
Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space

Timothy Yarnall,1 Ayman F. Abouraddy,2 Bahaa E. A. Saleh,1 and Malvin C. Teich1,*
1Quantum Imaging Laboratory, Departments of Electrical & Computer Engineering and Physics, Boston University,

Boston, Massachusetts 02215-2421, USA
2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

(Received 15 April 2007; revised manuscript received 26 June 2007; published 18 December 2007)

We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree
of freedom of a single photon and relies on the parity of the photon’s transverse spatial distribution. Using
optical spontaneous parametric down-conversion to produce photon pairs, we demonstrate the controlled
generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of
their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump
spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device,
isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even-odd basis.
This new physical realization of photonic qubits could be used as a foundation for future experiments in
quantum information processing.
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The generation of entangled states is the cornerstone of
experimental quantum information science [1]. Photonic
entangled systems are of particular interest because of their
importance for quantum cryptography [2] and quantum
computation with linear optics [3]. The physical realization
of photonic states has hitherto taken the form of discrete
degrees of freedom (predominantly in the form of qubits)
such as polarization [4], dual-rails [5], and time-energy
bins [6]. While the continuous spatial degrees of freedom
of entangled photons have been the subject of considerable
interest [7], this feature has heretofore been only partially
harnessed for quantum information processing. One ap-
proach to endowing the spatial degrees of freedom of a
photon with a qubit or a qudit structure is a discretization of
the spatial domain by making use of slits or pinholes [8].
Another method begins by adopting either the Hermite-
Gaussian [9] or Laguerre-Gaussian modes [10] as a basis
for describing a photon’s two-dimensional transverse dis-
tribution. Typically only two of the initially infinite number
of modes are retained, via filtering or postselection, to
serve as qubit levels, resulting in a truncation of the
Hilbert space. Another approach relies on so-called pseu-
dospin operators that have been studied using photon-
number Fock states [11]; however, the experimental real-
ization of the proposed schemes has not been forthcoming,
undoubtedly due to the difficulty of preparing and manipu-
lating Fock states [12]. The pseudospin approach relies on
mapping (not filtering or truncating) a Hilbert space asso-
ciated with a continuous variable onto a discrete smaller-
dimensional space, in particular, a two-dimensional (2D)
one [11], to achieve a qubit structure without truncating the
initial Hilbert space.

In this Letter, we present a new physical embodiment of
photonic qubits that makes use of a one-dimensional (1D)
continuous spatial degree of freedom of single photons that
is readily implemented experimentally without discretiza-
tion or truncation. We generate entangled-photonic qubits

in this new Hilbert space using the accessible process of
optical spontaneous parametric down-conversion (SPDC)
without spatial filtering. Each qubit is encoded in the
spatial parity (even-odd) of the photon’s one-dimensional
transverse modes and is a realization of the pseudospin
approach in the spatial domain. The mathematical under-
pinning of this approach relies on the isomorphism be-
tween the single-mode multiphoton quantization and the
single-photon multimode quantization of the electromag-
netic field that has recently led to the concept of parity
entanglement, as identified theoretically in Ref. [13]. The
infinite-dimensional Hilbert space of one spatial degree of
freedom for each photon is thereby mapped onto a 2D
Hilbert space describing its spatial-parity qubit.

We begin by discussing the construction of operators on
the spatial-parity space, which are strikingly simple to
implement, thus making this approach an attractive alter-
native to other physical realizations of photonic qubits.
This is highlighted in Fig. 1, where comparison is drawn
between the familiar devices that manipulate polarization
qubits, as an archetypical realization of a photonic qubit,
and their isomorphic counterparts in 1D spatial-parity
space (see Ref. [13] for a detailed analysis). The 2D
manifold of pure states of polarization (spatial parity)
can be represented by the surface of a Poincaré sphere
with the horizontal jHi (even, jei) and vertical jVi (odd,
joi) states located at antipodes. (Any qubit can, of course,
be represented by the surface of a Poincaré sphere; e.g.,
Ref. [14], in which this treatment is applied to classical
light in first-order Gaussian modes after truncating all
other modes.) The Pauli operator �x in polarization space
is a half-wave plate rotated by 45� with respect to jHi,
while its pseudospin counterpart in parity space is a simple
phase plate that introduces a phase shift of � between the
two halves of the plane (a parity flipper, PF). The Pauli
operator �z in polarization space is a half-wave plate,
while its pseudospin counterpart in parity space is a spatial
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flipper (SF), a device that flips the beam in space ��x� !
���x�, which may be implemented with a mirror, for
example.

With these building blocks in hand, we construct some
operators essential for quantum information processing. A
rotation R��� in polarization space is implemented by a
polarization rotator, for example, and in parity space by a
phase plate that introduces a phase � between the two half
planes (a parity rotator, PR). An even beam jei incident on
a phase plate with a � � � difference between the two
halves (a PF) obviously becomes odd joi, and vice versa.
Less obvious is the fact that introducing a phase difference
� � �

2 between the two halves of the plane of an even mode
transforms it into the equal superposition 1

��

2
p fjei � ijoig.

Finally, a polarizing beam splitter separates an incoming
state into two orthogonal components that travel along
different spatial paths. Its counterpart in spatial-parity
space, which serves to direct the jei and joi components
of an incoming state into two separate spatial paths, is a
parity analyzer (PA): this device is a balanced Mach-
Zehnder interferometer (MZI) with a SF placed in one
arm. Thus quantum information processing experiments
conducted on photonic qubits in polarization space may be
readily implemented in 1D spatial-parity space using Fig. 1
as a Rosetta stone that guides the translation between these
implementations. Previous work has identified similar de-
vices for measuring spatial parity [15], but without iden-
tifying the underlying qubit structure of the photon field.

In this Letter, we demonstrate the ability to control, in a
precise manner, the generation of entangled two-photon
states in parity space by manipulating a classical parame-
ter: the pump spatial parity. The experimental arrangement
is shown schematically in Fig. 2. A linearly polarized
monochromatic pump laser diode (wavelength 405 nm,
power 50 mW) with an even spatial profile illuminates a
1.5-mm-thick �-barium borate nonlinear optical crystal in
a collinear type-I configuration (signal and idler photons

have the same polarization, orthogonal to that of the
pump), after passing through a phase plate that serves as
a PR for the pump spatial parity. The pump is removed
using a polarizing beam splitter placed after the crystal as
well as by interference filters (centered at 810 nm, 10-nm
bandwidth) placed in front of the detectors De and Do

(EG&G SPCM-AQR-15-FC), the outputs of which are
fed to a coincidence circuit (denoted �) and then to a
counter. The signal and idler photons are directed to a
parity-sensitive MZI (PS-MZI), which, at a relative path
delay � � 0, serves as a PA, as described above. For pur-
poses of comparison, we also carry out all the experiments
with the SF removed, corresponding to a traditional MZI.

It can be shown [13] that an even (odd) pump results in
down-converted photonic qubits in a j��i (j��i) parity
state,

 

jevenip ! jevenisjevenii � joddisjoddii � j�
�i;

joddip ! jevenisjoddii � joddisjevenii � j�
�i;

(1)
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FIG. 2 (color online). Schematic of the experimental arrange-
ment. NLC: nonlinear crystal; PBS: polarizing beam splitter; F:
interference filter; D: detector; �: coincidence circuit. The PS-
MZI serves as a parity analyzer. The inset shows the construction
of the phase plate (parity rotator) placed in the path of the pump.
It comprises two glass microscope slides, abutted at the center of
the pump beam, that can be tilted with respect to each other.
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FIG. 1 (color online). Comparison of
polarization photonic qubits and opera-
tions (first row) and their counterparts in
1D spatial parity (second row). HWP:
half-wave plate; QWP: quarter-wave
plate; H, V: horizontal and vertical po-
larization; S, F: slow and fast axes of the
wave plate; R���: rotation operator; �x,
�z: Pauli operators.
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where p, s, and i refer to the pump, signal, and idler,
respectively. Placing the PR in the pump beam results in
the superposition cos�2 jevenip � i sin�2 joddip, where vary-
ing � traces out the great circle, indicated by the dashed
arrow, on the surface of the Poincaré sphere in Fig. 1. The
SPDC photons produced by such a pump are generated in
the superposition state cos�2 j�

�i � i sin�2 j�
�i. An inter-

esting consequence of controlling the pump parity in this
fashion is that the two-photon state is guaranteed to remain
maximally entangled; the concurrence C [16] of the state is
always maximal (C � 1) for all �. This is in contrast to
using a pump in the superposition cos�2 jevenip �
sin�2 joddip, where varying �

2 traces out a different great
circle along the equator on the surface of the Poincaré
sphere in Fig. 1, such that the concurrence C � j cos�j,
whereupon a separable state (C � 0) is obtained when
� � �

2 . Such a superposition of pump parity could be
obtained by mixing equal-intensity even and odd pump
beams on a variable-reflectance beam splitter.

Before presenting the experimental results, we provide a
heuristic overview of the interference effects expected in
this arrangement. The two entangled photons are incident
at the same port of a beam splitter; two distinct cases arise,
leading to qualitatively different interference patterns. In
the first case, each photon emerges from a different beam-
splitter port. When these photons are brought back at a
second beam splitter, after a delay � in one of the arms (see

Fig. 2), the well-known Hong-Ou-Mandel (HOM) [17] dip
is observed in the coincidence rate G�2����. In the second
case, the two photons emerge together from either output
port of the first beam splitter. For SPDC with a monochro-
matic pump, the frequencies of the two photons are anti-
correlated so that !s �

!p

2 �� and !i �
!p

2 ��, where
!p

2 is half the pump frequency and � is a deviation there-
from. A delay � will then lead to a fixed phase difference
expf�i�

!p

2 ����g expf�i�
!p

2 ����g � expf�i!p�g be-
tween the two paths, whereupon G�2���� will simply be a
sinusoid at the pump period Tpump [18]. These two cases
coexist in the experimental arrangement shown in Fig. 2,
resulting in a coincidence interferogram that combines the
HOM dip and the sinusoid at the pump period.

Since these interference effects exist independently of
the spatial parity, they may be observed using a traditional
MZI [18]. In Fig. 3, we present coincidence rates for three
different settings of a PR placed in the pump beam (Fig. 2).
The three coincidence interferograms displayed for the
MZI are those of an even pump (� � 0), an odd pump (� �
�), and a pump in an equal superposition of even and odd
parity (� � �

2 ). The coincidence rate as a function of �
exhibits the two aforementioned features: an HOM dip
(whose width is inversely related to the SPDC bandwidth)
and a sinusoid with the period of the pump laser. It is
obvious from the observed coincidence interferograms in
Fig. 3 that the traditional MZI is oblivious to the spatial
parity of the incident light.

The experimental results are altered dramatically when
this traditional MZI is converted into a PS-MZI by the
insertion of an SF in one of its arms. When the j��i state is
generated (corresponding to an odd pump), the photons
have opposite spatial parity, and hence emerge from differ-
ent output ports of the PA, thereby producing a coincidence
count. The two photons in the j��i state (corresponding to
an even pump), on the other hand, have the same parity and
hence emerge together from the same output port and do
not produce a coincidence count. We expect that the j��i
state will produce a minimum in the coincidence rate at
� � 0, while the j��i state will produce a maximum. The

FIG. 3 (color online). Observed coincidence rate from a tradi-
tional MZI for three different settings of a parity rotator placed in
the pump: (a) � � 0 (even pump), (b) � � �

2 (equal superposition
of even and odd), and (c) � � � (odd pump).

FIG. 4 (color online). Coincidence rate at the output of a PS-MZI for different settings of the parity rotator placed in the pump beam.
The five settings are (a) � � 0 (pump is even), (b) � � �

6 , (c) � � �
2 (equal superposition of even and odd), (d) � � 5�

6 , and (e) � � �
(pump is odd). The inset shows oscillation at the pump period Tpump for panels (a) (full circles) and (e) (open circles) near � � 0. The
two curves, which are spline fits, are 180� out of phase, as expected.
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2-photon coincidence interferogram becomes sensitive to
the pump parity. These predictions are borne out by the
experimental results for the PS-MZI shown in Fig. 4. The
five panels correspond to different settings of the PR,
varying from � � 0 to � � �. The 91%-visibility HOM
dip at � � 0 gradually loses visibility as � increases,
resulting in a featureless interferogram at � � �

2 . Increas-
ing � further results in the emergence of an HOM peak,
which attains its maximal visibility of 91% at � � �
(imperfect alignment accounts for the 9% shortfall).

To more explicitly demonstrate our ability to precisely
control the generation of the entangled SPDC state in
parity space, we have carried out an experiment in which
we hold the delay fixed at � � 0 while varying the angle �
of the PR in the pump. The coincidence rate shown in
Fig. 5 oscillates between maxima corresponding to the
state j��i produced at � � �, 3�, 5�, . . . and minima
at � � 0, 2�, 4�, . . . corresponding to the state j��i. The
curve thus obtained represents five complete circumnavi-
gations of the Poincaré sphere representing the pump’s
spatial parity. Confirmation of the presence of entangle-
ment is achieved by demonstrating a Bell-inequality vio-
lation, as we have shown [19].

In conclusion, we have demonstrated the controlled
synthesis of two-photon states entangled in the parity of
one dimension of their transverse spatial distribution. The
prescribed states are controlled by manipulating the spa-
tial parity of the pump, a classical parameter, and not by
direct manipulation of the generated entangled photons.
Furthermore, we constructed a parity-sensitive MZI by
adding only one mirror to one arm of a traditional MZI,
and showed that when the arms have equal path lengths,
this device acted as a parity analyzer. This seemingly
insignificant change dramatically altered the behavior of
the interferometer. It acquired sensitivity to spatial parity,
which a traditional MZI lacks, and was used to analyze
maximally entangled qubits in the spatial-parity basis. Our
approach is inherently interesting from the point of view of
quantum information processing. While each photon car-
ries one polarization qubit, it has two transverse dimen-

sions, and one qubit can be encoded in each. Furthermore,
these two spatial-parity qubits per photon may be led to
interact using simple optical arrangements. The two-
photon SPDC state thus carries four parity qubits, allowing
the study of hyperentanglement [20] in a straightforward
manner.

This work was supported by a U. S. Army Research
Office (ARO) Multidisciplinary University Research
Initiative (MURI) Grant and by the Center for Subsurface
Sensing and Imaging Systems (CenSSIS), an NSF
Engineering Research Center. This work was also spon-
sored by the National Aeronautics and Space Admini-
stration under Air Force Contract No. FA8721-05-C-
0002. A. F. A. acknowledges the generous support and
encouragement of Y. Fink and J. D. Joannopoulos.

*http://www.bu.edu/qil
[1] The Physics of Quantum Information, edited by D. Bouw-

meester et al. (Springer-Verlag, Berlin, 2000).
[2] N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002); N. Gisin

and R. Thew, Nat. Photon. 1, 165 (2007).
[3] P. Walther et al., Nature (London) 434, 169 (2005); P. Kok

et al., Rev. Mod. Phys. 79, 135 (2007).
[4] P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).
[5] I. L. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489

(1995).
[6] I. Marcikic et al., Phys. Rev. A 66, 062308 (2002).
[7] D. V. Strekalov et al., Phys. Rev. Lett. 74, 3600 (1995);

T. B. Pittman et al., Phys. Rev. A 52, R3429 (1995); R. S.
Bennink et al., Phys. Rev. Lett. 92, 033601 (2004); J. C.
Howell et al., ibid. 92, 210403 (2004); A. F. Abouraddy
et al., ibid. 93, 213903 (2004).

[8] M. Fiorentino and F. N. C. Wong, Phys. Rev. Lett. 93,
070502 (2004); L. Neves et al., ibid. 94, 100501 (2005);
M. N. O’Sullivan-Hale et al., ibid. 94, 220501 (2005).

[9] S. P. Walborn et al., Phys. Rev. Lett. 90, 143601 (2003);
Phys. Rev. A 71, 053812 (2005).

[10] A. Mair et al., Nature (London) 412, 313 (2001); S. S. R.
Oemrawsingh et al., Phys. Rev. Lett. 95, 240501 (2005).

[11] Z.-B. Chen et al., Phys. Rev. Lett. 88, 040406 (2002);
M. Revzen et al., Phys. Rev. A 71, 022103 (2005).
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