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ABSTRACT

The time course of the velocity of vibration was measured in individual sensory cells (outer hair cells and Hensen'’s
cells from the third and fourth turns of a guinea-pig temporal-bone preparation) for a variety of applied acoustic
stimuli. The methods of preparation and interferometric measurement have been described earlier. To observe the
cell’s response for a continuous and large range of acoustic intensities, an amplitude modulated (AM) tone with
fixed modulation characteristics and a wide range of carrier frequencies f, was used. The peak acoustic intensities
of the applied tones were in excess of 90 dB:re .0002 dynes/cm?. A spectrogram was used to analyze the velocity
response of the cell. This is a three-dimensional representation that exhibits the time evolution of the amplitudes
of all of the spectral components in the response. In the fourth turn of the cochlea, where cells responding to the
lowest acoustic frequencies are located, AM tones with carrier frequencies below the characteristic frequency (CF) of
the cell (the frequency of maximal vibratory response) gave responses with multiple harmonic components, with the
largest component occurring at a frequency close to the CF of the cell. For carrier frequencies near the CF, multiple
harmonic components were also present, with odd harmonic components (3f;, 5f., etc.) higher in magnitude than
even harmonic components (2f., 4f., etc.). For carrier frequencies above the CF, fewer harmonic components
were present and they were of smaller magnitude. In the third turn, qualitatively similar results were found. An
additional feature seen in the third turn recordings was the presence of half-harmonic spectral components (f./2,
3fc/2, 5f./2, etc.) in the response to stimuli with carrier frequencies near and above the CF. The emergence of
spectral components with these types of patterns is consistent with a class of nonlinear oscillator models that can
be driven into chaotic regimes. One example is the behavior of the velocity Z(¢) in a generalized driven Duffing
oscillator, for which the equation of motion takes the form Z(t) + az(t) — Bz(t) + yz3(t) = F(t), where a, 8, and ¥
are constants and the forcing function F () is a slowly modulated AM tone.

1. INTRODUCTION

1.1. Overview of the hearing process in the mammalian auditory system
Sound is received by the pinna (external ear) and travels through the ear canal to the tympanic membrane.

The middle ear converts this acoustic signal into mechanical vibrations of the ossicular chain. These vibrations are
transmitted, via the footplate of the stapes, to the fluid-filled inner ear!:23. Fluid vibrations result in mechanical
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vibrations of the basilar membrane and the sensory cells supported by it in the organ of Corti. The organ of Corti,
which contains many types of cells, is located within the cochlea, a bony fluid-filled snail-like structure. Of these
cells, the inner and outer hair cells are most directly associated with the auditory transduction process.

Within the cochlea there is a tonotopic mapping — that is, cells at a particular location respond most vigorously
to certain frequencies. At the base (first turn) of the cochlea, near where the vibrations are transmitted through the
oval window, the vibratory response of the cells reflects mechanical tuning at high acoustic frequencies (in the 30
kHz region in the guinea-pig). In the higher turns of the cochlea (there are four turns in the guinea-pig cochlea), the
tuning of the cells’ responses occurs at successively lower and lower frequencies. In the third turn of the guinea-pig
cochlea, the cells respond maximally to frequencies in the range 500 - 900 Hz, whereas in the fourth turn, the
maximum response occurs for frequencies below about 500 Hz. The frequency at which a cell displays its maximum
mechanical response is termed the characteristic frequency (CF) of that cell.

It is well known that nonlinearities are present in the cochlear transduction process, and their behavior has been
investigated by researchers in various species of animal*%67 The determination of whether these nonlinearities
play a significant role in the functioning of the cochlea, and their precise locations are topics of current research.
This paper focuses on characterizing the nonlinear velocity responses of two types of sensory cells in the third and
fourth turn of the guinea-pig temporal-bone preparation®® by considering the spectral content of their responses as
a function of time.

1.2. Experimental description

We have measured the vibratory motion of outer hair cells and Hensen’s cells at the reticular lamina in response
to various acoustic stimuli, using heterodyne interferometry®. Hensen’s cells are mechanically tightly coupled to the
third row of outer hair cells. Hensen’s cells have a much higher optical reflectivity than outer hair cells, and therefore
their vibrations can be measured with greater signal-to-noise ratio. Measurements were carried out in the third and
fourth turns of the guinea-pig temporal-bone preparation described by Ulfendahl et al.®. In this preparation, the
left temporal bone, containing the cochlea, is removed intact from a freshly sacrificed animal. The cochlea and
its associated structures are maintained in a viable state for periods of several hours, by immersion in a specially
prepared and oxygenated tissue-culture medium.

The cochlea is stimulated acoustically through the intact auditory canal. To prevent the tympanic membrane
from drying and cracking, the middle ear is also immersed in tissue culture medium whereas under normal physio-
logical conditions, it is air-filled. This introduces an acoustical loss of approximately 30 dB!°. The acoustic sound
pressure levels quoted in this paper have been adjusted for this loss by subtracting 30 dB from the sound pressure
levels measured at the tympanic membrane. Sound pressure levels were measured simultaneously with the cellular
velocity recordings, using a probe microphone placed near the tympanic membrane.

The details of the measuring and stimulus generation techniques have been fully described elsewhere®. This paper
concentrates on the analysis of the velocity response of these cells to amplitude modulated (AM) tones. These stimuli
are ideally suited for investigating the nonlinear dynamical behavior as this particular choice of stimulus has fixed
frequency but a slowly varying input level. It allows us to observe, in a single experiment, the cell’s response for a
continuous and large range of acoustic intensities. The AM tone is, however, a nonstationary stimulus over the time
scale of the experimental recordings so that a proper representation of the response in the spectral domain must
be used. Accordingly, we use the spectrogram, which is a suitable time-frequency representation for capturing the
time-varying spectral character of the cellular velocity responses.
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2. ANALYSIS TECHNIQUES

2.1. The Short-Time Fourier Transform and spectrogram

A commonly used time-frequency representation!!'!? is the spectrogram (SPEC), which is defined as:
SPECL(t, f) = |STFTL(t, f)? (1)

with the Short-Time Fourier Transform (STFT) defined as:

o

STPTZ.f) = [ [o(u)a”(u= 0] exp (=j2xfw) du, (2)

— o0

where z(t) represents the time waveform being analyzed, g(¢) represents a window function in time, ¢ is the time
variable, and f is the frequency variable. A Gaussian window [g(t) = exp (—t2)] provides a reasonable choice for the
window function, since it minimizes the time-frequency uncertainty product!!. Once a window length L is chosen,
the time-frequency uncertainty product is fixed — a good rule of thumb is to choose the window length so that
the signal appears ‘relatively stationary’ within the window. In our case a window length L = 128 samples was
appropiate. This corresponds to 25.6 ms at the 5 kHz sampling rate used in recording our data.

We have chosen to plot simply the magnitude of the STFT, rather than its square, in our figures. This choice of
format affords us the ability to show both high and low magnitude components more effectively on the same plot,
for our particular class of signals. However as the spectrogram is a term often used to refer to both the magnitude
of the STFT and its square (which is the strict definition of the spectrogram), we will refer to the magnitude of the
STFT as the spectrogram, in the remainder of this paper.

A sampled version of the spectrogram was calculated using a summation approximation of (2):

STFTnL:Z [n + mjw m]exp(

m=0

—j2rmk

—— ), 0<k<N-1, 3
o) o
where n is the discrete time index, k is the discrete frequency index, and w([n] represents the Gaussian window
sampled in the range [-2,2] :

w(n] = exp

L-1

(_2+ An )2] 0<n<L-1. (4)

The value of N (which sets the number of discrete frequencies at which the STFT is sampled in the frequency
domain) was chosen equal to L. The spectrogram was not evaluated for all values of n; sampling at values of n that
were multiples of 32 gives a sufficiently detailed picture of the spectrogram for our purposes. This is equivalent to
saying that the window is moved through 32 time samples for successive evaluations of the STFT.

In our figures we present the spectrogram in a three dimensional visual format, often referred to as a 3-D spectral

plot. In this format, time and frequency form the bottom plane, and STFT magnitude is represented on a linear
axis in the third dimension.

3. RESULTS

3.1. Stimulus characteristics

To examine the frequency-dependent nature of the velocity response of sensory cells in the cochlea we applied
100%-modulated AM stimuli with a fixed modulation frequency (2.44 Hz), varying the carrier frequency of the
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stimulus. This allowed us to examine the variable nature of the nonlinear velocity response of a given cell as the
carrier frequency was altered from below to above the CF. Here, we detail the responses of two cells, a fourth turn
Hensen’s cell and a third turn outer hair cell, from two different preparations. The sampling frequency was fixed at
5 kHz in all cases.

3.2. Response of a fourth turn Hensen’s cell to AM stimuli

In Figs. 1, 2, and 3 we show the response recorded at a Hensen’s cell located in the fourth turn of the guinea-pig
cochlea. This cell has a characteristic frequency of approximately 220 Hz. Figure 1 shows the response of this cell
when an AM tone with a carrier frequency f. = 97 Hz (below CF) is applied to the cochlear preparation. In Fig.
1(a), we see the overall velocity response of the cell over one cycle of the modulation envelope. The response does
not follow the shape of the input envelope; it is distorted and asymmetrical about the zero of velocity. Figure 1(b)
shows in detail the velocity response from the central portion of the modulation envelope, in the time range 0.18 -
0.22 s. The spectrogram of the velocity response [Fig. 1(c)] shows the time behavior of the spectral content in the
velocity time waveform. The spectrogram reveals the presence of many spectral components, whose frequencies are
all multiples of the carrier frequency. The component at f, is the first to appear in time, but near the center of the
envelope the spectral component at 2f. matches the magnitude of the f. component. It should be noted, however,
that 2f. ( = 194 Hz) is closer to CF than f. itself, so it is not that surprising that this tuned system vibrates
maximally at the frequency component closest to its favored frequency. In addition, the spectrogram shows that
the spectral components at 4f. and 6 f, are greater than the odd harimonic voinponents at 31, and 5f.. Al spectral
components are seen to follow the time course of the input envelope quite well.

Figure 2 shows the response of this cell when an AM tone with a carrier frequency f. = 220 Hz (at CF) is
applied to the cochlear preparation. In Fig. 2(a), we see the overall velocity response of the cell over one cycle of the
modulation envelope. The response does not follow the shape of the input envelope, and its magnitude is greater
than the response shown in Fig. 1(a), since we are at the CF of the cell. Figure 2(b) shows in detail the velocity
response from the central portion of the modulation envelope, in the time range 0.18 - 0.22 s. The spectrogram of
the velocity response [Fig. 2(c)] shows the presence of multiple spectral components in the velocity response, as in
Fig. 1(c). The component at f, is first to appear in time, followed closely in time by the component at 2f. and, then
by the higher harmonics. However the component at 2f. is quickly surpassed in magnitude by the odd harmonic
components at 3f., 5f., and 7f.. Each spectral component follows the input envelope quite smoothly in time.

Figure 3 shows the response of this cell when an AM tone with a carrier frequency f. = 439 Hz (above CF) 1s
applied to the cochlear preparation. In Fig. 3(a), we see the overall velocity response of the cell over one cycle of
the modulation envelope. The response follows the shape of the input envelope reasonably well, though there is
some asymmetry towards positive velocities. Fig. 3(b) shows in detail the velocity response at the center of the
modulation envelope, in the time range 0.18 - 0.22 s. The spectrogram of the velocity response [Fig. 3(c)] shows
that three principal spectral components are present. The component at f,. is dominant and follows the shape of the
input envelope. The components at 2f. and 3f, are far smaller in magnitude and only appear at the highest stimulus
levels near the center of the input waveform. There 1s also a component at 4 f. which is just barely visible. In Fig.
3(c), we can also discern a low-amplitude steady component at a frequency just below 200 Hz, which continues
at approximately the same level before the onset of, and throughout the time-course of, the AM stimulus. The
behavior of this component is reminiscent of the spontaneous cellular vibrations previously observed in some third
turn Hensen’s cells, both in the absence of a stimulus!®!% and in its presence!®.

3.3. Response of a third turn outer hair cell to AM stimuli

In Figs. 4, 5, and 6 we show the response recorded at an outer hair cell located in the third turn of the guinea-pig
cochlea. Similar third turn data has been reported previously!®17:18  This cell has a characteristic frequency of
approximately 750 Hz. Figure 4 shows the response of this cell when an AM tone with a carrier frequency f. = 390
Hz (below CF) is applied to the cochlear preparation. In Fig. 4(a), we see the overall velocity response of the cell
over one cycle of the modulation envelope. The response follows the shape of the input envelope quite well. Figure
4(b) shows in detail the velocity response from the central region of the modulation envelope in the time range 0.18
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Figure 1: Velocity response of a Hensen’s cell (34231238.wv1) in the fourth turn of a guinea-pig temporal-bone
preparation to an AM stimulus with a carrier frequency of 97 Hz (below CF) and a modulation frequency of 2.44
Hz. The highest sound pressure level, occurring at the center of the input envelope, was 96 dB:re .0002 dynes/cm?.
(a) Time waveform of the velocity response (in cm/s) of the cell. Note the asymmetry between positive and negative
velocities. (b) Detailed view of the time waveform in the central region of the input envelope (from 0.18 s to 0.22
s). The waveform shape, while unusual, is reasonably repeatable over the four cycles shown. (c) Spectrogram of the
velocity response shown in (a). The = and y axes represent time (s) and frequency (Hz) respectively, and spectral
magnitude is plotted on the z axis (unitless). The spectrogram shows spectral components at the carrier frequency
fc, and at higher harmonic frequencies. The component at 2f, is approximately equal to the component at f..
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Figure 2: Velocity response of the same Hensen’s cell as in Fig. 1, but now to an AM stimulus with a carrier
frequency of 220 Hz (at CF) and a modulation frequency of 2.44 Hz. The highest sound pressure level, occurring
at the center of the input envelope, was 94 dB:re .0002 dynes/cm?. (a) Time waveform of the velocity response (in
cm/s) of the cell. The time waveform more closely follows the envelope of the stimulus than that shown in Fig.
1. (b) Detailed view of the time waveform in the central region of the input envelope (from 0.18 s to 0.22 s). The
waveform shape is reasonably repeatable over the nine cycles shown. (c) Spectrogram of the velocity response shown
in (a). The spectrogram shows spectral components at the carrier frequency f., and at higher harmonic frequencies.
The odd harmonic components at 3f., 5f., and 7f. are larger in magnitude than the even harmonics directly below
them in frequency (i.e., 2f., 4f., and 6f,, respectively). All spectral components follow the envelope of the input
stimulus reasonably well.
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Figure 3: Velocity response of the same Hensen’s cell as in Figs. 1 and 2, but now to an AM stimulus with a
carrier frequency of 439 Hz (above CF) and a modulation frequency of 2.44 Hz. The highest sound pressure level,
occurring at the center of the input envelope, was 94 dB:re .0002 dynes/cm?. (a) Time waveform of the velocity
response (in cm/s) of the cell. The time waveform follows the envelope of the stimulus quite well. (b) Detailed view
of the time waveform in the central region of the input envelope (from 0.18 s to 0.22 s). (c) Spectrogram of the
velocity response shown in (a). The spectrogram shows spectral components at the carrier frequency f., and at three
harmonic frequencies, 2f., 3f. and 4f,. (The component at 4f, is barely visible). The dominant spectral component
is clearly that at the carrier frequency.
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- 0.22 s. The spectrogram of the velocity response [Fig. 4(c)] shows that many harmonic components are present in
the response, though the component at the carrier frequency clearly dominates. The odd harmonic components (at
3fc and 5f.) are slightly larger in magnitude than the components at 2f, and 4f. [compare with Fig. 2(c)].

Figure 5 shows the response of this cell when an AM tone with a carrier frequency f. = 756 Hz (at CF) was
applied to the cochlear preparation. In Fig. 5(a), we see the overall velocity response of the cell over one cycle of
the modulation envelope. The response does not follow the shape of the input envelope, and there appears to be a
distinct velocity (approximately 0.3 cm/s) at which the response ‘breaks up’ into a more complex response waveform
(see arrow on diagram). Fig. 5(b) shows in detail the velocity response from the central region of the modulation
envelope in the time range 0.18 - 0.22 s. The spectrogram of the velocity response [Fig. 5(c)] shows some rather
unique features that are significantly different from the responses presented above, i.e., the presence of spectral
components at the half-harmonic frequencies f./2, 3f./2, and 5f./2. These components, which have been observed
previously!®2% occur near the center of the envelope but do not follow it in time. In fact, the appearance of these
half-harmonic components is sporadic and not seemingly related in any direct way to the input stimulus envelope.
Moreover, at the center of the response waveform (in the range 0.15 - 0.25 s approximately), there is a spectral
broadening of the response, i.e., energy is present at frequencies uurelated to the carrier frequency. This raising of
the ‘noise-floor’ is reminiscent of the transition from a quasi-periodic to a noise-like spectrum in the response of a
driven chaotic system?!.

Figure 6 shows the response of this cell when an AM tone with a carrier frequency f. = 961 Hz (above CF)
was applied to the cochlear preparation. In Fig. 6(a), we see the overall velocity response of the cell to one cycle
of the modulation envelope. The response follows the shape of the input envelope reasonably well, apart from the
distinct notch in the waveform at 0.15 s. Fig. 6(b) shows in detail the velocity response from the central region of
the modulation envelope, in the time range 0.18 - 0.22 s. The spectrogram of the velocity response [Fig. 6{c)] shows
that the component at the carrier frequency has by far the largest amplitude, with a small spectral component
also present at 2f.. The half-harmonic components (f./2, 3f./2, and 5f./2) seen in Fig. 5(c) are still present in
the response, but they are barely visible. As in the fourth turn, the response for carrier frequencies above CF is
dominated by the f. component, even if the carrier frequency is only slightly greater than CF.

4. DISCUSSION

4.1. Frequency dependence of the nonlinearity in the velocity response of cochlear sensory cells

The application of a slowly varying AM stimulus to various cells in the guinea-pig temporal-bone preparation
has allowed us to discern some general patterns of behavior in the velocity responses of these cells. The results
we have presented in Section 3 are typical of the recordings we have observed from 41 data sets, taken from outer
hair cells and Hensen’s cells in both the third and fourth turns of the guinea-pig cochlea. Analysis of the velocity
response waveforms using the spectrogram has shown the following:

o For carrier frequencies below the CF, multiple harmonic components are present in the response waveform.
For the fourth turn measurements we have seen a tendency for the harmonic component nearest the CF to
become dominant, particularly for stimuli with high peak intensity. In the third turn measurements, with
fc below the CF, we also see multiple harmonic components, but the component at the carrier frequency is
generally the largest in magnitude.

e For carrier frequencies near the CF, odd harmonic components dominate their neighboring even harmonics.
In the third turn, we have seen numerous examples of the appearance of half-harmonic components and
a broadening of the spectral response for very high peak acoustic intensities, for both outer hair cells and
Hensen’s cells. In the fourth turn, we have not yet seen evidence for the presence of half-harmonic spectral
components or spectral broadening.

o For carrier frequencies above the CF, the spectral component at the carrier frequency is dominant in magnitude
for both third and fourth turn cells. There may be other harmonic components. They are, however, small in
magnitude in comparison with the component at the carrier frequency.
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Figure 4: Velocity response of an outer hair cell (0a181442.wv3) in the third turn of a guinea-pig temporal-bone
preparation to an AM stimulus with a carrier frequency of 390 Hz (below CF) and a modulation frequency of 2.44 Hz.
The highest sound pressure level, occurring at the center of the input envelope, was 95 dB:re .0002 dynes/cm?. (a)
Time waveform of the velocity response (in cm/s) of the cell. (b) Detailed view of the time waveform in the central
region of the input envelope (from 0.18 s to 0.22 s). The small notches on the waveform occurring near each peak
are evidence of the presence of higher frequency components. (c) Spectrogram of the velocity response shown in (a).
The spectrogram shows spectral components at the carrier frequency f., and at five higher harmonic frequencies.
The components at 3f. and 5f, are greater in magnitude than the components at 2f, and 4f., respectively.

SPIE Vol. 2036 Chaos in Biology and Medicine (1993) /191



VELOCITY (cm/s)
VELOCITY (cm/s)
o

XL 019 0.2 0.21 0.22
TIME (s)

FREQUENCY (Hz)

Figure 5: Velocity response of the same outer hair cell as in Fig. 4, but now to an AM stimulus with a carrier
frequency of 756 Hz (at CF) and a modulation frequency of 2.44 Hz. The highest sound pressure level, occurring at
the center of the input envelope, was 104 dB:re 0002 dynes/cm?. (a) Time wavelorm of the velocity response (in
cm/s) of the cell. The time waveform does not follow the envelope of the stimulus, but undergoes a transition from
a regular-like appearance to a more disorderced appearance at times t = 0.9 = and t = 0.33 5. (b) Detailed view of
the time waveform in the central region of the input envelope (from 0.18 5 10 0.22 s}, (¢) Spectrogram of the velocity
response shown in (a). The spectrogram shows spectral components at the carrier frequency f.o and at two nigher
harmonic frequencies 2f. and 3/.. I addition, components at the hall-harmonic frequencies [f./2. 3f./2 and 5f./2
are clearly visible in the time range 0.1 - 8.35 5. though these components do not follow the envelope of the mput
stimulus. There iz also an overall raising of the noise-floor in the same time range. indicating a broadening of the
spectral response away from frequencies related to the carrier frequency.
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Figure 6: Velocity response of the same outer hair cell as in Figs. 4 and 3. but now to an AM stimulus with a
carrier frequency of 961 Hz (Just above CI') and a modulation frequency of 2.44 Hz. The highest sound pressure
level, occurring at the center of the input envelope, was 99 dBire .0002 dynes/em?. (a) Time waveform of the velocity
response (in cm/s) of the cell. The time waveform follows the envelope of the stimulus quite well, apart from one
clear notch occurring at time t = 0.15 s. (b) Detailed view of the time waveform in the central region of the input
envelope (from 0.18 s to 0.22 s). (c¢) Spectrogram of the velocity response shown in (a). The spectrogram shows
spectral components at the carrier frequency [, and at the second harmonic. Residual components at f./2 and
3f./2 are just visible. The dominant spectral component is that at the carrier frequency.
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4.2. The driven Duffing oscillator as a primitive model of cochlear dynamics

In an attempt to characterize the nonlinear mechanism(s) responsible for the unusual behavior we detailed
above and elsewhere”15:16:17.18,19,20 ' we have considered analogies to other well-studied nonlinear systems. Keilson
et al?223.24 have analyzed the responses of a class of bilinear oscillators, and compared the results with experimental
findings.

Here we consider a driven modified Duffing oscillator model 25:26:27 whose equation of motion is given by

() + ad(t) = Bz(t) + y2°(t) = F(t), (%)

where z(t) is position; ¢ is time; «, 8, and v are constants; F(t) is an arbitrary forcing function of time; and the
overdot indicates differentiation with respect to time. This equation represents an oscillatory system with two
symmetric potential wells. Since the potential energy is a quartic function of position, this equation models the
motion of a ball, subject to an arbitrary driving force, oscillating in two valleys separated by an energy barrier.

Small motions within either of these wells have a clearly defined characteristic frequency (CF), the value of which
is determined by suitable choice of the parameters «, 8, and 7. The driving function, F(t), can be arbitrarily chosen.
For comparison with the cellular velocity data considered here, we choose F(t) to be a slowly modulated AM signal
of the form F(t) = Fy[l — cos(2n fpt)]sin(27 f.t) where f,, and f. are the modulation and carrier frequencies of
the AM signal, respectively, and Fy is a constant. The characteristic frequency of the (small-amplitude) velocity
response for the system was set at 700, by choosing o = 473, 8 = 9.7 x 105, and v = 4.85 x 10°.

Figure 7 shows the velocity response & for such a system driven by a 100% amplitude modulated signal with carrier
frequency 700 and modulation frequency 2.44, and with Fy = 2.56 x 105. The velocity response time waveforms in
Figs. 7(a) and (b) are nearly sinusoidal in appearance, and the overall envelope of the response follows the input
stimulus moderately closely. However, a sudden irregularity is visible in the time waveform at time ¢ = 0.22. The
spectrogram [Fig. 7(c)] of this velocity response, gives more information about the nature of this irregularity. The
spectrogram shows spectral components at f., 2f., and 3 f. which follow the input stimulus. However in the vicinity
of time t = 0.22, spectral components at f./2, 3f./2, and 5f./2 briefly appear. This is a direct consequence of the
sub-harmonic cascade (period-doubling®!) route to chaos that the Duffing oscillator system is known to exhibit; as
the magnitude of the driving force increases, the system is pushed toward chaotic behavior. This transition towards
chaos is also accompanied by spectral broadening. These features resemble some of those observed in the cellular
vibration datal®320,

The Duffing oscillator itself does not seem destined to serve as a model for cellular dynamics in the cochlea;
it is clearly too simple, too idealized, and not grounded in established physiology. Nevertheless some features of
its behavior, such as the presence of half-harmonic spectral components and spectral broadening at high acoustic
intensities, suggest that a reasonable model of cochlear dynamics may well contain a few of the elements of the
Duffing system. But, then again, many other nonlinear systems with quite different characteristics also have these
features. More work is clearly needed on the road toward identifying the character of the underlying nonlinearities
in the cochlea.
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Figure 7: Velocity response of a model system based on the Duffing oscillator to an AM stimulus with a carrier
frequency of 700 (at CF) and a modulation frequency of 2.44. (a) Time waveform of the velocity response of the
model. The response follows the input stimulus envelope reasonably well. (b) Detailed view of the time waveform
at the center of the input envelope (from 0.18 to 0.22). (c) Spectrogram of the velocity response shown in (a). At
the center of the envelope, components at the half-harmonic frequencies f./2, 3f./2, and 5f,./2 appear briefly. Some
spectral broadening in the response is also apparent at that time. The harmonic components at 2f, and 3f. follow
the shape of the input stimulus, in a similar way as the component at the carrier frequency.
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