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ABSTRACT

Optical coherence tomography (OCT) is a valuable technique for non-invasive imaging in medicine and biology.
In some applications, conventional time-domain OCT (TD-OCT) has been supplanted by spectral-domain OCT
(SD-OCT); the latter uses an apparatus that contains no moving parts and can achieve orders of magnitude faster
imaging. This enhancement comes at a cost, however: the CCD array detectors required for SD-OCT are more
expensive than the simple photodiodes used in TD-OCT. We explore the possibility of extending the notion of
compressed sensing (CS) to SD-OCT, potentially allowing the use of smaller detector arrays. CS techniques can
yield accurate signal reconstructions from highly undersampled measurements, i.e., data sampled significantly
below the Nyquist rate. The Fourier relationship between the measurements and the desired signal in SD-OCT
makes it a good candidate for compressed sensing. Fourier measurements represent good linear projections for
the compressed sensing of sparse point-like signals by random under-sampling of frequency-domain data, and
axial scans in OCT are generally sparse in nature. This sparsity property has recently been used for the reduction
of speckle in OCT images. We have carried out simulations to demonstrate the usefulness of compressed sensing
for simplifying detection schemes in SD-OCT. In particular, we demonstrate the reconstruction of a sparse axial
scan by using fewer than 10 percent of the measurements required by standard SD-OCT.
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1. INTRODUCTION

Optical coherence tomography (OCT) is a valuable technique for non-invasive imaging in medicine and biology.1

In some applications, conventional time-domain OCT (TD-OCT) has been supplanted by spectral-domain OCT
(SD-OCT);2 the latter uses an apparatus that contains no moving parts and can achieve orders of magnitude
faster imaging. This enhancement comes at a cost, however: the CCD array detectors required for SD-OCT are
more expensive than the simple photodiodes used in TD-OCT.

In this work we explore the possibility of extending the notion of compressed sensing (CS) to SD-OCT, poten-
tially allowing the use of smaller detector arrays. CS techniques can yield accurate signal reconstructions from
highly under-sampled measurements, i.e., data sampled significantly below the Nyquist rate.3, 4 In particular,
it has been shown that when the unknown signal is sparse, i.e., when it has a small proportion of nonzero con-
tributions, CS techniques offer successful recovery with relatively few randomly under-sampled measurements.
Moreover, CS techniques are applicable to linear sensing mechanisms in which the discrete sensing matrix enables
incoherent sampling5 or when it satisfies the so-called restricted isometry property.6 The sparsity of the signal is
then utilized to reduce the volume of collected data by employing nonlinear reconstruction that simultaneously
enforces signal sparsity and consistency with the reduced data. Furthermore, it is known that Fourier mea-
surements represent good linear projections for the compressed sensing of sparse point-like signals by random
under-sampling of the frequency-domain data.4
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The Fourier relationship between the measurements and the desired signal in SD-OCT makes it a good
candidate for compressed sensing. Additionally, axial scans in OCT are generally sparse in nature. This sparsity
property was successfully used in recent work related to the reduction of speckle in OCT images.7

Sec. 2 provides a theoretical framework for the application of compressed sensing in OCT. In Sec. 3, we carry
out simulations that demonstrate the potential usefulness of CS techniques in OCT. Finally, in Sec. 4 we discuss
our results and mention some possible future work in this area.

2. THEORY

We first develop a linear-system model relating the discrete version of a physical object under observation, x, and
the discrete measured signal, y. In our model, the physical object comprises a series scatterers with amplitude
scattering coefficients αn. In SD-OCT, the spectral signal at a fixed transverse location of the sample is given
by

y(ν) ∝ S(ν)
∑

n

αn cos(2πdnν/c), (1)

where c is the speed of light in the medium, ν is the optical frequency, S(ν) is the spectrum of the light source,
dn = nΔd represents the sampling grid, and αn is zero everywhere except at the few locations where a scatterer
exists. The DC component and cross terms in the SD-OCT signal have been excluded inasmuch as they are
readily removed by the measurement technique reported in Ref. 8. The measured signal in SD-OCT is the discrete
version of y(ν), which we denote by y. The axial scan is reconstructed by taking the DFT of this measured
signal. As a result of the symmetry properties of the DFT, the first half of the transformed data represents the
axial scan while the second half is simply the mirror image thereof.8 To conveniently use the DFT operator in
a linear-system formulation, we therefore consider the first half of the object vector x to represent the series of
scatterers with scattering coefficients αn present at specific axial locations; the second half is, again, simply the
mirror image.

Since the reconstruction of an axial scan is obtained by taking the DFT of the discrete measurement y, it
is represented by Fy, where F is the DFT matrix operator. Also, the reconstructed axial scan is, by definition,
equivalent to Cx, where the operation by the matrixC results in a convolution of x with the point-spread function
of the imaging system. We thus obtain the vector relation Fy = Cx or y = F−1Cx. Defining A = F−1C, we
then have y = Ax, representing a linear relationship between the measured signal and the object. In general,
if the number of elements in y (say N) is equal to that in x, A is a square matrix and a solution to the linear
system exists if A is a full-rank invertible matrix. If we have access to only a small set of elements of y, the
problem is defined as yk = Akxk where yk contains only a small number of elements of y (say K) and Ak

consists of the corresponding rows of the matrix operator A.

Since K � N , such a system of equations is underdetermined and many solutions are possible. To overcome
this difficulty, prior information about the signal x is incorporated into the reconstruction. When the signal
x is sparse, an optimally sparse solution with only a few non-zero elements is sought. A direct formulation
leads to the optimization problem: min

x
‖x‖0 s.t. yk = Akx, requiring an NP hard enumerative search. Instead,

a computationally tractable formulation takes the form: min
x

‖x‖1 s.t. yk = Akx, where l1 norm is a sparsity

preserving convex relaxation of l0 norm. This optimization problem is known in the literature as “basis pursuit”.9

This formulation has also been motivated by the fact that under certain conditions on the observation matrix
A, basis pursuit and the direct formulation have the same solution.10

Compressed sensing takes sparse reconstruction one step further by seeking to require as few measurements
as possible while not compromising reconstruction quality. Let T = ‖x‖0 denote the number of nonzero elements
in x. For the case when C is the identity matrix, it has been shown that the random under-sampling of y and
the nonlinear reconstruction by basis pursuit lead to accurate reconstructions with high probability even when
only O(T ) measurements are obtained. In particular, given that the number of measurements satisfies

K ≥ GδT log(N), (2)

then with probability of at least 1−O(N−δ), x can be reconstructed exactly as a solution of the l1 minimization
problem. Note that Gδ is typically a small constant, independent of T and N , that depends on the desired
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Figure 1. Simulation of a spectral signal in SD-OCT. Frequencies are normalized such that the central frequency corre-
sponds to zero. (b) Axial OCT scan reconstructed by using the DFT.

accuracy parameter δ. This result accommodates the reconstruction of any signal with a support of size T and
follows from a worst case analysis. In practice, a smaller number of measurements may be possible.4

Motivated by these insights, we empirically investigated the performance of the CS technique for the case when
C is not the identity matrix, but rather a convolution operator corresponding to the axial point-spread function
of the system, which is simply the Fourier transform of the source spectrum. We show in the next section that CS
techniques can be employed in such a scenario. In the presence of noise more robust optimization methods are
required.11, 12 Therefore instead of the basis pursuit formulation we use the following unconstrained optimization
method:

min
x

‖yk −Akxk‖22 + β ‖xk‖1 , (3)

where the regularization parameter β determines the trade-off between data consistency and sparsity.

3. SIMULATIONS AND RESULTS

The measured data y is simulated using Eq. (1). The frequency ν is discretized with the difference between
the samples being Δν = 1011Hz. In terms of wavelength, this corresponds to a measurement resolution of
Δλ = 0.27 nm at 900 nm. The source spectrum S(ν) is chosen to be a Gaussian function. Spectra of three
different widths are used for these simulations, with standard deviations of 40Δν, 120Δν, and 200Δν. Inasmuch
as Δν is kept constant for each of these cases, the broader spectra will have more sample points (N = 200, 600,
and 1000, respectively). The axial location of the scatterers is chosen to be at dn = 100, 200, 400, 450, and
500 μm. For four different object models, corresponding to T = 4, 6, 8, and 10, non-zero scattering coefficients
were created by choosing only the first T/2 values of dn (the actual number of physical scatterers is T/2 by
virtue of the symmetry in the model discussed earlier). For simplicity, αn is chosen to be constant for all n.
White Gaussian random noise with a mean of zero and standard deviation of 0.01 is added to the simulated
vector y to produce an SNR in the vicinity of 40 dB. A convolution operator C is created that corresponds
to the point-spread function of the system. Finally, the operator A is defined as F−1C. To demonstrate the
possibility of compressed sensing, yk and Ak are created by randomly choosing a small number of elements of y
and the corresponding rows of A. The estimate of the object xk is created by solving Eq. (3). The value of the
regularization parameter β = 0.1 gives satisfactory results for all of our cases. Note that the estimate of xk is, in
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Figure 2. (a) Random selection of 52 of the 600 spectral-signal samples represented in Fig. 1(a). (b) Axial OCT scan
reconstructed by solving the optimization problem specified in Eq. (3).

general, complex (as it is related to DFT of a real quantity); as in conventional SD-OCT we plot the magnitude
of the resulting estimate for display. We are able to reconstruct the object for every case by using only T log(N)
measurement samples, as suggested by Eq. (2). The location of the non-zero elements in the reconstructed vector
are at the expected location in each case, but there is some variation in their amplitudes.

For the case of T = 8 and N = 600, we carried out Monte Carlo simulations by using 100 different sets
of random elements of length T log(N) ∼ 52. The minimum mean square error per element for this case was
found to be 2.34 × 10−5. We demonstrate a reconstruction using T = 8 and N = 600 alongside a regular DFT
based reconstruction. Figure 1 displays the reconstruction of the axial scan by direct Fourier transformation
of the spectral data, using all of the data points, whereas Fig. 2 shows the reconstruction for the same object
model with fewer than 10 percent of the measurements using compressed sensing. The similarity in the results
is striking.

4. DISCUSSION AND FUTURE WORK

In this work we have demonstrated the possibility of using compressed sensing to simplify detection schemes in
SD-OCT. This can potentially lead to the development of simpler SD-OCT systems that make use of smaller
CCD arrays. We are currently investigating the limit on the minimum number of spectral measurements required
with the imposition of sparsity conditions in SD-OCT. We also expect to consider the use of simpler sources for
high-resolution OCT by extending the idea of using limited spectral data for reconstruction.
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