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An approach to time-frequency analysis with

ridges of the continuous chirplet transform
Mikio Aoi∗, Kyle Lepage, Yoonsoeb Lim, Uri Eden, and Timothy J. Gardner

Abstract

We propose a time-frequency representation based on the ridges of the continuous chirplet transform

to identify both fast transients and components with well-defined instantaneous frequency in noisy data.

At each chirplet modulation rate, every ridge corresponds to a territory in the time-frequency plane such

that the territories form a partition of the time-frequency plane. For many signals containing sparse signal

components, ridge length and ridge stability are maximized when the analysis kernel is adapted to the

signal content. These properties provide opportunities for enhancing signal in noise and for elementary

stream segregation by combining information across multiple analysis chirp rates.

I. INTRODUCTION

The continuous chirplet transform (CT) [1] is a time-frequency representation (TFR) that generalizes

the Gabor transform to represent signals with linear frequency modulation [2], [3]. Since the quality

of a TFR, reflected by such properties as energy concentration and the variance of derived parameter

estimates, is dependent on how well-adapted the TFR is to the signal, the CT offers more flexibility for

parsimonious representation than traditional TFR’s with an unmodulated basis.

However, because many signals are formed by multiple components, or display nonlinear frequency

modulation, methods that adapt a single CT to the whole signal may fail to represent each component
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optimally. An improvement can be achieved by taking many transforms, and adapting the representation

across these representations to each component separately by leveraging properties of the signal class of

interest. One such property is phase continuity.

Many physical signals display continuous phase advancement that persists for several cycles (oscilla-

tions) or is coordinated across frequencies (fast transients). Such phase continuity is reflected in the phase

of a complex TFR that is continuous in time and frequency. In spite of the ubiquity of phase-continuity

in natural signals, the most common discrete-time analyses of frame-based TFRs treat each point in

the time-frequency plane independently of every other point, ignoring a priori information regarding

continuity of phase in time and frequency. In fact, many sparsity-enforcing algorithms impose penalties

for the inclusion of correlated coefficients in a representation [4]–[7].

The purpose of this paper is to propose a strategy for leveraging phase continuity of signal components

to develop an adaptive TFR in which each component in a signal is represented parsimoniously, relative

to the chirplet basis family. The work builds on a contour representation of sound derived from the ridges

of the Gabor transform [8], [9]. In the present study, we generalize the contour representation of sound

to a derivation based on the ridges of the CT, and consider new signal representation issues that arise in

this context.

Using the CT-based approach, bias in instantaneous frequency (IF) estimation of an amplitude-modulated

component, with approximately linear frequency modulation, is reduced or eliminated when the analysis

chirp rate matches the modulation rate of the signal. For components with nonlinear modulation, the

bias reduction comes at the price of requiring the evaluation of the transform at various modulation

rates. Thus, ridges that represent the same component, but were extracted using multiple transforms,

form complimentary estimates that need to be combined to contribute all available information to a given

estimate. This approach of combining estimates across transforms also reduces the need to search for a

single analysis parameter (such as a “best” window width [8], [10]).

The organization of this paper is as follows: In Section II we will review the basic notation and

concepts used in the rest of the paper, including development of the theory of chirplet ridges for both

intrinsic-mode-type (IMT) [11] and click-like signals. In Sec. III we conduct an analytic case study of

the ridges extracted from a deterministic, noise-free chirp and compare the properties of the proposed

method with the previous method of [8], [9]. In Sec.IV we demonstrate properties of ridges that can be

used to identify oscillatory signal components. We show, consistent with the notion of physical signals

displaying smooth phase progression over extended regions of the time-frequency plane, that the length

of a ridge is a useful metric for signal detection. We further show that the stability of ridge estimates with
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respect to analysis parameters can be used to adaptively enhance the representation of signal components

on a per-component basis. We illustrate these principles using both simulated data and sample data from

zebra finch vocalizations. Finally, in Section V we discuss some properties of the chirplet ridge equations,

provide several interpretations and perspectives on them, and highlight the relationship with other ridge

extraction methods.

II. NOTATION AND BACKGROUND

The contour representation of sound developed in [8], [9] is a generalization of methods known more

broadly as ridge and skeleton methods. Ridge and skeleton methods [12]–[14] are invertible TFRs which

define ridges as curves in the time-frequency plane that represent the IF of a signal component. The

restriction of signal resynthesis to these ridges is called the “skeleton”. Ridge and skeleton methods have

been used for estimation of component IF, phase, and amplitude in fields such as mechanical and civil

engineering [15]–[17], analysis of chaotic attractors [18], and neuroscience [19], [20]. These methods

are similar in spirit and application to high-resolution TFRs like time-frequency reassignment [21], [22],

synchrosqueezing [23] and the Hilbert-Huang transform [24] in that they seek to identify, characterize,

and decompose non-stationary, multicomponent signals by the IF of localized components.

Ridges, in the context of [8], [9], are used to explicitly link together associated points in the time-

frequency plane resulting in an “object-based” TFR. In this method, objects are defined by the phase

(alternatively, modulus [25]) of the Gabor transform. From this perspective, the fundamental objects

of representation are not taken to be finer grain “atoms,” of the discrete transform, but rather, the

fundamental objects are the ridges themselves (although in practice, the continuous transforms are

estimated at discretely sampled times and frequencies). While the method implies no constraints on the

signal beyond `2 integrability, parsimonious component representations are possible for signals containing

sparse, separable components, such as brief transients, or IMT [11] components with well-defined IF.

While “separability” of components traditionally refers to some notion of discriminabilty in the frequency

dimension, in the present context we generalize separability to refer to discriminability in some direction

in the time-frequency plane.

In this section, we will define the ridges described in [8], [9] and develop the associated ridge theory

for the CT.
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A. Directed Gabor ridges

The contour representation of sound described in [8], [9] are based upon the ridges defined by

directional derivatives of the Gabor transform phase. In this section we provide a formal definition

of these ridges and define the territories in the time-frequency plane associated with these ridges.

The Gabor transform of any complex signal x(t) is defined as

χg(τ, ω) = 〈x, gτ,σ,ω〉,

= |χg(τ, ω)|eiφg(τ,ω),

where 〈x, gτ,σ,ω〉 =
∫∞
−∞ x(t)g†τ,σ,ω(t)dt, and gτ,σ,ω(s) = (2πσ2)−1/4 exp[−(s − τ)2/2σ2 + iω(s − τ)]

is the unit `2 norm Gabor kernel, and † denotes complex conjugation. The parameter σ determines the

width of the analysis window in the time domain.

Commonly, the Gabor ridges are defined by

∂φ(τ, ω)

∂τ
= ω, (1)

or, equivalently [25], [26] (see Appendix A),

∂ log |χ(τ, ω)|
∂ω

= 0, (2)

where χ(τ, ω) may represent either the Gabor or complex wavelet transforms, and φ(τ, ω) is the transform

phase (for examples see [12], [13], [23], [27], [28]). We will show in Section III that ridges defined by

(2) give biased estimates of the IF of frequency- and amplitude-modulated components. Furthermore, the

ridges of (2) are not useful for the identification of fast transients.

In [8], the ridges (their “contours”) of χg, with directionality θ are defined by a linear combination

of the derivatives of φg(τ, ω). These linear combinations can be described as directional derivatives of

φg(τ, ω). If we define the rotated coordinates (uθ, vθ) = (τ, ω)RT , where R = (cos θ, sin θ;− sin θ, cos θ)

is the standard rotation matrix, then we can define the directional Gabor ridges in terms of points (τ, ω)

that satisfy
∂φg(τ, ω)

∂uθ
= ω cos θ, (3)

or, equivalently1

Im

{
χT g(τ, ω)

χg(τ, ω)
(

1

σ2
cos θ + i sin θ)

}
= 0, (4)

1While the definition of the ridges in [8] is given by the points satisfying Im{σ−1eiθχg(τ, ω)/χT g(τ, ω)} = 0, we modified

the definition for the purposes of this paper to conform more closely with the notion of ridges as solutions to equations with

directional derivatives of φg and for θ to correspond to the standard polar angle coordinate.
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where χT g = 〈x, T gτ,σ,ω〉, and T gτ,σ,ω(t′) = (t′− τ)gτ,σ,ω(t′). Note that u0 = τ and uπ/2 = ω, defining

the direction of the derivative as the direction with angle θ from the τ axis. Thus, (3) is a generalization

of (1), where (1) is obtained from (3) by setting θ = 0.

The directed Gabor ridges can be used to improve detection and estimation of both types of components

[9].

1) Gabor ridge territories: Let C∗θ be the set of points which satisfy Eqn. (4), and Cθ ⊂ C∗θ be the

subset of C∗θ corresponding to local maxima of log |χg(τ, ω)| with respect to the direction θ. Suppose

that, for a given x(t) there are K ridges corresponding to maxima, with respect to direction θ. We

can define Cθ,k as the points on the kth (k = 1, 2, . . . ,K) ridge. Since ridges do not intersect [8] each

(uθ,k, vθ,k) ∈ Cθ,k can belong to only one ridge.

For each θ, k we can define a unique territory Ωθ,k containing the kth ridge;

Definition II.1. Ωθ,k is the connected set such that ∀(uθ, vθ) ∈ Ωθ,k, and ∀(u∗θ, v∗θ) ∈ Cθ,k, the following

conditions are met :

1) vθ ∈ Cθ,k
2) If uθ > u∗θ,k then ∂θ log |χg(τ, ω)| ≤ 0,

3) If uθ < u∗θ,k then ∂θ log |χg(τ, ω)| > 0

4) Cθ,k ⊂ Ωθ,k,

where ∂θ = ∂/∂uθ.

The connectedness of Ωθ,k ensures that each Ωθ,k not composed of disjoint regions, and conditions

1)-3) thereby define the boundaries of Ωθ,k. Ωθ,k only composes the entire time-frequency plane in the

special case that there is only one ridge (K = 1).

Each Ωθ,k corresponds to a basin of attraction of the reassignment procedure [26], [29] when reassign-

ment is constrained to displacement only along the uθ axis. The set of all Ωθ,k’s forms a partition of the

time-frequency plane. Note that an equivalent definition of Ωθ,k can be formulated in terms of the phase

of the Gabor transform as well (Appendix A). Each ridge in Cθ corresponds to a phase-continuous region

of χg(τ, ω) whose primary influence in the time-frequency domain is constrained to Ωθ,k. A unique

set of ridges exist for each θ and σ. The authors of [8] suggested that the ridges and territories which

best represent a frequency-modulated (FM) signal are those for which the direction θ matches the local

modulation rate of the signal, but this was not explicitly demonstrated. In Sec. III-C we formalize this

assertion and show that this is approximately true for signals with linear frequency modulation, and is

strictly true in the limit of a constant-amplitude signal.
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The above does not imply that Cθ,k and Ωθ,k describe a single component, or that they in fact represent

signal components at all (as opposed to noise), only that they are well-defined with respect to a single

value of σ and θ for each Gabor transform. In the following sections we develop machinery which can

be used to distinguish ridges representing noise from ridges representing deterministic signal components

when applied to the CT.

B. Ridges of the CT

The ridge representation defined in the previous section seeks to decompose a time series into time-

frequency ridges Cθ,k and territories Ωθ,k that are defined by the data, but the decomposition is influenced

by the transform kernel. Here we generalize the approach of [8] to ridges derived from the CT.

The CT of x(t) is defined as

χc(τ, ω) =〈x, cτ,σ,ω,β〉 (5)

=|χc(τ, ω)|eiφc(τ,ω),

where〈x, cτ,σ,ω,β〉 =
∫∞
−∞ x(t)c†τ,σ,ω,β(t)dt, and c†τ,σ,ω,β(t) =

(
2πσ2

)−1/4
exp[−α

2 (t− τ)2 − iω(t− τ)],

with α = 1/σ2 + iβ. By analogy with (4) and (2), the chirplet ridges will be defined as the points

satisfying

∂ log |χc(τ, ω)|
∂uθ

= Re
{
χT c(τ, ω)

χc(τ, ω)
(α cos θ − i sin θ)

}
, (6)

= 0,

where χT c(τ, ω) = 〈x, T cτ,σ,ω,β〉 and T cτ,σ,ω(t′) = (t′ − τ)cτ,σ,ω,β(t′). We define the local maxima

Cθ,k,β and associated territories Ωθ,k,β of χc(τ, ω) similarly to the ridges and territories for χg in Sec.

II-A. However, this representation now depends on three parameters, θ, σ, and β.

In what follows, we focus on ridges defined by θ = 0 corresponding to the points (τ, ω) satisfying

∂ log |χc(τ, ω)|
∂τ

= 0, (7)

and θ = π/2, corresponding to
∂ log |χc(τ, ω)|

∂ω
= 0. (8)

We will show in Sec. III that the θ = π/2 ridges track the IF of brief chirp components when β matches

the modulation rate of the component. In contrast, the ridges defined by θ = 0 can resolve fast transients.

In principle, ridges derived from additional values of θ can be used to compute the stability of time-

frequency estimates to variations in analysis, and this information used to further enhance a component-

wise TFR [9]. This extension, however, is beyond the scope of the present work.
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A B C

Fig. 1. Time-frequency resolution enhanced by variation in window orientation. A comparison between the time-frequency

uncertainty ellipses for the Gabor transform for high frequency resolution, but low time resolution (A), low frequency resolution,

but high time resolution (B), and with the CT with non-zero modulation rate (C). Time-bandwidth product is indicated by the

area of the rectangle bordering the ellipse.

C. Advantage of the CT

The CT permits resolution of closely spaced, FM components which is not possible using monotone

basis elements [30]–[32]. To illustrate this point, consider two FM components with IF’s that are oriented

in parallel in the time-frequency plane. If the components are closely spaced in either time (Fig. 1A) (or

frequency (Fig. 1B)) then a large (small) analysis window width parameter σ will make the analyzing

Gabor kernel cover both chirps and the two chirps will not be resolved . For components closely spaced

in both dimensions there may not exist any scale for which the two chirps can be resolved using the

Gabor transform.

In the case of the CT, the orientation of the ellipse is determined by the chirp rate β of the analyzing

chirplet. If the ellipse is sufficiently rotated (Fig. 1C), and the scale permits a sufficiently narrow ellipse,

then each chirp can be resolved without significant interference. In practice, data that display multiple

components, or nonlinear frequency-modulation, will not be well characterized by a single value of β

and σ, requiring us to use multiple values of (β, σ).

III. RIDGE ANALYSIS OF CHIRPS

In this section we use the ridges defined by (7) and (8) to conduct an analysis of IMT [11] and

asymptotic components, for which the IF is well-defined and the amplitude varies slowly compared to

the phase, and click-like non-IMT components, for which the amplitude varies quickly compared to the

phase. To this end, we will consider a generalized mono-component signal

x(t) = Ae−(t−t0)
2/2s2+iφ(t).
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To simplify our analysis we approximate this component with a second-order Taylor expansion of the

phase about t0,

x(t) ≈ A exp[−(t− t0)2/2s2

+ i(b(t− t0)2/2 + ω0(t− t0) + φ0)], (9)

where φ0 = φ(t0), ω0 = φ′(t0), and b = φ′′(t0). The purpose of this exercise is to demonstrate the

usefulness of the CT ridges as IF estimators when the signal component has approximately linear FM

over a time scale comparable to the analysis window width, σ. Here then, s represents the time scale on

which the frequency modulation of the component is approximately linear and the IF is given by

ω(t) = b(t− t0) + ω0. (10)

We will use the intuition we gain here in Sec. IV to develop heuristics based on ridge properties which

will be useful for methods of component detection. We will then compare the results found here with

analogous results for the directed Gabor ridges.

Punctate events such as pulses and clicks can be modeled as special cases of (9) where the signal

duration is very short relative to the analysis window width. When A = A0(2πs
2)−1/2, where A0 is any

real, positive constant, this component has the property that, in the limit as s → 0, x(t) → δ(t − t0),

where δ(t− t0) is the Dirac delta function centered at t0. This property allows us to study the effects of

discontinuities and fast transients in the signal by examining the behavior of the ridges in the passage to

this limit.

A. Chirplet ridges of oscillatory components

We can identify the ∂ω log |χc| = 0 ridges of the CT of (9) by the formula given in (6) with θ = π/2.

The resulting ridge satisfies

∂ log |χc(τ, ω)|
∂ω

= c1 [c2(ω0 − ω) + c3(τ − t0)] = 0, (11)

where c1 = [(β − b)2 + (1/σ2 + 1/s2)2]−1, c2 = 1/s2 + 1/σ2, and c3 = b/σ2 + β/s2. For s, σ > 0, the

∂ω log |χc(τ, ω)| = 0 points correspond to

ω =

(
βσ2 + bs2

σ2 + s2

)
(τ − t0) + ω0, (12)

which is a line in the time-frequency plane whose slope is a weighted average of b and β. When the

analysis chirp rate and the signal chirp rate match (i.e. β = b) this line reduces to

ω = b(τ − t0) + ω0,
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which reproduces (10), the IF of the signal, independent of the signal width s or the analysis window

width σ. This independence is advantageous as it allows us to identify the IF of the signal in a regime

where the estimate is insensitive to s and σ.

Noting that cτ,σ,ω,β(t) reduces to gτ,σ,ω(t) when β = 0, we find that the ∂ω log |χg(τ, ω)| = 0 ridge

can be expressed as

ω =

(
b

σ2/s2 + 1

)
(τ − t0) + ω0.

Therefore, the ridges most commonly used for IF estimation by the ridge technique only recover the

IF (10) in the limit as σ/s → 0; i.e. as the amplitude of the linear IF regime becomes constant

with respect to the analysis window. This may not be possible, even approximately, when there are

multiple FM components which are closely spaced in frequency (ex. modulated harmonics with slow

fundamental frequency), where making σ too small will result in interference between components.

Thus, for most reasonable values of σ, the local maximum of log |χg(τ, ω)| gives a biased estimate of

the IF of components with both frequency- and amplitude-modulation.

B. Click-like components

In practical data analysis conditions, due to limits on sampling rate, there will be a lower limit on σ

(σmin) such that if s� σmin then (12) will be dominated by

ω ≈ β(τ − t0) + ω0.

Thus, as s/σ → 0 and the signal (9) becomes more click-like, the ∂ω log |χc(τ, ω)| = 0 ridge becomes

a function of only the analysis chirp rate β, and not the signal chirp rate.

Under these conditions, the amplitude modulation of the signal is much faster than the phase progres-

sion, resulting in a signal component that more closely resembles a fast transient than a well-defined

oscillation. We would like to be able to characterize these components with a set of ridges that are not as

sensitive to the analysis parameters, analogous to the analysis demonstrated for asymptotic components

in Sec. III-A.

To this end, we consider the ∂τ log |χc| = 0 ridge of x(t), where, using Eq. (6) with θ = 0

∂ log |χc(τ, ω)|
∂τ

= c1 [c3(ω − ω0) + c4(t0 − τ)] = 0 (13)

where c1 and c3 are defined as above and c4 = β2/s2 + b2/σ2 +1/s4σ2 +1/s2σ4. The points that satisfy

∂τ log |χc(τ, ω)| = 0, obey the relation

τ =
(bs2 + βσ2)(ω − ω0)

β2σ2 + b2s2 + 1/s2 + 1/σ2
+ t0. (14)
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In the limit as s→ 0, Eqn. (14) becomes

τ = t0,

giving a ∂τ log |χc| = 0 ridge at all ω, independent of the analysis parameters σ and β. Thus, signals that

are sparse in time are well localized by the ∂τ log |χc| = 0 ridge and the representation is less sensitive

to the analysis parameters than the ∂ω log |χc| = 0 ridges.

C. Chirp analysis by directed Gabor ridges

We can assess the value of the chirplet ridge approach with respect to the prior approach of [8] by

examining the signal (9) with the ridges defined in (4). Equation (4) can be written as

cos θ(∂τφc(τ, ω)− ω) + sin θ∂ωφc(τ, ω) = 0.

Using the phase - magnitude relations provided in Appendix A, and expressions (11) and (13), we find

that the phase derivatives are given by

∂τφc(τ, ω)− ω = c1
(
c′2(ω0 − ω) + c′3(τ − t0)

)
,

and

∂ωφc(τ, ω) = c1
(
c′4(ω0 − ω) + c5(τ − t0)

)
,

where c1 is the same as in Sec. III-A and c′2 = β(β − b) + 1/s2σ2 + 1/σ4, c′3 = b/σ4, c′4 = b, and

c5 = b(b− β) + 1/s2σ2 + 1/s4. We can identify the ridges of χg of the deterministic chirp, in direction

angle θ by setting β = 0. The resulting ridge representation of the signal in (9) is given by points (τ, ω)

satisfying

ω − ω0 = b̂θ(τ − t0),

where

b̂θ =

(
(b/σ4) cos θ + (b2 + 1/s2σ2 + 1/s4) sin θ

(1/s2σ2 + 1/σ4) cos θ + b sin θ

)
. (15)

In the limit as s→∞ (locally constant amplitude), we have b̂θ → b, giving a ridge identical to (10), the

IF of the component, for all σ and θ. Similarly, as s → 0 (click-like), 1/b̂θ → 0 for all b, σ, θ (except

for θ = π/2, in which case, b̂θ → 0), giving a ridge defined by τ = t0, which identifies the location in

time of the click. For 0 < s <∞, the ridge will match the IF of the chirp (b̂θ = b) when

tan θ =
b

1 + σ2/s2
. (16)
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Thus, in the limit as σ/s → 0, the directed Gabor ridge estimate of the IF of the linear FM signal is

unbiased when tan θ = b, as suggested in [8].

These results show that, as long as the component is sufficiently isolated (with respect to the uncertainty

window), the directed Gabor ridges can identify the IF of the component or the location of transients.

However, even for this simple component, in order to correctly recover the IF of the component, both θ

and σ must be chosen to satisfy (16), except in cases where the signal either has approximately constant

amplitude (s/σ large), or where this signal is click-like (s/σ small). In contrast, the linear IF can be

recovered by the chirplet ridges while only having to satisfy β = b.

IV. SIGNAL ENHANCEMENT BY RIDGE PROPERTIES

In this section we demonstrate the application of the chirplet ridges to data and how their properties

can be used to enhance signal-to-noise ratio (SNR) for click-like and IMT components by restricting

the analysis to relatively long ridges. First, some heuristics for discriminating between signal ridges and

noise ridges will be described. We then show that phase-continuous components can be discriminated

using the methods described even when their IFs cross in the time-frequency plane.

A. Signal amplification by ridge length

Sparse signals such as clicks or IMT components can introduce long-range dependencies in the time-

frequency plane in the phase of χg(τ, ω). These dependencies correspond to standard notions of the

phase evolution of physical signals, and are therefore displayed as persistent phase continuity in the

time-frequency plane. Since white noise has random phase, this persistent phase continuity of the signal

may be exhibited as ridges that are longer than the typical ridge length for white noise-only data. Thus,

we hypothesized that ridge length may be an effective metric for distinguishing between ridges formed

by noise, and those formed by the presence of signal components. For simplicity, we defined ridge length

simply as the number of pixels belonging to a ridge and the ridge is defined as in (8)2.

We examined the distribution of ridge lengths in the presence and absence of signal by simulating

data with a single linear, Gaussian modulated chirp as described by (9) in Gaussian white noise and

extracted the ridges at varying analysis modulation rates β. Repeating the analysis for 1000 trials, we

compared the estimated distribution of resulting ridge lengths between data with signal+noise and data

2Because the phase of χc(τ, ω) is smooth with respect to both τ and ω everywhere except at its zeros [33], [34] we reasoned

that ridges never branch, since branching would be associated with a discontinuity in the phase of χc. Thus, the “length” of a

ridge is unambiguous.

October 13, 2014 DRAFT



1053-587X (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2014.2365756, IEEE Transactions on Signal Processing

12

10
2

10
0

10
5

10
2

10
0

10
5

Contour length (pixels)

A B

Contour length (pixels)

Fig. 2. Histograms of ridge length at two analysis chirp rates Simulated chirps in noise (- -) compared to noise only (-).

The data were 50 sec long with sampling rate Fs = 100 Hz. The signal was a linear chirp as in (9) with b = 1 Hz/sec, s = 8

sec, f0 = 25 Hz, t0 = 25 sec, and A = 2. Noise was Gaussian white noise with zero mean and standard deviation = 1.

containing only white noise across varying analysis parameters. Fig. 2 shows the histograms of ridge

length for β = −1 Hz/sec (Fig. 2A) and β = b = 1 Hz/sec (Fig. 2B) for a single chirp in noise (- -),

and for noise with no signal (–). The parameters of the simulations are provided in the caption of Fig.

2. At β = −1 Hz/sec (Fig. 2A) the distribution of lengths from data containing signal does not appear

to differ from the distribution of lengths from data with noise only. However, at β = 1 Hz/sec (Fig. 2B)

the distribution shows an additional mode at the right tail for the signal-plus-noise condition. Noting that

β = b in this case, Fig. 2B suggests the presence of consistently longer ridges when the analysis and

signal chirp rates match3. This result suggests that by rejecting all ridges but those in an upper quantile

of length we can restrict our analysis to only those ridges most likely to correspond to signal and that

represent high-quality IF estimates. We will demonstrate the usefulness of ridge length for improving

SNR in Sec. IV-B, IV-C, and IV-E by using the top 1% of ridges by length.4

B. Signal enhancement by ridge density

In Sec. III we showed that, as σ/s decreases, the ridge estimate of the IF will have decreasing bias and

be less sensitive to the value of β. Thus, even for nonlinear modulation, if we can set σ/s� 1 (provided

this is possible with respect to the sampling constraints discussed in Sec. III-B) then the ridge estimate

of the IF will be close to the true IF in a neighborhood of points where β = φ′′(t). If we obtain multiple

3Simulations were conducted for various values of σ, however, those results were qualitatively similar to the results presented

here.
4While this threshold was somewhat arbitrary, it is supported by the analysis in Fig. 2 and the quality of the resulting

representations across the examples that we present here. However, the optimal threshold is likely to be dependent on the data

SNR and the amplitude modulation of the signal. Future studies should include a more systematic study of how the ridge length

distribution is influenced by the data properties.
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ridge estimates (with varying analysis parameters) and sum them, then insensitivity to analysis parameters

would result in a high density of ridges in regions of the time-frequency plan containing signal. In this

section, we develop this argument and identify conditions in which such a procedure would be successful

in discriminating between signal ridges and noise ridges.

Consider the variation in the IF with respect to β. Assuming φ′′′(t) ≈ 0 in the neighborhood of

the analysis so that the modulation is approximately linear and ω(τ) is determined from Eq. (12), the

variation in ω(τ) due to a small variation in β, (δβ) is

δω(τ) =
δβ(τ − t0)
1 + s2/σ2

.

If we let ∆t be the resolution of the time discretization and ∆β be a finite change in β then, k (k =

1, 2, . . . ) time steps from t0 we have the frequency distance equal to

δω(k∆t) =
k∆β∆t

1 + s2/σ2
.

Thus, for the discretized CT, a small change in β (∆β) will not change the coefficients that a ridge

occupies, k time steps from t0 so long as ∆β satisfies

∆β < ∆βmax ≡ (1 + s2/σ2)
∆ω

k∆t
, (17)

where ∆ω refers to the discretization in frequency. Thus, when this condition is met the representation

of the ridges will overlap for 2k − 1 time steps.

Heuristically, if we note that white noise has random phase, then the time scale of phase continuity

for white noise is essentially zero (s2/σ2 ≈ 0). It stands to reason therefore, that white noise would also

not have a directionality preference in the time-frequency plane. Thus, we can approximate the white

noise-only agreement condition as5,

∆β < ∆β0max ≡
∆ω

k∆t
. (18)

Since we must have s/σ > 0, we always have ∆βmax > ∆β0max. Thus, ridges formed by signal components

are less sensitive to variations in β than ridges due to noise.

Similarly, we can determine the sensitivity of ridges to variations in σ2. The variation in ω(τ) due to

a small change in σ2 (∆σ) is given by

δω(k) =
(β − b)∆σ

s4(σ2/s2 + 1)2
k∆t.

5Condition (18) corresponds to our experience with simulated signals in white noise and is corroborated by the noise ridges

shown in Fig. 3.
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TABLE I

VALUES OF COMPONENT PARAMETERS

Component s t0 t1 γ b f0

y1 3 3.5 4 1 4 12

y2 3 3 4.5 1 4 10

Therefore, for β ≈ b, there should be little to no difference in ridge position at any k due to a small

change in σ.

Thus, insensitivity of the ridge to β and σ indicates the presence of signal. This is similar in principle

to the “stability” of contours described in [9]. The above results suggest that signal components can be

identified by building a histogram in the time-frequency plane of the ridges derived from different values

of β and σ. If we estimate ridges formed over a range of β’s such that ∆β0max < ∆β < ∆βmax, we

are assured that ridges due to signal components will tend to overlap in the time-frequency plane more

than ridges due to noise alone. A high ridge density associated with variations in β therefore indicates

regions which contain signal components, and including variations in σ can further amplify this result

when β ≈ b. In practice, with a course sampling of the frequency axis and large s/σ, condition (17) turns

out to be easy to satisfy. Points on the ridges of (7) for click-like components can be similarly grouped,

but the expression for this grouping is more complicated and less intuitive. We use ridge density in Sec.

IV-C and IV-E to highlight salient features of data with nonlinear frequency modulation.

C. Amplification of nonlinear signal components

In this section we demonstrate signal amplification using the methods described in Sections IV-A, IV-B

of two, closely-spaced signal components with nonlinear frequency modulation in noise. We simulated

noisy data with two signal components

d(t) = y1(t) + y2(t) + n(t),

where y1(t) and y2(t) are cubic-phase components of the form

y(t) =

√
2

s2
eπ(t−t0)

2/s2+2πi(γ/3(t−t1)3+b/2(t−t1)2+f0(t−t1)),

and n(t) is Gaussian white noise with Var[n(t)] = 0.03, giving a peak SNR = 15 dB. Parameter values

for the two components are given in Table I.
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Chirplet transform magnitudes and ridges are shown in Fig. 3 for two chirp rates. The quadratic

evolution of the IF of the components makes the linear modulation of the analysis window a poor fit for

the signal at any one value of β. The Gabor transform magnitude (β = 0 Hz/sec, σ = 3/5 sec), shown in

Fig. 3A reveals that the close spacing of the signal components and the nonlinear modulation combine in

both the time and frequency axes such that we observe significant cross terms in all directions, indicating

that there is no single pair of parameters (σ, β) that will prevent cross terms from interfering with the

signal representation at some point in the TF plane. For example, at a low analysis chirp rate (Fig. 3A,B,

β = 0 Hz/sec) ridges break apart in response to cross terms near the regions of the TF plane where the

signals have fast modulation. Conversely, for the relatively high analysis chirp rate (Fig. 3C,D, β = 4

Hz/sec) cross terms effect ridges at the regions with slow modulation. Similar effects would be present

even for a mono-component signal due to the bias in the ridge estimates described in Sec. III. Thus,

there is no single best σ, or β that will allow us to characterize both signals simultaneously.

We can compare the ridges for the CT in Fig. 3 with another multi-scale method, the ridges of the

Morlet wavelet transform for the same data, displayed in Fig. 4D. Note that the ridges of the Morlet

wavelets transform lack the continuity and smoothness of the chirplet transform. However, the central

frequency of the signal, the rate of change in modulation, and the scaling factor of the wavelet scales all

influence the quality of this representation and better or worse representations are achievable.

The territories belonging to each ridge are outlined for each component in Fig. 3B,D and show a

similar failure to perfectly segregate any one component. We defined these territories as in Definition

II.1 where here, θ = π/2.

As predicted in Sec. IV-A the ridges corresponding to signal components tend to be longer than the

ridges due to noise alone. Furthermore, as predicted in Sec. IV-B the component ridges are strongly

biased towards the IF of the corresponding components (shown in blue and green), while the ridges

corresponding to variations due to noise alone are well-aligned with the analysis chirp rate (Fig. 3B,D).

A composite image of the longest 1% of ridges determined from nine chirp rates (uniformly sampled

from 0–4 Hz/sec) and weighted by their modulus, enhances ridges corresponding to high-energy signal

components with good agreement between ridges formed at different modulation rates (Fig. 4A). This

stage of signal enhancement is important as it restricts the detection procedure to the points in the time-

frequency plane most likely to correspond to the IF of a signal component. If we were to simply take

the average modulus of the data over all transforms and take only the largest 1% of coefficients, we

obtain the coefficients shown in Fig. 4B. In contrast, when we take largest 1% of coefficients from the

representation in Fig. 4A, the representation is reduced to the coefficients shown in Fig. 4C, highlighting
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Fig. 3. Sample ridges and territories for simulated data at two chirp rates. σ = 3/5 sec. The exact IFs of the signal

components are shown in blue and green. A,B: β = 0 Hz/sec (Gabor). C,D: β = 4 Hz/sec. A,C: log |χc|. B,D: ∂ω log |χc| = 0

ridges. Shaded areas are ridge territories.

the IF of the components with greater precision than thresholding the modulus alone.

D. Segregation of crossed components

The process of choosing the longest and most stable ridges across a family of transforms can lead to

a simple form of stream segregation for components with IF’s that cross in the time-frequency plane in

which representations displaying phase continuity are favored.

To demonstrate this capability, we simulated three pairs of components, one pair of sinusoids, one pair

of clicks, and one pair of linear frequency sweeps, with a background of white noise. Simulation details

are given in the caption of the Fig. 5. Based on our analyses in Sections IV-B and IV-A, we used ridge

length to discriminate between noise ridges and component ridges.

Fig.’s 5 and 6 show histograms of the longest 1% of ridges from the ∂ω log |χc(τ, ω)| = 0 and

∂τ log |χc(τ, ω)| = 0 ridges, respectively. The ridges were generated using a range of analysis parameter

values and the colors reveal which analysis parameters contributed to each pixel in the image. In Fig.

5A, each color corresponds to a specific value of σ, and the intensity of each color in a pixel indicates
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Fig. 4. Signal is amplified when the representation in restricted to the long, stable ridges. A) Ridge density for the longest

1% of ridges from all chirp rates, weighted by transform modulus. Darker regions indicate higher cumulative weighted-ridge

density. B) Coefficients with cumulative modulus (over all transforms) in the highest 1%. C) Coefficients from A with highest

1% cumulative modulus. D) Ridges of the Morlet wavelet transform.

the density of ridges over all values of β. Fig. 5B shows the same histogram but with color indicating the

value of β and intensity indicating the pixel density with respect to σ. The variations in color reflect that

this composite image is built from multiple transforms that contribute differentially to the representation

of each component. If a component is represented in all angles or all time-scales equally, it will appear

white. If a component appears in a specific color range, then a narrow range of analysis parameters

contributed to the representation of that component.

Fig. 5 indicates that variations over β of the ∂ω log |χc| = 0 ridges help to discriminate between

components which have different modulation rates. In particular, chirplet modulation rates close to the

modulation of a component, will uniquely identify that component. We can see this in Fig. 5B, where the

chirps are dominated by ridges with analysis chirp rate β = 6.25kHz/sec, while the tones are dominated

by ridges formed by relatively low modulation rates (β between 1.87-.62 kHz/sec). Fig. 5C,D show that

there exist specific parameter combinations that bias the ridge estimates in favor of each set of components

without substantial interference from the other signal components.

In agreement with our analysis in Sec. III, Figs. 5A,B show that the ∂ω log |χc| = 0 ridges are

insensitive to the presence of the click components with the exception of interference terms crossing the
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Fig. 5. Stream segregation of crossed signal components. Histogram of the 99% longest ∂ω log |χc| = 0 ridges for a multi-

component signal. Colors indicate ridges estimated from different values of the analysis parameters. A) Colors indicate different

values of the analysis window width σ, with color intensity indicating overlap over different values of the modulation rate β.

B) The same data as A, but the color indicates the chirp rates β that contributed to each pixel. C) Ridges formed from one

set of analysis parameters which identifies the tones. D) Ridges formed from one set of analysis parameters which identify

the chirps. y-axes are in Hertz, x-axes are in seconds.The data were simulated with a sampling rate of 25kHz. Chirps and

tones had an amplitude of 1 in arbitrary units. Chirp and click pairs were spaced by 0.1kHz. Chirps had modulation rate of

8kHz/sec . Clicks were one sample in duration with amplitude of 40 and are spaced 5 ms apart. The noise was distributed

n(t) ∼ U(−5× 10−4, 5× 10−4).

chirps and tones for short window widths and moderate modulation rates (at ≈ .08 sec). Fig. 6 shows

the ∂τ log |χc| = 0 ridges of the same signal, with colors and intensities corresponding to those in Fig.

5. Fig. 6A,B shows clear discrimination of the clicks by the ∂τ log |χc| = 0 ridges by varying over both

σ and β. The best click detection occurs at small σ, and low modulation rates (Fig. 6C). At large β and

σ, the ∂τ log |χc| = 0 ridges do not identify any signal components (Fig. 6D).
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Fig. 6. Histogram of the 99% longest ∂τ log |χ| = 0 ridges for a multi-component signal. Units and the meaning of the

colors in A and B are the same as those in Fig. 5A,B. C) Ridges formed from one set of analysis parameters which identified

the clicks. D) Ridges formed from one set of analysis parameters which did not identify any of the signal components.

E. Analysis of bird song data

Time-frequency analysis is common practice among scientists and engineers studying acoustic data.

Zebra finch vocalizations, for example, often include sequences of modulated harmonics and repeated

clicks. An example of log |χg| of a zebra finch vocalization is shown in Fig. 7A (σ = 4.7 ms).

Both ∂τ log |χc| = 0 ridges and ∂ω log |χc| = 0 ridges were generated for ten chirp rates (uniformly

sampled between -0.45 kHz/ms and 0.29 kHz/ms) and four window widths (uniformly sampled between

2-4.7 ms). Fig. 7B shows the superposition of all ridges generated by the analysis. Salient signal features

are over-represented across analysis parameters but, as predicted in Sec IV-A, the most distinct signal

features are easily identified among the longest 1% of ridges shown in Fig. 7C,D. Fig.’s 7C and 7D show

the longest 1% of the ∂ω log |χc| = 0 and ∂τ log |χc| = 0 ridges, respectively. The sum of Fig. 7C and
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7D is shown in Fig. 7E. The pixel intensities are weighted only by the ridge density and not by the CT

modulus. Thus, points with high ridge density are brighter while regions with no ridges are dark.
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Fig. 7. Chirplet ridge analysis of a zerbrafinch vocalization. A: Log modulus of Gabor spectrogram of song at one time scale

(σ = 4.7 ms). Dark colors indicate higher intensities. (The contrast of this image has be modified in order to improve visibility

of details at higher frequencies). B: Ridges averaged over ten chirp rates and four window widths. C: Average of longest 1% of

∂f log |χc| = 0 ridges, D: Average of longest 1% ∂τ log |χc| = 0 ridges. E: Sum of C and D. Y-axis scales are in kHz. X-axis

is in ms.
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Signal features with less distinct time-frequency localization are more poorly represented by the ridges.

For example, the ridge representation shows distinct epochs with transitions from a series of clicks (0–

75 ms), to a broad-band, noise-like hiss (80–100ms), to a distinct tone with highly organized harmonic

structure (125–175ms). The broad-band hiss epoch clearly has less organized phase structure, resulting

in a less distinct, and less stable (with respect to analysis parameters) ridge representation. The transition

from the hiss epoch to the harmonic epoch shows the formation of narrow-band components which are

modulated in parallel bands, but in different directions around 5kHz.

V. DISCUSSION

In this paper we developed a method based on a contour TFR of sound [8], [9] that identifies signal

components by persistent phase progression across time or frequency. The distinguishing features of the

present approach is the use of the CT at various chirp rates and time scales to extract multiple ridges per

component, and then select from this overcomplete representation the longest, and most stable ridges; the

ridges that occur with low probability relative to noise. We demonstrated the viability of this approach for

signal enhancement in noise, and elementary stream segregation of crossed components. Quantifying the

quality of signal denoising by resynthesis of the chirplet skeleton, and characterization of ridge sampling

properties are the subjects of on-going work.

A. From directional derivatives to ridges

Guillemain and Kronland-Martinet [35] and Lim et al. [8] suggested the utilization of separate partial

derivatives of the φg(τ, ω) in order to identify signal components that are either horizontally- or vertically-

oriented in the time-frequency plane. Lim et al. [8] however, generalized this notion to suggest that ridges

could be defined as a linear combination of partial phase derivatives. As we showed in Sec. III-C the

best linear combination to represent a component depends upon the orientation of the component. This

approach helps to correct for the bias in IF estimates made by the ∂ω log |χ(τ, ω)| = 0 ridge alone as

suggested by others [12], [13].

In the present study, we used ridges defined by both (8) and (7) in order to identify both IMT and

click-like events, respectively. Use of condition (7) allows the detection of the components which have

amplitude variations that are too fast to satisfy the conditions of an IMT function [11]; a property that

is not shared with most ridge detection methods, although notable exceptions are [35] and [8].

Although [35] and [8] were developed in the context of derivatives of φg, there are relationships between

the time and frequency derivatives of φg and log |χg|, allowing us to formulate equivalent definitions of
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ridges in terms of log |χg|. This suggests that the two types of ridges introduced in this paper, defined

by log |χc|, also have equivalent formulations based on φc. Indeed, it can be shown (Appendix A) that

the partial derivatives of log |χ| with respect to ω and τ are equivalent to linear combinations of the ω

and τ derivatives of the CT phase.

According to Eqns. (15) and (16), the approach proposed by Lim et al. [8] suggests that the modulation

rate of sufficiently isolated components can be identified by a single transform, rather than the multiple

transforms required for the chirplet ridges described in the present study. This is a distinct computational

advantage of the directed Gabor ridges as compared to the chirplet ridges. A further advantage of the

directional Gabor ridges is that both chirp-like and click-like ridges can be identified in a single, unified

framework. However, based on (16), these ridges are likely to be best suited to use in regimes where

amplitude modulation of the signal is slow compared to the width of the analysis kernel (i.e. σ/s� 1).

Chirplet ridges have the advantage of identifying linear frequency modulation, even for fast amplitude

modulated components and they have the potential to discriminate between closely-spaced modulated

components without significant interference.

B. Contour bias and prior knowledge

Classical ridge extraction methods using Gabor or Morlet wavelet transforms produce biased estimates

of the IF of signals with finite duration and frequency modulation [12], [13]. From the simple example

of Section III when β = 0 we find that this bias becomes worse as the signal modulation rate gets larger

and the ratio σ/s becomes large. We showed that use of the CT can help to mitigate this bias if the

modulation rate of the analysis kernel approximates the modulation rate of the component.

As σ/s → 0, the slope of the IF estimate is weighted in favor of b (Eq. (12)), the modulation rate

indicated by the data, and the bias in the estimation is minimized. However, by using only a short analysis

window relative to the signal length (small σ/s), we are not making use of all available data and we

risk increasing the variance of the estimate in the presence of noise. On the other hand, as σ/s → ∞,

the slope estimate is weighted in favor of β, the modulation rate of the analysis kernel. Thus, we can

view the ratio σ/s as a parameter which reflects our a priori certainty that β = b or, more generally

that, at time τ , β ≈ φk(τ)′′ on a time scale commensurate with σ, where φk(τ) is the phase of the kth

component.

While we expect the bias in the IF estimate to decrease as σ/s→ 0, this will also imply an increasing

lower bound for the variance of IF estimates. This assertion is supported by the bias and variance of

ridge estimates of the IF using the short-time Fourier transform [36] and it can be shown that this result
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holds in general for short-time Fourier transforms of demodulated signals [37]. The size of σ will also

influence the separability of closely-space components (Fig.1). Thus, for the more general setting of

nonlinear modulation and multiple components, such as the signal components in Sec. IV-C, the optimal

size of σ for each component will be a function of the distance in the time-frequency plane between

components as well as the goodness of the linear modulation approximation.

C. A per-component adaptive TFR

While there are a number of adaptive TFR methods, prior methods tend to either adapt the representation

to the entire recording [38], or adapt the window parameters on a per-time and/or per-frequency basis (for

examples, see [2], [30], [39]–[45]). Other methods adapt the representation at an atomic level, choosing

“best” individual members of a highly redundant dictionary while actively suppressing correlation between

coefficients [4], [6], [46].

The prospect of a per-component adaptive TFR was, perhaps, first suggested by Huang at al. with

the development of empirical mode decomposition and the Hilbert-Huang transform [24]. More recent

methods have been proposed which try to directly address the issue of per-component analysis using

synchrosqueezing [37], [47]–[49], but these methods are developed for the “well-separated” IMT com-

ponents [11] for which the IFs of the components do not cross. Indeed this is feature that is directly

exploited for the method developed in [49]. Another problem with other per-component approaches is

that adaptation is in terms of a single analysis kernel per component (with the exception of [49] which

seems to be able to mitigate bias associated with kernel parameters), rather than aggregating information

across multiple values of analysis kernel parameters, as in the present study.

Our approach displays the ability to resolve components that have IF laws that intersect, a direct

violation of the “well-separated” condition. While techniques such as the synchrosqueezed wavelet

transform can successfully reconstruct crossed components in the resynthesis process (see Fig 9 of [11]),

synchrosqueezing does not represent the components as separate on its own. The analyst must decide

when two components are different signals prior to reconstructing them independently. In contrast, our

approach displays the potential for the representation itself to help distinguish among crossed components,

prior to the resynthesis step.

The assumption of phase continuity of the signal is an important factor in the performance of our

method. Phase continuity has been recognized by other adaptive TFR methods as well. For example, [50]

expressed this importance through the total variation norm, that is, the method sought to decompose a

time series into IMF-like functions that were smooth enough at each iteration to minimize a third-order
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total variation norm.

Phase continuity influences our method in two ways. First, this property is essential to the length and

ridge density metrics for signal amplification discussed in Sec. IV. Fig.s 5 and 6 support the analysis

of Sec. IV-B and IV-A by showing that the longest ridges correspond to good matches with signal

components and that ridge stability can be used to identify separate signal components, even when they

cross in the time-frequency plane.

Second, phase averaging helps to explain how the chirplet ridges can achieve ridge detection in spite

of crossed components. We conjecture that crossed-component discrimination works in the following

way: The filter kernel has contributions from the signal which are determined by the Heisenberg-Gabor

uncertainty ellipse (Fig. 1). When we orient the kernel to match a given component, the coefficient

estimate is a weighted average of contributions from the time-frequency support of the analysis kernel.

When the kernel matches the modulation rate of a component in Fig.5, the phase of the coefficients near

the crossing point will be dominated by contributions due to the components with matched modulation

rate, thereby biasing the phase evolution of the transform coefficients to more closely resemble the

matched components. Likewise, when the analysis kernel is mismatched, the phase of the coefficients,

and their relationships among each other, are dominated either by contributions by noise, or by the mixing

of nearby components. This is demonstrated by the matched kernel ridges in Fig. 5C,D and 6C. Kernels

mis-matched to all components will have contributions from multiple components, or will have a large

share of the phase estimate be influenced by noise, making the phase estimates less likely to display

continuous variations on length scales any larger than that determined by the kernel.

VI. CONCLUSION

The ridges of the chirplet transform magnitude may be used as per-component, adaptive time-frequency

representations for both IMT signal components and click-like components. Ridges formed using multiple

chirp rates can be combined to form individual component estimates in order to reduce the bias inherent

in Gabor/Morlet wavelet ridge extraction methods.

APPENDIX A

PHASE-MAGNITUDE RELATIONS OF THE CONTINUOUS CHIRPLET TRANSFORM

Distinct relationships are evident between the phase and magnitude of the Gabor transform [25], [26]

which allows one to define the phase derivatives in terms of the derivatives of the log-modulus of the
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transform, and vice versa. For the Gabor transform (given by (5) with β = 0) the phase-magnitude

relations are given by

σ−2
∂ log |χg(τ, ω)|

∂ω
=
∂φg(τ, ω)

∂τ
− ω, (19)

σ2
∂ log |χg(τ, ω)|

∂τ
=− ∂φg(τ, ω)

∂ω
. (20)

Analogous phase-magnitude relationships can be derived for the CT as well. However, in contrast to

(19) and (20), the coupling takes the form of linear combinations of time and frequency derivatives where

the gradient of log |χc| can be expressed as ∂ω log |χc(τ, ω)|

∂τ log |χc(τ, ω)|

 = M

 ∂τφc(τ, ω)− ω

−∂ωφc(τ, ω),

 (21)

where

M =

 σ2 −βσ2

−βσ2 1/σ2 + β2σ2

 .
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[18] N. Özkurt and F. Savaci, “Reconstruction of non stationary signals alone the wavelet ridges,” International Journal of

Bifurcation and Chaos, vol. 16, no. 1, pp. 191–198, 2006.

[19] S. Roux, T. Cenier, S. Garcia, P. Litaudon, and N. Buoniso, “A wavelet-based method for local phase extraction from a

multi-frequency oscillatory signal,” Journal of Neroscience Methods, vol. 160, pp. 135–143, 2007.

[20] P. Litaudon, S. Garcia, and N. Buonviso, “Strong coupling between pyramidal cell activity and network oscillations in the

olfactory cortex,” Neuroscience, vol. 156, pp. 781–787, 2008.

[21] K. Kodera, C. De Villedary, and R. Gendrin, “A new method for the numerical analysis of non-stationary signals,” Physics

of the Earth and Planetary Interiors, vol. 12, pp. 142–150, 1976.

[22] F. Auger and P. Flandrin, “Improving the readability of time-frequency and time-sale representations by the reassignment

method,” IEEE Transactions on Signal Processing, vol. 43, no. 5, pp. 1068–1089, 1995.

[23] I. Daubechies and S. Maes, “A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models,”

in Wavelets in Medicine and Biology, A. Aldroubi and M. Uner, Eds. CRC Press, 1996, pp. 527–546.

[24] N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and L. H.H., “The empirical mode decomposition

and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings: Mathematical, Physical and

Engineering Sciences, vol. 454, pp. 903–995, 1998.

[25] F. Auger, E. Chassande-Mottin, and P. Flandrin, “On phase-magnitde relationships in the short-time Fourier transform,”

IEEE Signal Processing Letters, vol. 19, no. 5, pp. 267–270, 2012.

[26] E. Chassande-Mottin, I. Daubechies, F. Auger, and P. Flandrin, “Differential reassignment,” IEEE Signal Processing Letters,

vol. 4, no. 10, pp. 293–294, 1997.

[27] R. Carmona, W. Hwang, and B. Torrésani, Practical Time-Frequency Analysis: Gabor and Wavelet Transforms, with an

Implementation in S. San Diego, CA: Academic Press, 1998.

[28] S. Borum and K. Jensen, “Additive analysis/synthesis using analytically derived windows,” in Proceedings of the 2nd

COST G-6 Workshop on Digital Audio Effects, NTNU, Trondheim, December 9-11, 1999.

October 13, 2014 DRAFT



1053-587X (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2014.2365756, IEEE Transactions on Signal Processing

27

[29] K. Kodera, R. Gendrin, and C. De Villedary, “Analysis of time-varying signals with small BT values,” IEEE Transactions

of Acoustics, and Signal Processing, vol. ASSP-26, no. 1, pp. 64–76, 1978.

[30] D. Jones and T. Parks, “A high resolution data-adaptive time-frequency representation,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 38, no. 12, pp. 2127–2135, 1990.

[31] B. Weisburn, T. Parks, and R. Shenoy, “Separation of transient signals,” in Sixth IEEE Signal Processing Workshop,

Yosemite National Park, CA, Oct 02-05, 1994.

[32] B. Weisburn and R. Shenoy, “Time-frequency strip filters,” in Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, ICASSP-96, NTNU, Atlanta, GA, May 07-10, vol. 3, 1996.

[33] T. Gardner and M. Magnasco, “Sparse time-frequency representations,” Proceedings of the National Academy of Sciences,

vol. 103, no. 16, pp. 6094–6099, 2006.

[34] P. Balazs, D. Bayer, F. Jaillet, and P. Sondergaard, “The phase derivative around zeros of the short-time fourier transform,”

eprint arXiv:1103.0409, 2011.

[35] P. Guillemain and R. Kronland-Martinet, “Horizontal and vertical ridges associated to the continuous wavelet transform,”

in Proceedings of the IEEE-SP international Symposium, Time-Frequency and Time-Scale Analysis, Victoria, BC, October

1992, pp. 63–66.
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