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ABSTRACT

\,\Te discuss issues involved in estimating the dimension of a fractal point process. We first define the term fractal
point process and provide some examples of experiniental phenomena for which they serve as suitable models. We then
develop mathematical formulations of fracta.! point processes, and present two methods for dimension estimation and an
analysis of their performance. Finally, we compare this analysis with results from both simulated and natural examples
of fractal point processes.

1. DEFINITION OF A FRACTAL POINT PROCESS

Soie plienoniena occur at discrete tiies (or l)la.ces), with the individual events largely identical. Exanples include
the detection of particles fioiii radioactive decay and the times of sunrise at a particular location. A point process is a
mathematical construction which represents these events as points in a space, and is either stochastic, when associated
with random phenomena' like 1a(lioactive decay, or (leter11inistic, as in the case of sunrises. For a stochastic point
process, the statistics of this set of points 1)1Ovi(le inforiiiation about the underlying structure of the phenoienon uiler
study. A fr(ICial stochastic point piocess results wheii these statistics exhibit po%\7er—1a.\ scaling, indicating that the
rej)1esente(l I)hellomella contains clusters of J)oints over all (ot a relatively large set of) time or length scales [1 2, 3, 4].
Fractal deteininistic point i1ocesses exist as iiia.theiiiaticaI entities, such as those generating strange attractors, and
when applied to I)hysica.! Phenonlena are closely related to chaos theory. Since an extensive body of literature already
exists in this area, we do hot coiisidei deteiniinistic I)1oc(ss(s further in this aei. The diiiiension of a fractal point
process is a measure of the clustering of the points vit1iin the iiocss; it lies l)etween a lowei limit of zero ( the dimension
of a point), and an upper linit. equal to the (li11ension of the space in which the process is embedded [1]. In this paper
we consider l)OiIIt l1cess oil a line, so that the 11111)er hniit is unity.

2. APPLICATIONS OF FRACTAL POINT PROCESSES

's1any phenonena in the !)hysical orld niay be readily 1eI)1esented by fractal 1)Oiflt Plocesses. A few are listed below.

2. 1 . Auditory-nerve—fiber action potentials

Nerve fibers transmit information by means of action potentials .,which ale localized regions of depolarization traveling
dowii the length of an axon Action potentials on a given axon aie brief a.il largely identical events. so their (letection
at a recording electrode may be vell 1el)1esente(l by a I)Oint process. Fractal point I)IoceSSeS (lesClibe the action
potentials in auditory—nerve fibers [2, 5, 6]. Although over short tinie scales nonfractal point 1)1OcesSes I)ro'e superior
for representing such iierve sj)ikes ovei long tinie sc ales (typically greater than one second ) fractal behavior l)eco11e5
evident. li-i particular both the Fano factor and the j)over spectral density, two iiieasures (IisCuSe(l latei in this paper)
are found to va.r in a 1)oweI—la\v fashion over these long tniie scales, and estiiiiators of the rate of the process converge
iore slowly than vould be expected for nonfractal J)rocesse, displaying fluctuations which are self—affine over varying
time scales greater thaii one second.

2.2. Openings of ion cliaiinels

Ion channels are open i Jigs in the iiieinhianes of cells vli ic li permit ions to diffuse in or out [7]. These channels ale
usually specific to a particular ion oi group of related ions, and block the passage of other species of ions. Fuitlier, most
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channels have gates, and thus the channels iiiay be either open or closed. In most cases intermediate conduction states
are not ol)serVed. A few ion channels may be modeled by a two-state Markov process, with one state representing the
open channel, and the other representing the closed channel. This model generates exponentially distributed dwell times
in both states. However, many ion channels exhibit power—law' distributed closed tiiies between open times of negligible
duration [8], and aie well described by a fractal point process. Indeed, count moments of all orders, coincidence rates,
and power spectral densities all vary as power laws, indicating fractal behavior.

2.3. Trapping times in amorphous semiconductors

The iiiult.iple trapping model, as developed by Orenstein and Ka.stiier [9, 10] and Tiedje and Rose [11], shows how
exponentially distributed traps over a large range of energies lead to a power-law decay of current in an amorphous
semiconductor. If a. pulse of light. strikes such a semiconductor, the many carriers excited out. of their traps will be
available to carry current until they are recaptured by a. trap, which happens relatively quickly. At some point each
carrier will be released from its tra.p by thermal excitation and beconie mol)ile for a time, and then be recaptured by
another trap. For exponentially distributed states with identical capture cross sections, the electrons tend to he trapped
in shallow states at. first., but the probability of being caught. in a deep trap increases as time progresses. This leads to
a. current. that decreases a.s a. power—law function of time.

The iultiple trapping iiiodel niay he usefully recast. in terms of fra.ct.a.1 point. piocesses [4, 12] . Consider an a.niorphous
senllcon(luct.or with localized states ( traps ) that are exponentially distributed with l)aIa.Iet.e1 E l)et.ween a. iininuii
energy EL of the order of i'T where ic is Bolt.zmaiin 's constant. and 'T is the absolute temperature; and a. maximum
energy EH deteriined l)\ the bailgap. For a. particular trap with energy , the correSl)ofl(lillg iiea.n waiting tiie is

7- = T0exp('/h'T), (1)

where T is the average vil)rat.iolIal I)eriO(l of the at.ons in the seiiicoiiduct.or. If we (lefifle characteristic tinie cutoffs
..4 exp( EL /tT ) a.11(l B E To exp( E11 /i'T ), and the power—law expolient. D K'T/Eo , then the niean va.it.ing time
T ha.s a. (lensity which decays a.s a. po•ver law between those two cutoffs. Each t.Ia1) holds carriers for t.iies tha.t are
exponentially (hst.ribllt.ed given the coilit.iona.l 1)a.ra.lllet.eI r, and averaging this exponentia.l density over all pOssil)le
values of r yields the uncon(litiona.l t.Iaj)ping t.niie cleiisit.v, which is itself ap)roXiI11a.t.ely Po\\'er law:

p(') DF(D + l)ADi_l) (2)

for A << t << B. Thus each carrier vilI be trapped for a period that. is essentially I)O\\Tella,\V distributed.

U1)ofl esca)iflg froni a trap, the carriei can coiliict. current. for a. short. time until it. is again captured by another trap.
Thus each carrier executes a. series of current—carryiilg jtIinps ell descril)ed l a. fractal point. l)1Ocess. Assuniing that
each carrier acts independeiitlv of the others, the action of the carriers as a. whole can be modeled a.s the superposition
of several coniponent fracta.! I)oint. processes which is another fractal point. piocess. Again, both experinent.a.l [13] and
t.heoret.ica.l [14] results point. to a. power—law oi fractal decay in the l)O\\e1 spect.ra.l (lensit.y, while other statistics also
shI)V scaling behavior.

2.4. Electronic burst noise

Burst. noise occurs iii many coiiiiiniiiicat.ions svst.(-Ii1s and is (halact.eliZe(l b relatively brief noise events which
cluster together, separated Lv ielat.iv€ly longer l)(IiO(IS of quiet.. i\laIl(lell)1ot. [1 5] long ago showed that. burst. errors in
communication systems are vell modeled by a version of a. fractal renewal process and in particular that. the int.erevent.
times were essentially independent, of each other for time scales determined by the resolution and the duration of the
observation.

3. MATHEMATICAL FORMULATIONS OF FRACTAL POINT PROCESSES

\V have deli ned three fractal point pocees and (len ed a. number of their statistics:
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Figure 1 : A p1iIary hoiogeneotis Poisson point 11ocess Ill (I ) vit1i constant iate p seives as the ifl1)Ut to a. linear filter
with iiipulse response function h(i ). The continuous—tiiiie stochastic l)ro((ss 1(1 ) at the output of this filter is shot
Hoise which seives as the randoni tate for a.iiotliei Poisson point l)iocess, whose oUt1)llt is A(/ ). V(I) is a special (IOUI)ly
stochastic Poisson point l)1ocess (DSPP), known as a .s hot-noise driven Poisson 1)Oiflt l)1ocess (SNDP). If li(t) (lecays ill
I)OWer—la\T fashion tlieii 1(1 ) is fracta shot noise and V( I ) is a F"SN DP.

3.1. Fractal renewal process

Perhaps the si11j)lest fractal poilit. l)1ocess is the fractal renewa.l (FRP) [4, 12, 15]. For the FRP, the times
between adjacent events are indepeiideiit ra.ndoi variables T (lra\V11 froni the sanie fractal probability (listril)UtiOfl. In
l)articlllar, the survivor function 1 — P(i ) decays as a. po'ei law

r h/ID for 4 < I < Bl—P(i)=Pr{T>1}= ' . (3)
L U otherwise.

The FRP exhibits fractal behavior over tiiiie scales between i and B. Another point process results from the stiperpo—
sition of a iiuniber of indej)endent FRPs, for which fractal behavior is observed over a smaller range of time scales. The
effective cutoff at short tinies increases with the iiiiiihei of superposed FR Ps.

3.2. Fractal-sliot-iioise-driveii Poisson process

The fractal—shot—noise—driven Poisson process (FSN DP) consists of two Poisson processes separate(l by a linear filter
with a. power—law decaying inlpuls(-' response function [3] (see Fig. 1).

The one—dimensional honiogeneons Poisson point, process (II PP) is perhaps lie simplest stochastic l)0i11t piocess [16].
The HPP is characterized by a. single constant. quantity. its rate, which is the nuniber of events expected to occur in a.
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unit interval. A fundamental I)loperty of the FIPP is that it is memoryless; knowledge of the entire history and future
of a. given realization of a IIPP yields no information about the behavior of the process at the present.

Other point irocesses do not share this mernoryless I)1operty, and therefore cannot be described in terms of a constant
rate. An important example of an inhomogeneous point. I)rOcesS is the doubly stochastic Poisson point process (DSPP)
[17]. For this point process, the rate itself varies stochastically. Thus the DSPP displays two forms of randomness: that
associated with the stochastically varying rate, and that associated with the underlying Poisson nature of the process
even if its rate were constant.

The FSNDP is a special case of the DSPP. Here the rate of the Poisson process is determined by fractal shot noise,
which is itself a. filtered version of another homogeneous Poisson point process. Figure 1 schematically illustrates the
FSNDP as a two-stage stochastic process. The first stage is a HPP with constant rate p.. Its output M(i) beconies the
input to a. linear filter with a. power-law decaying impulse response function h.(t), which then produces fra.cta.I shot noise
1(1 ) at. its output. This fractal shot-noise process becomes the time varying rate for the last stage, a second Poisson
point process. The resulting point process N(T) is not homogeneous, hut rather exhibits the variations of the fractal
shot noise driving process. Thus the two forms of randomness inherent in the DSPP are, in the FSNDP, two separate
Poisson processes, linked by a. povei-la.v varying linear filter.

3 .3 . Fractal-Gaussian- HOiSO- driven Poisson process

Under suitable conditions, the underlying fra.ct.a.l shot noise of the FSNDP converges to a Gaussian probability
density, as provided by the centra.! limit. theorem, and therefore becomes fra.cta.l Gaussian noise {18]. The resulting point
process becomes a fractal-Gaussian-noise-driven Poisson process (FGN DP) [3} . The superposition of many independent
FliPs, mentioned above, also converges to a FGNDP for certain ranges of paiaiiieters [4].

The FGNDP is important. because Gaussian processes are ubiquitous, well understood, and ina.y he completely
described by their nea.ns and a.ut.ocova.ria.nce functions; thus coiiipa.rison with experiment hecones easy. Indeed, the
FGNDP I)rOvides an excellent. lilo(lel for the sequence of action potentials in primary auditory—nerve fibers, requirmg
only three parameters [2, 6]. With the inclusion of the refractory effects of nerve fibers, the FGNDP describes the
behavior of nerve spikes in auditory fibers iii seveia.l na.mmalia.n species over all time scales and for a. broad variety of
statist.ica.l measures.

3.3. Other fractal poiiit processes

Other important. formulations of fra.ct.a.1 point Processes exist . Griiiieis and colleagues defined such a. process where
each member in a sequence of primary events gives rise to a. train of secondary events (as in the FSNDP), hut where
the events in a. train forii a. segment of a. renewa.! rrocess, with a. fractal (power—law distributed) (lUra.tiOfl [19]. The
resulting process indeed exhibits power—law scaling L1 the same statistics a.s the FSNDP [20].

4. FRACTAL DIMENSION ESTIMATION: THEORY

Fra.ct.a.l 1)rocesses by their nature disj)la.y fluctuations over a. hrOa.(l range of time scales, including long ones, so that
estimating the properties of a. segment. of data. 1)1esents more difficulties than estimating those of a. nonfra.cta.1 process.
For example, the estinia.t.e of the mean of a. fracta.l process ha.s a. variance which decreases only slowly with the length
of the (lata. segment. [2, 6]. For a noiifract.a.l point. process, such as the IIPP, the variance decreases a.s T1, where T is
the length of the segiTlent.; for a. fractal point. process, such a.s the FGNDP, the variance decreases more slowly, as TD_l
where D is the fractal (li11eIiSiOl1 of the point 11ocess [21]. This slow convergence derives from the fractal nature of
the process, inplying long—range correlations which do not average out neatly a.s quickly a.s independent fluctuations.
As a. result. of these long-raiige variations, detecting a. change in a. property of a. fra.ct.a.l process generally requires a
prohibitively large quantity of data a 11(1 in fact is not. a pla(t.ical goal in mai ty cases.

In this paper we take as a given that. the data. segment. tinder study derives from a. stationary process. Consequently,
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Figure 2: Doubly logarithmic plot of power spectral density estimate of the point process recorded from an auditory-
nerve fiber Ufl(ler continuous—tone stiiula.tion (without 11o(lulation). The data. segnient. has a duration of 1800 s, witl1
an average tine between events of 14. 11 nis. The estiniate was snoothed vith a. triangular \Vifl(IO\V in the tiiie (lo1a.in
( autocorrelation) of length equa.l to 1/8 the (luratioll of tlie data segment. Over long time scales (low frequencies) the
shape of the curve follows a straight line of slope —0.717 indicating fractal behavior.

while a. process may exhibit. large fluctuations which imply a. large fiacta.I dimension, any (la.ta segiiient oI)ta.ined from
it. ha.s a. non—zero probability of lacking these fluctuations and therefore appearing to be fron a. process with a sna.ller
fra.cta.1 (linlension [22]. This plienoniena. provides an a!)J)1ecial)le bias for shorter data. segments, and often a. surprisingly
long set of data. is required before reliable estimates of the fra.cta.l diniension may he obtained.

Given a. segment of a. fiacta.l poilit. proces we wish to estimate the fract.a.l dinension, D. Many sta.tistica.l measures
may he applied to a. point 1iocess but some, such a.s the int.erevent. histogram, provide information over short time
scales [23], and are therefore not useful in detern)ining the character of Iong—t.eii fluctuations. Two statistics which
J)rovide useful information about. the fra.cta.I dimension are the power spectra.! density (PSD) and the Fano—fact.or time
curve (FFC).

4.1. Power spectral density

The PSD provides a. measure of how the po\\'(I in a. 1r0ess is concentrated in various frequency bands [24]. For a.
fra.cta.1 process, the PSD decreases as an inverse power—law function of frequency, with the exponent eqiia.h to the fractal
dimension. Often the PSI) of a. fractal point process will approach an asymptotic value a.t high frequencies, and assumes
the forni

8(f) = o [1 + (f/Jo) -D] (4)

where fo represents the whiite—iioise cutoff frecuency. A PSI) of a. representative recol(hillg of auditory—nerve action
potentials is provi(led in Fig. 2.

To est.inia.te the fractal diniension D, we begiti by partitioning the data segnent into iV adjacent. windovs of equal
length, and counting the nuiiiber of 1)oilIts that. fall in each \villdow. resulting iii a. sequence of counts {z,}J . We chose
iV large enough so that the PSI) est.iiiiat.e has negligahle bias. aIi(l small enough so that. the counting windows are large
conij)a.red to the average ti iie het\veell poi tits: then by the ((11t.I) I Ii ni t. t.Iieoieni the nu nll)er of cotnil.s in each vindow
a.pproxinia.t.es a. (iiaussian d ist.iibu t.ion. \Ve then compute the (I iscret.e Fourier transform of this sequence, yielding the
(unsnioothed) estimate of the power spect.ra.l (leflsit.V 8( /) Each of the values of 8(k) provides information independent.
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of the other values (for large N), and ha.s a. error which is also independent. of the other errors {25J. A typical estimate
vi11 have the forn

S(k)=So[1+(k/ko)']e (5)

for k > 0, where D is the dimension of the fractal point process, and k0 represents this white-noise cutoff frequency
in the integer-frequency space indexed by k. To obtain the best estimate of D, we further require that the number of
windows N he chosen to be greater than k0. The random variable n(k) represents the error in the kth value in the
power spectra.! density estimate, an(l does not depend on 8(k) [25]. We then have

E n(k) _
E { {ehlU) 1] [efl(k) _ 1] } =

To obtain the variance of •k we llee(l the distribution of n.j. . ITowever, the result depends only weakly on this distribution,
so in the interests of tractability we iake the assumption that the (listril)ution is Gaussian, yiel(Iiflg

E E{n(k)} = — ln(2)/2 (7E{[n(j) — ][it(k) — ii]} = ln(2)ik.

To estimate D, we perform a. least-squares fit on the 1ogaritIin of the power spectral density estiniate (less the
asymptotic value for high frequencies versus the logarithui of the index k, using the first k0 values. For k � k0 there
is essentially no a(lclitional information, so we ignore these values. Since each value in S(k) for 1 < k < k0 provides
essentially the saine a.niount of inforiiation, and all are inclepeiIent, there is no reason to weight any one of them more
than the others in estinating D. Define x lii( k ) , ai1 y. E ln[S(k ) — So] ln( So ) + D ln( ko ) — D ln( k) + n(k) . Then
the estimate of D is sim)ly the covariance of {x} and {y} divided by the variance of {x}

t .rA.ilk (k
) ( Y)— 1)_i k=1 h'=lv=- x

(k() _ 1)i L:) k0

ko

k'

k2 > [n(L:') — i] i: ln(j) — k;-1 [n( k) — ••iJ ln(k)
= D + k=1 j=1 k=1

(8)

where

1(j) In(k) -
111(k)]

-

(9)

is the variance of lii(j). The function f(j) rises nionotonicallv to an asymptotic value of unity as j — oc.

The second term in Eq. (8) contains sums of zero-mean random variables, so that E{V} = D, and V is an unbiased
estimate. The variance of 'P is given by

\rai[p] = { [ {n(L) - -
[n(h) - ln()] } f ()

In(2)
10—

k() 1(k))'

As the length T of the data segment increases, the effective white—noise cutoff frequency k0 will increase proportionately,
and the variance of the estimate 'P will decrease as T in contrast to the variance of the estimate of the mean.
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Figure 3: Fano-factor time curve estimate of the sanie point piocess as in Fig. 2. Over long time scales the shape of the
curve follows a straight line of slope 0.840 indicating fracta.l 1)ehaviol' with essentially the same dimension as in Fig. 2.

4.2. Fano-factor time curve

Another statistic that is particularly useful over long tiiiie scales is the Faiio factor F(T), defined as the valiance of
the nu11)er of counts in a. sI)ecifie(l tiie window T divided liv the mean number of counts. For the IIPP, the Fa.no factor
a.ssunies a. value of unity for ally counting time. For other point. processes, the Fa.no factor varies with the counting time,
and the form of F(T) as a. function of T, called the Fa.no—fact.or time curve (FFC), provides useful information about
the I)Oiflt Irocess Ufl(ler study. In particular, for a. fiacta.l point Irocess the FFC (igiioiing refractory effects) has the
functiona.1 form

F(T) = 1 + (T/T, (11)
where D is again the (liflielision of the fractal point. piocess and T is an intercept. time. Thus another estimate of D
may he obtained by perfoiiiing linear regression on ln[F(T) — 1] versus hi(T), as in Eq. (8). A FFC constructed from
the same recor(hng of auditory—nerve action pot.eiit.ia.ls as in Fig. 2 is 1)1OVide(l iii Fig. 3.

The properties of this estimate are considerably more (lifficult. to derive. Since the estimate of the mean will have
the same proportional error for all counting tinies I, this vill have no effect. on the estimate of D and call he ignored.
However, the estimation of the variance, ParticularlY at. long counting t.iiies. will stiffer from the sa.nie slow convergence
probleis as the deteriina.tion of the iea.n. heuristically, estimates of the power—law slope are restricted to counting
tines less than one tenth of the length of the data .s egn ient..

The FFC—ba.sed est.iinat.e of I) also differs froi that. of the PSD in having a maximum possible value of unity, while
the PSD may have any slope. This may be seen by considering a data segment. divided into 2N intervals of length T,
with zj representing the number of events falling within t.Iìe jt.h interval. The data segment. may also be (livided into
N intervals of length 2T, with Z events in the it.h interval. Tlieii estimates of the mean values of and Z are related
sim)ly by (Z) = 2(z) by construction, and for the mean s(ItIam(

(Z2) = N > = .v- + z211

= N'
N—I

+ 2z1+i — — Zj+1 + 2:2,:2,+1)
i= (I
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2N—1 N—i
= 2N1 i: :j — N1 (:2j — Z2+i)

j=O j=O

2N
2N-i

= 4(2) (12)

For the estimates of the variances V of z and Z, and assuming a large value of N, then

V (Z2) — (Z)2 � 4(2) (2(z))2 4V, (13)

and for the estimates of the Fano factor

F(2T) = c = 2F(T). (14)

Therefore, the estimate of D obtained from the FFC niust be less than unity. This maximum value of the FFC-hased
estimate effectively skews the estimate towards lower values for D close to unity. The skew and the slow convergence
of the variance estiiim.te yield qualitative information about the statistics of the FFC-based estimate, but for more
quantitative infornia.tion we niust rely on iiiiierica.l si niulations.

The FFC ail the PSD are unicue1y c1eternined by each other through the coincidence rate G(T),defined as

0 Pr{(tt + ) an(I (/ + TI + T+ )}
(7(T) (1.4

where E(x, y) represents the occurrence of at least one event. of the point j)rOcesS in the interval (x y) [26]. The
coincidence rate and PSD are Fourier transforms of each other and the FFC may be obtained from the coincidence rate
by an integral t rail sfori

2 .T
F(T) = 1+ Tj) (T— r) [G(r)— 2] dr, (16)

where ) is the average rate of events of the point process. These relationships verify tha.t the fractal (limeilSiOlls Ol)tailled
fron the PSD ail the FFC are iileed the same number [2] and provide a. rela.tiOnShil) betveen the intercept time T0
and the white—noise cutoff freqiien cy fr

2rT()f) [F(D + 2) cos(D/2)]u/D . (17)

Since the two estiiia.tois of D eniplov information over roughly the sa.nie time scales, and derive froii the saie underlying
value, we expect their statistics to be similar.

5. FRACTAL DIMENSION ESTIMATION: SIMULATIONS AND EXPERIMENTS

5.1. Siinulatioii: dead-time-modified (DTM) FSNDP

To facilitate conipa.risoi with exj)eri11enta.l a.n(litory—IleIve data, and to provi(le results in(lica.tive of practical data.
analysis, we chose statistics for the DTM—FSNDP simiilaiioii from t.viical primary a.lI(litory nerve—fiber spike trains. The
average tinie l)et\veell action potentials was taken to he 1 5 ins, the fracta.l intercept tiiiie was set at T0 = 100 ms, the
duration of each sinila.t.ioii was 1i(tr = 100 5, 111(l refiactoiiness was ap)Ioxina.te(l by a. fixed dead time of Td =2 ms.
One huilred sinula.tions were l)e1for1e(l for each of i.h ree values of the fractal diiiension: D = 0.2, (3.5, and 0.8.

Estimates of the fractal dimension were obtained by least—squares fit. of doubly—logarithmic versions of the FFC.
For counting times shorter thaii 2 s the Fa.uo factor exhibited excessive negative bia.s clue to the effects of dead time;
counting times were limited to a. maximum of 10 s due to variance of the Fa.no factor. Figure 4 presents histograms of
the estimated dimension for the three values of the simulated dimension, while Table 1 presents aggregate statistics. As
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Figure 4: Histogians of estiniates of the fractal diiiieiisioii Ol)tuifl((I l)y 1(aSt—S(!Ua1€S fits of doiibly—logaiitliiiiic versions
of Faiio—factor time curve estiiim.tes coniited between counting tiiies of 2 s and 10 s. These estimates were obtained
froii simulations of the FSNDP with an average time between points of 15 iis, a. fractal intercept. time T0 100 ins, a.
duration Tiiar = 100 s, and a fixed dead time of T = 2 ms. One hundred sinu1a.tions were I)elfOrflled for each of three
values of the fractal diinensjon: D = 0.2 (hollow diamonds), 0.5 (filled diamonds), and 0.8 (hollow cirlces). All curves
exhibit. a. negative bia.s and a. spread about the mean. No values in excess of unity were observed.

DTM-FSNDP Siniti la.tion

D = .2 D = .5 I) = .8

Auditory

experiment

FFC: Average
Standard Deviation

.012 .313 .539

.275 .245 .224

.504

.213

PSD: Average
Standard Deviation

.0i3 .318 .636

.175 .194 .237

.574

.222

Correlation Coefficient .693 .622 .757 .784
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Table 1: Statistics of fractal—dimension estimators for 100 trials.
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Figure 5: I-Iistogiaiis of estimates of the fiacta.1 diiiiension obtained by least—squares fits of (!Oubly—lOgaritllflhiC versions of
1)oe spectral density estiiiiates compUt.e(1 between fiequeiicies of 0.25 Hz and 0.01 Hz. These estimates were obtained
froiii the same siniula.tions of the FSNDP as in Fig. 4, and use the same symbols. All curves eXhul)it a. negative bia.s and
a. sprea.(1 about the mean.

expect.e(1, the FFC1—based estiiiia.tes of the fra.ct.a.1 dinension show a. I)ia.s t.o•va.ids siiia.ller values, ill(liCa.ting that. for many
of the sinu1a.tions Iong—t.ern fluctuations did not occur or were Iln(leIIepresenteCI. In a.(lditiOn, the estiiiia.t.es displa.y a.
significant s1)rea.d about. the iea.n, also (inc to the fra.cta.! fluctuations. The ina.xiniuni value of the FFC sloi:e provides
the expected absolute cutoff of unity, and none of the three 1iii1rc1 siniula.t.ions displayed an est.iia.ted slope greater
than this 1iiiit.

Perforning a. least—squares fit. on doubly—logarithmic versions of the PSD prOvi(le(1 complementary estimates of the
fractal diiension. Here, reliable tiie scales extend to the length of the data. segient., ht are limited at short times
by both dead-time effects and by the white-noise cutoff frequency; a range of 0.25 liz to 0.01 Hz appears to give
the best perforiia.nce. Figure 5 presents histograms of the estimated diniension for the three values of the siniula.ted
dimension, while Table 1 again presents aggregate statistics. As with t.Iw FFC, the PSD pIOvi(IeS est.iITla.t.es of the fractal
dimension with a. siniila.r bia.s toward sia.1ler values. Since the two statistics agree, it. is unlikely that. both estimators
yield inaccurate infornia.t.ion a.l)OUt. the data. segnient.s Un(IeI cOIlSi(leIatiofl ; rather fia.cta.1 spoia.dicit.y in the fluctuations
provides the best explanation. Any finite—length data. segnwnt. of a fia.ct.a.1 point l)roceSS nia.y lack these fluctuations and
therefore appear to be from a. process with a. smaller fractal (liIllensioII [22]. The sta.n(la.rd deviation of the PSD-ha.sed
fractal (linlension iay be easily colllpute(l fron Eq. (O) to be o 0.204, in excellent. agreenient. with values obtained
froni the sinnilations, which have an aggregate average of 0.202. In contrast. to the FFC, there is no absolute cutoff at
uiiit.y.

.Joint statistics of the FF(I— and PSD—ba.sed estiiiiators (l(SCIil)e ho' infoiinat.ion is shared between these two sta.tis—
tics. Figure 6 presents sca.t.t.erplot.s of the values obtained fron the two estiia.tois for all three huiidred simulations,
and Ta.ble 1 contains values of the correlation coefficieiit.. Both sliov a ..significant. correlation between the two estina.—
tors, expected since they estimate the same underlying dimension D. This provides still more reason to favor fractal
spora.dicity in the fluctuations a.s an explanation for the bia.s seen in both estimators.

5.2. Experiment: auditory-nerve action potentials

A similar analysis was perforiiied on the long (1 800—s) segment. of data recorded from an auditory nerve fiI)er uiuider
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Figure 6: Scatteiplot coiiipainlg estinates of the fractal (IiIlleIlsioIl fioiiì Faiio—factoi—tinie—curve and power—spectral—
density estiia.tes. Estiiates of the fiacta.l (IiIe11siofl conptited froiii the Faiio—factor tiiie curve as in Fig. 4 form the
abcissa, while the ordinate consists of estiiiia.tes from the power spectral density. Symbols are a.s in Fig. 4. Correlation
between the two estimates is apparent.
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Figure 7: Scatterplot conparing estiniates of the fract.a.l (hinlensioll froin Fano—fa.ctoi—tinie—cnrve and Power—sPectral—
density estiia.tes, Ol)taine(l froni the a.u(ihito1y—nerve (lata used in Figs. 2 and 3. Again, correlation between the two
estimates is apparent.
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continuous-tone stimulation (see Figs. 2 and 3). The data were divided into segments of 100 s each, with the resulting
statistics displayed in the last column ofTable 1. A scatterplot is 1)rOVided in Fig. 7. The standard deviation ofthe PSD-
based estimate of the fractal dimension, like those cOITlpUte(1 from the simulations, agrees well with the theoretical value
of 0.204. Results for the auditory-nerve data. resemble those for the simulations, with an underlying fractal dimension
of nearly 0.8. Indeed, lines fit to the FFC and PSD computed over the entire 1800-s duration of the data (displayed in
Figs. 2 and 3) yields estimated fractal dimensions of 0.840 and 0.717 respectively, in good agreement with this figure.
Thus the FSNDP again proves to be an excellent simulation for primary auditory nerve-fiber data.

6. CONCLUSION

We have addressed some of the issues surrounding estimating the dimension of a fractal point process. We have
defined fractal point processes, and provided examples of mathematical formulations for them. We have discussed the
nature offractal fluctuations and how they affect estimation offrac.tal dimension in general, and for two useful estimators
in particular. Finally, we provided results from simulations a11(1 experinient.a.l (lata to support our approach.
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