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Abstract. We use the time-dependent Hartree approximation to obtain the solution IO the 
quantum higher-order non-linear Schrodinger equation. This equation describes femto- 
second pulses propagating in non-linear optical fibres and can have soliton solutions. 
These solitons travel at velocities that differ from the picosecond solitons obtained from 
the standard quantum non-linear Schrodinger equation. We find that these femtosecond 
solitons cannot propagate in graded-index fibres; rather, they require quadruple-clad 
fibres. This is the first investigation of quantum effects in femtosecond solitons to our 
knowledge. 

There is considerable interest in the non-linear Schrodinger equation (NU) in terms of 
both classical and quantum phenomena [l-61. In particular it has been used extensi- 
vely to model the propagation of pulses in non-linear optical fibres; however, the NLS 

is generally not valid for pulses with durations shorter than the picosecond time scale. 
Yet the recent development of optical sources that generate pulses in the femtosecond 
domain makes possible the exploration of many new phenomena. Therefore the 
investigation of solitons arising from the higher-order NLS (HNLS), which can be used 
in the femtosecond time domain, is of interest. 

One of the simpletst HNLS is [7] 

where C, d and p are constants. We follow the conventional notation in the 
mathematical literature, which uses t and x to  represent normalized space and time, 
respectively. This equation gives rise to soliton solutions when p = 6d [7]. Equation (1) 
reduces to  the NLS forp=d=O. 

In certain circumstances the HNLS can be used to describe femtosecond pulses 
propagating in optical fibres; these are outlined in [8] and described in detail by us in 
[9]. Using experimental fibre parameters to evaluate the physical parameters in 
equation (1) we find that the pulse width must be below 200 fs for wavelengths in the 
1.48-1.57um region in order for d and p to become significant. In addition, the 
dispersion parameters, pz and b3, given by the second and third derivatives of the 
propagation constant respectively, evaluated at the carrier frequency wo, must be 
negative, This necessitates a quadruple-clad fibre rather than the typical graded-index 
fibres used in calculations and experiments to date. This is a significant feature of our 
results [9]. The soliton self-frequency shift (SSFS) [lo, 111 may be an important effect 
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when considering femtosecond solitons. However, we use the numerical-beam propa- 
gation method to show that at distances required for the quantum effect to be 
observed the effect of the SSFS on the soliton described by equation (1) can be 
neglected 191. 

In the case of optical solitons, 4 represents the normalized envelope of the 
electromagnetic field. The quantities C and d are,given by 

and p is a parameter involving the frequency-dependent index of refraction and the 
frequency-dependent radius of the mode of the fibre 181. n2 is the non-linear index of 
refraction, U is the Ue-width of the pulse intensity, I is the peak amplitude of the pulse 
and c is the speed of light. 

The general solution of equation (1) has the form (71 

@=q50sech[~(x-x,,) +bt] exp{i[y(x-x,,)+dt]} (3) 
where E ,  b, y and d are constants and x,, is the zero of time. Substituting this in 
equation (1) yields the following relations 

/@ol*=E2/C d = c 2 - y 2 -  3dycZ+ dy’ b = ~ ( 2 y  + dE2 - 3 4 ’ ) .  (4) 
We proceed by considering the quantum version of equation (1) from a mathe- 

matical point of view. In 191 we examine the physical aspects of this problem in detail 
and describe the role played by other effects such as the SSFS. The initial portion of our 
analysis closely follows that of Lai and Haus [SI for the NLS. To obtain the quantum 
version of equation (l), the quantities @(t,x) and @ * ( t , x )  are replaced by the field 
operators $ ( t ,  x) and $+(t, x), which satisfy the boson commutation relations 

[ J ( t , x ’ ) ,  fjJ’(t,x)]=G(x-x’) 14(t.x‘,, 4(t,x,I=[4+(t,x,,, 4+(t,x)I=O ( 5 )  
where $(t ,  x) and $+(t,  x) are the photon annihilation and creation operators, 
respectively, at f and x. 

The quantized equation can be written as 

(6)  
a .  

ih @(f, x) = I&, x), AI 

with 

& ( t , x ) 4 1 ( t , x )  dr- c 4 + ( t , x ) 4 + ( t , x ) 4 ( t , x ) 4 ( t , x )  dr I 
(7) 

where the subscripts x and xx signify differentiation and double differentiation 
respectively. 

In the Schrodinger picture, the state of the system Iq) evolves according to 



159 

+id(I$Ax)4&) &-3C 4+(x)4+(x)d(x)&(x)dx . (9) I 11 
I IY)=Ca.lTf"(x, , .  n.  

In general, any state of this system can be expanded in Fock space as 
1 

. . ,x . , t )4+~xl )"'4+(x . )dxl"'~ .10~.  (IO) 

The quantity la.I2 is the probability of finding n photons in the field and we require 

f, obeys the normalization condition 

If.(Xl, . . . , x,, t)l dx, . ' . dx. = 1. I 
Substituting equations (9) and (10) into (8) we obtain 

a 
i -f,,(xl, . . . , x., t )  = 

at j =  I axt laicj'n 

- i d Z  2 - 6 i C d  2 ax, f,( x l ,  . . . ,  x , , t ) .  (13) 
a' 

j = l  I l<i<j=S" 

We solve equation (13) using the time-dependent Hartree approximation [12]. We 
define a Hartree wavefunction 

where @" has the normalization 

I @ " ( X ,  I )  12 dx = 1. (15) I 
The functions @" are determined by minimizing the functional 

+ 2 S(x,-xJ fLH'(x,.. . . , x . , t ) d x ~ . . . d x .  (16) 
I<i<jC" 

which provides 
a@" a% a3an a@ 
at ax2 ax ax 

i -+ - + 2C(n - 1) l @ n 1 2 @ n +  id T +  6iCd(n - l)l@nlz2 = O  
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This is identical to the classical HNLS given in equation ( I ) ,  with C replaced by 
C(n - 1). Thus the solution to the quantized femtosecond soliton equation is obtained 
directly from equations (3) and (4): 

@&, t ) =  [ C ( n - 1 ) ] ~ ” Z ~ s e c h { ~ [ ( x - x n ) + ( - 3 d y 2 + d e 2 + 2 y ) t ] J  

x exp[ - i(dy3 + 3 d y a ’ f y ’ -  e 2 ) t +  iy(x -xo)]. (18) 
The normalization condition, equation ( l l ) ,  gives 

&=+(n - 1)C. (19) 
Substituting equation (19) into (18) leads to 

@&, I )  = i ( n  - 1)”2C”2sech{’ *(n - l)C[(x - x o )  + (- 3dy2+ad(n - 1)*C2+ 2 y ) f ] }  

x exp{[idy3 -fidy(n - 1)’C2- iy2++i(n - l)’CZ]t+ iy(x-xo)}. (20) 
The Hartree product eigenstates are, using equations (10) and (14), 

A superposition of these states, using a Poissonian distribution of n for a coherent- 
state pulse, gives 

where l ~ $ = n ~  is the mean photon number. 

as 
The quasiprohability density for the amplitude of the envelope of the field is defined 

Q(a, x, 0.. I(% xl$JI2 (23) 
where 

(24) 

is a local coherent state at the time x .  Substituting equation (22).  with (20) and (24). 
into (23) gives 
Qca,  x ,  1 )  = e-1d-1d 

x sech( C [  ( x  -xo) + ( - 3dy2 + d- - 4 c2+ z y ) t ] ]  j” 
in - 1 j 2  

Xexp[ (indy3-in(n- 1)2fdyC2-iny2+in- 4 cl), 

1 lz + iyn(x - xn) 
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Figure 1. Plots of the quasiprobability density Qb, x ,  I )  against lhe real and imaginary 
parts of a for q = 4 ,  C=0.25, d=0.25, y=O, (x -x , )=O and (a) 1=0  and ( b )  1=0.1. 

In figure 1 we illustrate how this quantity changes as the soliton propagates in space. 
We have ignored the n dependence of the amplitude and kept it in the phase. We 
observe phase spreading similar to that in the NIS case (5,6] 
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