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Wolf Equations for Two-Photon Light
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The spatiotemporal two-photon probability amplitude that describes light in a two-photon entangled
state obeys equations identical to the Wolf equations, which are satisfied by the mutual coherence function
for light in any quantum state. Both functions therefore propagate similarly through optical systems. A
generalized van Cittert–Zernike theorem explains the predicted enhancement in resolution for entangled-
photon microscopy and quantum lithography. The Wolf equations provide a particularly powerful
analytical tool for studying three-dimensional imaging and lithography since they describe propagation
in continuous inhomogeneous media.
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Fifty years ago, Wolf pioneered the description of light
in terms of observable quantities [1]. He showed that the
second-order coherence function, which is defined at a pair
of space-time points, obeys two wave equations, now
known as the Wolf equations. These equations govern
propagation in linear homogeneous media and underlie a
correspondence between the spatial pattern of the coher-
ence function (the pattern generated when one point is held
fixed and the other is scanned) for light emitted from an
incoherent source, and the diffraction pattern of coherent
light transmitted through the source aperture. The
van Cittert–Zernike theorem [2,3] is an example of this
correspondence. A formal hierarchy of coherence func-
tions was subsequently defined by Glauber [4] for light
in any quantum state, as the expected values of normally
ordered products of optical-field operators at multiple
space-time points [4,5]. The Wolf equations are applicable
to light in any quantum state and can be generalized to
higher-order coherence functions.

In this Letter, we consider light in a two-photon quantum
state. Such light is described in terms of a spatiotemporal
two-photon probability amplitude whose squared modulus
is the probability density of simultaneously detecting two
photons at two space-time points [5,6]. Though the two-
photon probability amplitude is not a coherence function,
we demonstrate that it does obey the Wolf equations, and
therefore exhibits propagation and diffraction phenomena
analogous to those of the second-order coherence function,
including the van Cittert–Zernike theorem. A duality be-
tween the two-photon probability amplitude and the
second-order coherence function has previously been high-
lighted [7] and the Wolf equations described in this Letter
provide its mathematical underpinning.

The results are used to compare two-photon imaging [8–
11] and thermal-light photon-correlation imaging [12–14],
a topic of high current interest. They are also used to
provide a more general explanation for the origin of reso-
lution enhancement in quantum microscopy [15] and quan-
tum lithography [16]. Since the Wolf equations describe
propagation in continuous inhomogeneous media, they
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provide a powerful analytical tool for studying three-
dimensional imaging and lithography.

Coherence functions and the Wolf equations.—The hall-
mark of the theory of coherence is the second-order coher-
ence function ��1��x1;x2� � h�jÊ��x1�Ê

��x2�j�i, where
the quantities Ê��x� and Ê��x� represent the negative- and
positive-frequency components of the optical-field opera-
tor at the space-time point x � �r; t�, respectively, and j�i
represents the state vector. In free space, this function
satisfies the Wolf equations [1],

�
r2
j �

1

c2
@2

@t2j

�
��1� � 0; j � 1; 2; (1)

where r2
j is the Laplacian operator with respect to rj. For

stationary light, h�jÊ��r1; t�Ê
��r2; t� ��j�i 


��1��r1; r2; �� is independent of the time t and is known
as the mutual coherence function. In this case, the cross-
spectral density G�1��r1; r2; !� is defined as the Fourier
transform of ��1��r1; r2; �� with respect to �. Under these
conditions, the Wolf equations take the form of Helmholtz
equations,

�r2
j � k2�G�1� � 0; j � 1; 2; (2)

where k � !=c is the wave number. These equations
govern the propagation and diffraction of partially coher-
ent light.

Since G�1��r1; r2; !� has Hermitian symmetry and is
non-negative definite, Mercer’s theorem can be used to
expand it as a sum of products,

G�1��r1; r2; !� �
X
n

n�!�u
�
n�r1; !�un�r2; !�; (3)

where un�r; !� and n�!� are, respectively, the eigenfunc-
tions and the eigenvalues of G�1��r1; r2; !�. The eigenfunc-
tions form an orthonormal set and the eigenvalues are real
and non-negative. Furthermore, the un�r; !� satisfy the
Helmholtz equation [5],
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�r2 � k2�un � 0; 8 n: (4)

This modal expansion is known as the coherent-mode
representation since each of its terms represents a spatially
coherent mode.

The propagation of partially coherent light between two
planes is determined by using a modal expansion of
G�1��r1; r2; !� in the source plane and propagating the
eigenfunctions un between the two planes as coherent
waves; the eigenvalues remain unchanged.

If the optical system between the two planes is described
by the Green’s function h��a; �; !�, where � � �x; y� is a
point in the transverse plane, then we obtain the following
explicit relation between the cross-spectral densities
G�1�
d ��a; �b; !� and G�1�

s ��1; �2; !� in the observation plane
(z � d) and the source plane (z � 0):

G�1�
d ��a; �b; !� �

ZZ
G�1�
s ��1; �2; !�h

���a; �1; !�

 h��b; �2; !�d�1d�2: (5)

Wolf equations for two-photon light.—Light in a two-
photon pure quantum state is described in a Hilbert space
with a continuum of spatiotemporal modes occupied by a
total of exactly two photons. It is a superposition of multi-
mode states, each of which has the two photons occupying
a different pair of modes, with all other modes empty. It is
assumed for simplicity that the light is linearly polarized.
Two-photon light is generated, for example, by spontane-
ous parametric down-conversion in a type-I second-order
nonlinear optical crystal [6]. Conservation of energy and
momentum dictate that the state be spectrally and spatially
entangled.

For light in an arbitrary quantum state, the probability of
observing a photon at the space-time position x1, and
another at x2, is proportional to the intensity correlation
function,

��2��x1;x2� � h�jÊ��x1�Ê
��x2�Ê

��x2�Ê
��x1�j�i: (6)

In particular, for light in the two-photon state, the right-
hand side of Eq. (6) factors into the form
h�jÊ��x1�Ê

��x2�j0ih0jÊ
��x2�Ê

��x1�j�i, so that

��2��x1;x2� � j �x1;x2�j
2; (7)

where

 �x1;x2� � h0jÊ��x1�Ê
��x2�j�i: (8)

The function  �x1;x2� can therefore be regarded as the
two-photon probability amplitude.

A principal contribution of this Letter is to show that the
two-photon probability amplitude  �x1;x2�, although not a
coherence function, does satisfy the Wolf equations,�

r2
j �

1

c2
@2

@t2j

�
 � 0; j � 1; 2: (9)

This is demonstrated by writing the wave equation for the
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field Ê��x2�, multiplying by Ê��x1�, applying the bra h0j
on the left and the ket j�i on the right, and using the
definition of  provided in Eq. (8).

Since the functions ��1� and  satisfy the same pair of
partial differential equations, they share similar properties.
Hence the behavior of two-photon light in optical systems,
including its diffraction and propagation, mirrors that of
partially coherent light [7]. It is important to keep in mind,
however, that these two functions represent distinct physi-
cal phenomena. For example, the factorizability of ��1� for
light in any quantum state indicates complete coherence,
whereas the factorizability of  for light in a two-photon
state corresponds to nonentanglement. Conversely, when
��1��x1;x2� / ��x1 � x2�, the light is completely incoher-
ent, whereas  �x1;x2� / ��x1 � x2� corresponds to a
maximally entangled state.

In the frequency domain, the 2D Fourier transform of
 �r1; t1; r2; t2� with respect to t1 and t2 is a function
��r1; !1; r2; !2� that is analogous to the cross-spectral
density G�1��r1; r2; !� for stationary light. However, since
two-photon light (e.g., nondegenerate spontaneous para-
metric down-conversion) often takes the form of two
beams with spectra centered about two different frequen-
cies, two frequencies are retained in the definition of �.

The Wolf equations set forth in Eq. (9) imply that � also
satisfies the Helmholtz equations,

�r2
j � k2j �� � 0; j � 1; 2; (10)

where k1 � !1=c and k2 � !2=c. Equations (10) are
analogous to Eqs. (2) so that � and G�1� behave similarly.
It is noteworthy, however, that G�1� has Hermitian symme-
try, whereas � does not necessarily have such symmetry.

The analogy with the theory of partial coherence can be
extended further, to the modal decomposition. The func-
tion ��r1; !1; r2; !2� can be decomposed into a superpo-
sition of separable functions,

��r1; !1; r2; !2� �
X
n

�nvn�r1; !1�un�r2; !2�; (11)

each representing a nonentangled component. Since �
does not necessarily have Hermitian symmetry, a
Schmidt decomposition is used in place of Mercer’s theo-
rem. Symmetric kernels are constructed,

�1�r; !; r0; !0� �
ZZ

��r; !; r2; !2�

���r0; !0; r2; !2�dr2d!2

�2�r; !; r0; !0� �
ZZ

��r1; !1; r; !�

���r1; !1; r0; !0�dr1d!1;

with common eigenvalues �n and with eigenfunctions
vn�r; !� and un�r; !�, respectively. The expansion coeffi-
cients in Eq. (11) are �n �

������
�n

p
. By use of the Helmholtz

equations set forth in Eqs. (10), it can be readily shown that
the eigenfunctions vn�r; !� and un�r; !� themselves satisfy
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Helmholtz equations,

�r2 � k21�vn � 0; �r2 � k22�un � 0; 8 n; (12)

so that the modal expansion is in terms of nonentangled
contributions with spatial dependence in the form of co-
herent waves. The Schmidt decomposition has been pre-
viously applied to two-photon light [17,18].

The propagation of two-photon light between two planes
may be determined by using a modal expansion of
��r1; !1; r2; !2� in the first plane and propagating the
eigenfunctions vn and un to the second plane as coherent
waves with frequencies !1 and !2, respectively; the ei-
genvalues remain unchanged. A measure of the degree of
entanglement is the Schmidt number

P
n1=�

2
n �

P
n1=�n

[18], which is invariant to propagation, as it should be.
If the optical system between the two planes is described

by the Green’s function h��a; �; !�, then we obtain the
following explicit relation between �d��a;!1;�b; !2� and
�s��1; !1; �2; !2� in the observation plane (z � d) and the
source plane (z � 0), respectively:

�d��a; !1; �b; !2� �
ZZ

�s��1; !1; �2; !2�h��a; �1; !1�

 h��b;�2; !2�d�1d�2: (13)

Coherence and two-photon entanglement.—The anal-
ogy between the two-photon probability amplitude for
two-photon light and the mutual coherence function for
arbitrary light has its mathematical origin in their similar
definitions—the former is the off-diagonal element
 �x1;x2� � h0jÊ��x1�Ê

��x2�j�i and the latter is the di-
agonal element ��1��x1;x2� � h�jÊ��x1�Ê

��x2�j�i. Both
obey the Wolf equations and their Fourier transforms obey
Helmholtz equations. One difference is the presence of
only positive-frequency components in the former and
normally ordered negative- and positive-frequency field
operators in the latter. This distinction leads to the appear-
ance of the conjugate operation in Eqs. (3) and (5) but not
in Eqs. (11) and (13). A ramification of this distinction is
that the van Cittert–Zernike theorem differs for partially
coherent and two-photon light, as shown below [7].

If the source cross-spectral density G�1�
s ��1; �2; !� �

Is��1����1 � �2�, i.e., if the light is completely spatially
incoherent over the support of the source function Is���,
then Eq. (5) yields

G�1�
d ��a; �b; !� �

Z
Is���h���a;�; !�h��b; �; !�d�: (14)

As an example, consider an optical system comprising a
lens of focal length f imaging a distant source onto its own
focal plane. The Green’s function is then h��a; �; !� /
exp��ik�a � �=f�, whereupon

G�1�
d ��a;�b;!��

Z
Is���exp��ik��b��a� ��=f�d�: (15)

Thus the cross-spectral density at the z � d plane, plotted
as a function of the coordinate difference �b � �a, is the
22360
Fourier transform of the source function Is���; this is the
van Cittert–Zernike theorem [2,3].

The analogous relation for two-photon light is obtained
by substituting�s��1; !1; �2; !2� � !s��1����1 � �2� into
Eq. (13) to obtain

�d��a; !1;�b; !2� �
Z
!s���h��a; �; !1�h��b; �; !2�d�:

(16)

For an optical system composed of a lens of focal length f
imaging a distant object onto its own focal plane, the result
is now

�d��a;!1;�b;!2��
Z
!s���exp��i�k1�a�k2�b� ��=f�d�:

(17)

This means that the two-photon probability amplitude in
the focal plane, when plotted as a function of the sum
!1�a �!2�b, is the Fourier transform of the source func-
tion !s���, which provides an example of the duality be-
tween partial coherence and partial entanglement [7]. If
!s��� is uniform over the entire plane, then the two-photon
probability amplitude in the observation plane is propor-
tional to ��!1�a �!2�b�, indicating that the positions at
which the two photons are observed must satisfy the rela-
tion !1�a � �!2�b. Since the observation plane is the
focal plane, this relation corresponds to wave vectors with
equal and opposite transverse components, i.e., to exact
conservation of momentum. This is, of course, expected for
an infinitely large source for which the two photons are
always emitted from the same point.

Thermal light and two-photon light.—We have seen so
far that the two-photon coincidence probability for two-
photon light is j �x1;x2�j

2, where  �x1;x2� obeys the
Wolf equations, which also govern the propagation of the
second-order coherence function ��1��x1;x2�. For light in
an arbitrary state, the two-photon coincidence probability
is proportional to the intensity correlation function
��2��x1;x2� defined in Eq. (6). This function does not
obey the Wolf equations, but it is a special value of the
four-point fourth-order coherence function [4], which does
satisfy four Wolf equations. There is therefore no direct
general analogy between the functions j �x1;x2�j

2 and
��2��x1;x2� for light in an arbitrary state.

Thermal light is an exception since the intensity corre-
lation function ��2��x1;x2� is related to j��1��x1;x2�j

2 via
the Siegert relation [19],

��2��x1;x2� � ��1��x1;x1��
�1��x2;x2� � j��1��x1;x2�j

2:

(18)

The Hanbury Brown–Twiss interferometer [20] operates
on the basis of this formula. It measures the dependence of
the intensity correlation, or the photon coincidence rate, on
the separation of a pair of detectors, and makes use of the
van Cittert–Zernike relation to estimate the angular diame-
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ter of thermal-light sources such as stars. The first term in
the Siegert relation is the product of the intensities, i.e., the
single-photon rates. The second term is the absolute square
of the second-order coherence function, j��1��x1;x2�j

2.
Since ��1��x1;x2� for any source of light is analogous to
 �x1;x2� for two-photon light, it follows that there is a
correspondence between the intensity cross-covariance
function ��2��x1; x2� � ��1��x1; x1��

�1��x2; x2� �

j��1��x1; x2�j
2 for thermal light and j �x1;x2�j

2 for two-
photon light.

Simple optical systems that rely on measurements of
two-photon coincidences for thermal and two-photon light
sources thus share some similarities. This has been ex-
ploited in a number of recent experiments that have dem-
onstrated ghost imaging using thermal light and photon-
correlation measurement [12–14]; these results accord
fully with the theory developed in Ref. [7]. However, a
principal advantage of using two-photon light in such
configurations is the absence of the first (background)
term in the Siegert relation set forth in Eq. (18), as initially
pointed out in Ref. [7]. The second-term in the Siegert
relation, which is responsible for the photon-bunching
effect, is significantly reduced if the detection time is
greater than the coherence time and/or the detection area
is greater than the coherence area [19]; this leads to the
undesirable result that the background term dominates.

Quantum microscopy and quantum lithography.—A
fundamental difference between photon-correlation imag-
ing with thermal and two-photon light lies in the conjugate
operation that is present in Eq. (14) but absent in Eq. (16).
This operation converts a diverging wave into a converging
wave, an effect that can be achieved with a lens. However,
when the positions of the two detectors coincide, the
absence of the conjugation offers an imaging paradigm
that cannot be achieved using thermal light: entangled-
photon microscopy [15] and quantum lithography [16].

The probability of two-photon coincidence at a point x,
measured by a two-photon absorber, is then proportional to
��2��x;x�. For two-photon light, Eqs. (7) and (16) yield a
rate of two-photon absorption proportional to

��2���a; �a� �
��������
Z
!s���h2��a; �; !�d�

��������
2
; (19)

where we have assumed that a monochromatic filter is used
to select !1 � !2 � !. For thermal light, in contrast,
Eqs. (18) and (14) yield

��2���a;�a�����1���a;�a��
2�

��������
Z
Is���jh��a;�;!�j

2d�
��������

2
:

(20)

Consider now a simple lens system with the Green’s
function h��a; �; !� / exp��ik�a � �=f�. For two-photon
light the spatial distribution of light detected by the two-
22360
photon absorber is

��2���a;�a� �
��������
Z
!s��� exp��i2k�a � �=f�d�

��������
2
; (21)

whereas for thermal light it is totally insensitive to the
source distribution. The quadratic form of h in Eq. (19)
provides the factor of 2 enhancement in imaging resolu-
tion. Equation (21) reveals that a double-slit source pro-
vides a sinusoidal distribution at twice the spatial
frequency, an advantage promised by quantum lithography
that cannot be realized by using thermal light. However,
Eq. (19) establishes the origin of the resolution enhance-
ment in the squared Green’s function, which has a reduced
width. That more general result is applicable to masks with
arbitrary spatial distribution.
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