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ABSTRACT

We investigate quantum interference effects of entangled two-photon states generated in a nonlinear crystal
pumped by femtosecond pulses. Attention is devoted to the effects of the pump-pulse profile (pulse duration and
chirp) as well as those originating in second-order dispersion, both in the nonlinear crystal and in the optical
elements through which the down-converted photons propagate. The characteristics of the pump pulse, along with
the dispersion, influence the visibility and the symmetry of the coincidence-count interference pattern. Nonlocal
dispersion cancellation occurs in some cases.
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1 INTRODUCTION

A great deal of attention has been recently devoted to the process of spontaneous parametric down-conversion
in nonlinear crystals pumped by cw lasers.14 The nonclassical properties of entangled two-photon light generated
by this process have been used in many experimental schemes to elucidate distinctions between the predictions
of classical and quantum physics.2 A new frontier in these efforts is the generation of quantum states with three
correlated particles (GHZ states),5'6 which would be most useful for further tests of the predictions of quantum
mechanics. One possibility is to construct such states from pairs of two-photon entangled states7 which are
synchronized in time, i.e. generated in a sharp time window. This can be achieved by using femtosecond pump
beams. Successful quantum teleportation has been already observed using femtosecond pumping.8

For these reasons, a great deal of attention has recently been devoted both to theoretical and experimental
investigations of the properties of pulsed spontaneous parametric It has been shown that
ultrashort pumping leads to a loss of visibility of the coincidence-count interference pattern at a beam splitter,9"0
and narrowband frequency filters are required to restore the visibility.7'9 In this contribution, we devote particular
attention to the effects of pump-pulse chirp and second-order dispersion (in both the pump and down-converted
beams)12 on the visibility and shape of the photon-coincidence interference pattern produced at a beam splitter.'
Dispersion cancellation, which has been extensively studied in the case of cw pumping,'3 is also predicted to
occur under certain conditions for femtosecond down-converted pairs.
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2 SPONTANEOUS PARAMETRIC DOWN-CONVERSION

Consider a nonlinear crystal pumped by a strong coherent-state field. Nonlinear interaction then leads to the
spontaneous generation of two down-converted fields (the signal and the idler). The interaction Hamiltonian of
the process can be written in the form1:

ft1(t) =LI dzx(2)E)(z,t)E_)(z,t)E_)(z,t) + h.c., (1)

where x2 is the second-order susceptibility, denotes the positive-frequency part of the electric-field am-
plitude of the pump field, and (E) is the negative-frequency part of the electric-field operator of down-
converted field 1 (2). The nonlinear crystal extends from z = —L to z = 0. The symbol h.c. means Hermitian
conjugate.

Expanding the interacting fields into harmonic plane waves, the interaction Hamiltonian Hjfl in Eq. (1) can
be recast into the form:

ft(t) = Ctf° dz —w)at(ki)t4(k2)
—L

Ic,, k, 1c2

x exp [i(k — k1 — k2)z — i(Wk — '-k1 — Wj2)t] + h.c., (2)

where C is a constant. The symbol E (0, Wk —w) denotes the positive-frequency part of the envelope of the
pump-beam electric-field amplitude at the output plane of the crystal; k stands for the wave vector of a mode in
the pump beam, and w stands for the central frequency of the pump beam. The symbol â (k1) (14(k2)) represents
the creation operator of the mode with wave vector k1 (k2) and frequency k1 (wk2 ) in the down-converted field
1 (2).

The wave function Ii'(2)t) describing an entangled two-photon state is given by:

Ii'2(t)) = :i dt'utt(t')Ivac), (3)

where Ivac) denotes a multimode vacuum state.

The description of a coincidence-count measurement with entangled states can be suitably formulated in terms
of the two-photon amplitude A12 defined as a matrix element of the product of operators E(t1)and E(t2)
sandwiched between the states Ii/i(2)) and vac):

.412(t1 , t2) = (vacE(t1 (t2)It,b2) (t)). (4)

The operator of the positive-frequency part of the electric-field amplitude of the jth beam is defined as

= j = 1,2, (5)

where e(k) denotes the normalization amplitude of the mode k, and fj(wk,) characterizes an external frequency
filter placed in the jth beam.

At the termination of the nonlinear interaction in the crystal, the down-converted fields evolve according to
free-field evolution and the two-photon amplitude A12 depends only on the differences r1 =t1 — t and r2 =

— C. When the down-converted beams propagate through a dispersive material of the length 1, the two-photon
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amplitude A12 is given as follows:

A12,1(ri,r2) = cf dz —)exp[i(k — k1 — k2)z}
—L

Ic,, k1 k2

x exp [i(1 + k2)1] ö(wk —Wk1
—u.'k2) exp[—iwk1rl] exp[—iwk2r2]. (6)

The amplitudes e1(ki ) and e2(k2) from Eq. (5) are absorbed into the constant C and the wave vectors k are
appropriate for a dispersive material.

We assume the spectrum E(O, 11,) of the envelope E(O, t) of the pump pulse at the output plane of the
crystal in a Gaussian form:

r 2

e(+) c_ TD I TD . 2
p ' P P2ffl+2PL4(1+a2)

ta ,

The symbol p stands for the amplitude, TD is the pulse duration, and the parameter a describes the chirp of
the pulse. The wave vectors k, k1 , k2 , k1 , and k2 can be expressed in the following form including the effects of
material dispersion up to the second order:

kj(wk1 ) = k+ -('k C4) + -L(wk u?)2 i = p, 1,2,

(wk) = k? + ---(wk _ w) + —(wk1 _ w?)2, j = 1,2, (8)
g3 ir

where 1/v3 (1/ga) the inverse of group velocity and D, (di) stands for the second-order dispersion coefficient in
the nonlinear crystal (dispersive material). The symbol 4denotes the central frequency of beam j; k? = kj(w?)
and Ic? = k,(w?). We further assume frequency filters with a Gaussian profile:

(.'k _w9)2l
Ii (wk, ) = exp — '

7;2 j
' = 1, 2, (9)

where uj is the frequency width of the jth filter.

A typical experimental setup for coincidence-count measurement is shown in Fig. 1. We consider type-I!
parametric down-conversion. In this case two mutually perpendicularly polarized photons are provided at the
output plane of the crystal. They propagate throught a birefringent material of a variable length I and then
impinge on a 50/50 beamsplitter. Finally they are detected at the detectors DA and DB. The coincidence-count
rate R is measured by a coincidence device C. The beams might be filtered by the frequency filters FA and FB
which can be placed in front of the detectors. Analyzers rotated by 45 degrees with respect to the ordinary and
extraordinary axes of the nonlinear crystal enable quantum interference between two paths to be observed; either
a photon from beam 1 is detected by the detector DA and a photon from beam 2 by the detector DB, or vice
versa.

In this experimental setup, the coincidence-count rate l? is determined according to the relation:

R(1) = fdtA fdtB 1A12,1(tA,tB) —A12,z(tB,tA)12, (10)

where the two-photon amplitude A12,1 is given in Eq. (6). The normalized coincidence-count rate R is then
expressed as

11(1) = 1 — p(l), (11)

where
1

p(1) = -j f dtA f dt Re [A12,I(tA, tfl)A2 ,(tB, tA)] (12)
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Figure 1: Sketch of the system under consideration: a pump pulse at the frequency u, generates down-converted
photons at frequencies w1 and w2 in the nonlinear crystal NLC .These waves propagate through a delay line of
length I and are detected at the detectors DA and DB; BS denotes a beamsplitter; AA and AB are analyzers; FA
and FB are frequency filters; and C indicates a coincidence device.

and
1 °°

R0 = L dtA f dtB 1A12,i(tA,tB)I . (13)

The symbol Re denotes the real part of its argument.

3 DISCUSSION

We now proceed to examine the behavior of the normalized coincidence-count rate R on various parameters.

The profile of the interference dip in the coincidence-count rate1 formed by the overlap of a pair of two-photon
amplitudes can be understood as follows. The expression (12) for p(l) can be rewritten in the form:

p(l) = f dt fdT [A2,1(t,r)A2,1(t,—r) + A2,1(t,T)A2,1(t, —r)] , (14)

where t = (tA + tB)!2, r = tA — tB, A2,1 = Re[A12,j], and A21 = Im[A12,z]. The symbol Im denotes the
imaginary part of the argument. According to Eq. (14) the overlaps of the real and imaginary parts of the two-
photon amplitudes A12,1(t, r) and A12,1(t, —T) determine the values of the interference term p. The amplitude
A12,1 (t, —r) can be considered as a mirror image of the amplitude A12,j(t, r) with respect to the plane r =0. When
only first-order dispersion in the optical material is taken into account, the shape of the two-photon amplitude
A12,1(t, r) does not depend on the length 1; as I increases, the amplitude A12,1(t, r) moves only in the t-r plane.
The shift in the r-direction is important, because it changes the degree of overlap of the amplitudes and thus
forms the shape of the dip.

The overlap of the two-photon amplitudes can be interpreted from the point-of-view of photon distinguisha-
bility.9 When the overlap is complete, the detected photons cannot be distinguished and the interference pattern
has maximum visibility. Incomplete overlap means that the photons can be "partially" distinguished and thus
the visibility is reduced.

We further consider the role played by pump-pulse duration and chirp, second-order dispersion in the nonlinear
down-converting medium, and second-order dispersion in the optical elements of the interferometer.
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Figure 2: Visibility V (V = p/(2 — p)) as a function of the pump-pulse duration rDI;L = 3 mm, r = 2 = oo
nm, a = 0, and values of the other parameters are zero. In Figs. 2 and 3, the following parameters apply.
Values of the inverse of group velocities appropriate for the BBO crystal with type-I! interaction at the pump
wavelength A1, = 397.5 nm, and at down-conversion wavelengths )i = A2 = 795 nm are: 1/vs, = 57.05 x 1O_13

s/mm, 1/v1 = 56.2 x 10_13 s/mm, and 1/v2 = 54.26 x iO' s/mm. We assume that the optical materials for
the interferometer are quartz, for which 1/g = 51.81 x 10_13 s/mm and 1/g2 =52.08 x 10_13 s/mm.

3.1 Role of pump-pulse parameters

It is well known that for a cw-pump field with no frequency filters included the coincidence-count rate R(1)
forms a triangular dip of width DL,' where D =1/vi — 1/v2. Visibility is 100%, reflecting maximum interference.
An ultrashort pump pulse of duration 'rD at the input plane of the crystal leads to a loss of visibility (see Fig.
2) but the width of the dip remains unchanged.9 This can be understood from the shape12 of the two-photon
amplitude A12110(t, r) which is confined in the r-direction to the region 0 < r< DL for either cw or an ultrashort
pump pulse; this confinement is responsible for the width of the dip. On the other hand the two-photon amplitude
is confined by the ultrashort pump-pulse duration in the t-direction. The tilt of the amplitude in the t-r plane
leads to a loss of visibility since the overlap of the amplitudes A1211(t, r) and A12,j(t, —r) for a given optimum value
of I cannot be complete for a nonzero tilt. The shorter the pump-pulse duration, the smaller the overlap, and the
lower values of visibility that result. Pump-pulse chirp (characterized by a1 at the input plane) introduces a phase
modulation of the two-photon amplitude. This modulation decreases the overall overlap of the corresponding two-
photon amplitudes, given as a sum of the overlaps of their real and imaginary parts. Increasing values of the chirp
parameter a thus lead to a reduction of visibility. However, the width of the dip does not change. In fact, the
visibility is determined by an effective pump-pulse duration Teff (Teff rD/ff) for a Gaussian pump-pulse
profile. It can be shown that the dip remains symmetric for an arbitrary pump-pulse profile.

Frequency filters inserted into the down-converted beams broaden the two-photon amplitude both in the t-
and i--direction. Broadening in the i--direction leads to wider dips, whereas that in the t-direction smooths out
the effect of tilt discussed above and thereby results in a higher visibility. The narrower the spectrum of frequency
filters, the wider the dip, and the higher the observed visibility.
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Figure 3: Coincidence-count rate 14 (1) for various values of the second-order dispersion parameter d = d1 —

ofan optical material; d = 5 x 1026 s2/mm (C'),d = 1 x 1025 s2/mm (*), and d = 0 s2/mm (dashed curve, for
comparison); TDi = 155 fs, L = 3 mm, i = = 50 nm, and values of the other parameters are zero.

3.2 Role of secondorder dispersion in the nonlinear crystal

Second-order dispersion in the pump beam broadens the pump pulse as it propagates through the crystal and
it also causes changes in its phase (chirp) as the pulse propagates. The effect of such pump-pulse broadening
is transferred to the down-converted beams and modifies the interference dip as follows. An increase in the
second-order dispersion parameter D leads to an increase of visibility, but no change in the width of the dip.
For appropriately chosen values of D a small local peak emerges at the bottom of the dip. In the presence of
narrow frequency filters the peak remains, but is suppressed.

Second-order dispersion in the down-converted beams (nonzero D1, D2) broadens the two-photon amplitude
A12,1(t, r) both in the -r- and t-direction. This leads to a broadening of the dip, as well as an asymmetry and
oscillations at its borders. Nonzero chirp results in a lower visibility, but tends to suppress ocillations at the
borders of the dip. Frequency filters suppress asymmetry.

To observe the above mentioned effects caused by dispersion in a nonlinear crystal, rather high values of the
dispersion parameters D, D1 , and D2 are required. They are approximately an order of magnitude higher than
those appropriate for the BBO crystals commonly used.

3.3 Role of second-order dispersion in optical elements comprising the interferom-
eter

Second-order dispersion in an optical material (d1 , d2) through which the down-converted photons propagate
leads to asymmetry of the dip. The dip is particularly stretched to larger values of I (see Fig. 3) as a consequence
of the deformation and lengthtening of the two-photon amplitude A1211 in a dispersive material. The higher the
difference d1 — d2 of the dispersion parameters, the higher the asymmetry and the wider the dip; moreover its
minimum is shifted further to smaller values of 1 (see Fig. 3). Asymmetry of the dip is also preserved when
relatively narrow frequency filters are used though the narrowest filters remove it.
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Asymmetry of the dip caused by second-order dispersion in an optical material can be suppressed in two cases.
In the first case, for a pump pulse of arbitrary duration, dispersion cancellation occurs when the magnitude of
second-order dispersion in the path of the first photon (given by d11) equals that of the second photon (given by
d21) . Dispersion cancellation is a result of completely destructive interference between the amplitudes A12,1 (t, r)
and A12,1(t, —r) for which there is nonzero overlap. When the pulse duration is sufficiently long (in the cw
regime) dispersion cancellation occurs for arbitrary magnitudes of second-order dispersion present in the paths of
the down-converted photons. Dispersion cancellation has its origin in the entanglement of photons.

4 CONCLUSION

We have developed a model of spontaneous parametric down-conversion produced by an ultrashort pump
pulse. The model includes frequency modulation of the pump pulse (chirp) and dispersion in both the nonlinear
crystal and optical material through which the down-converted photons propagate. The influence of these features
on the depth and asymmetry of a photon-coincidence dip at a beamsplitter has been established. The higher the
chirp parameter, the lower the visibility. Second-order dispersion of the pump beam in the nonlinear crystal may
result in the occurrence of a local peak at the bottom of the dip. Second-order dispersion of the down-converted
beams in the crystal results in oscillations at the borders of the dip. Second-order dispersion of the down-coverted
photons through optical materials that comprise the interferometer (e.g., the delay line) leads to asymmetry of
the dip. These effects can be used to measure parameters of a pump beam (duration and chirp parameter) as well
as dispersion parameters of both a nonlinear crystal and an arbitrary optical material. Dispersion cancellation
has been revealed i) for long pump pulses and ii) when the amount of dispersion in the two down-converted beams
is identical (for pump pulses of an arbitrary duration).
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