstrated great acuity for distinguishing fast mo
lations of high-frequency signals, and thus the structure
vealed in a higher resolution analysis is likely to be perc
tually relevant.30,31

Figure 8 contains an analysis of vibrato from an ope
singer’s exercises, and Fig. 9 contains an analysis of
word ‘‘woman’’ spoken by a female speaker. The relative
low frequency of human voiced sounds results in narr
spacing between the overtones, requiring the use of fil
narrowly tuned in frequency to separate the components,
thus a corresponding loss of temporal definition. Even so
many cases as in Fig. 9, the instantaneous frequency
amplitude for most harmonics can be reliably extracted w
high definition. In general, the applicability of the ne
method to speech analysis is limited to those portions of
signal that are spectrally sparse. Figure 10 illustrates cr
channel consensus as a function of bandwidth for the hum
vocal signals. In both cases, there is a distinct maxim
consensus at the optimum analysis bandwidth.

IV. CONCLUSION

IFD represents sparse signals in time and frequency w
high precision through a self-optimized instantaneous
quency analysis. Two aspects of cross-validation are
ployed to optimize the analysis. The tonotopic cross-ch
compares tonotopic and phase information within each ch
nel. A filter contributes locally to the analysis only if it
center frequency and instantaneous frequency match.
second cross-check, the consensus of frequency estim
from neighboring channels is used to guide the optimizat
of analysis bandwidth for a given signal, and to signal t
degree of error in the analysis. When applied to sparse
nals, the redundant channels of the IFD generate high c

l
g
,

.

FIG. 10. Consensus properly guides bandwidth selection of the human v
signals. The cross-channel consensus is plotted as a function of bandw
for the fragments of human voice in Fig. 8 and Fig. 9. The optima co
spond to bandwidths chosen in the previous figures.
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sensus at the optimum bandwdith, and the analysis splits
signal into component tones, each tracked with high pre
sion. In cases when the IFD method is applied to signals
are spectrally too dense, redundant channels fail to coin
at any bandwidth, signaling the breakdown of the metho

The elements of this analysis may be relevant to au
tory processing. Many animal vocalizations contain we
defined pitches that are rapidly modulated, and neural a
tory processing has evolved under a need to m
demanding distinctions in both time and frequency simu
neously. To achieve an optimum representation of spa
sounds, IFD provides a rationale for integrating informati
from tonotopic and phase information in the auditory ner
Cross-checks between spike intervals and the tonotopic
sition of a fiber could select the fibers with optimal cen
frequencies. A similar criterion was employed by Srulovi
and Goldstein to explain psychophysical data for the perc
tion of simple unmodulated signals.24 Second, confidence
can be placed on a frequency estimate when different ch
nels with overlapping passbands generate similar sp
intervals.14 Among a redundant set of nerve fibers with var
ing bandwidths, the cells that form a consensus in their
terspike intervals may stand out as salient, preferenti
drawing information from channels whose bandwidth w
well suited to the local signal content. As early as the
chlear nucleus, there are cells that receive inputs from a
tory fibers with a range of center frequencies,32 thus at this
stage of auditory processing or beyond, measures of cr
channel consensus could in principle be implemented.

The method of cross-channel comparison has the po
tial for high compression and top reconstruction quality
the end stage, but at the computational cost of highly red
dant arrays of sensors, and a large number of cross-cha
comparisons. Early expansive stages in the neural pathw
of hearing and vision33,34 may serve a similar function: to
provide higher accuracy and efficiency not at intermedi
stages,35 but at the far end of the processing pipeline.
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