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Role of Entanglement in Two-Photon Imaging
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The use of entangled photons in an imaging system can exhibit effects that cannot be mimicked by
any other two-photon source, whatever the strength of the correlations between the two photons. We
consider a two-photon imaging system in which one photon is used to probe a remote (transmissive
or scattering) object, while the other serves as a reference. We discuss the role of entanglement versus
correlation in such a setting, and demonstrate that entanglement is a prerequisite for achieving distributed
quantum imaging.
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A quantum two-particle system in an entangled state ex-
hibits effects that cannot be attained with any classically
correlated system, no matter how strong the correlation.
The difference between entanglement and classical corre-
lation lies at the heart of Bell-type experiments. In this
paper, we consider general configurations for two-photon
imaging, with the goal of discerning the true role of entan-
glement in contradistinction to correlation. We identify the
unique advantage a source of entangled photon pairs has
over a source of classically correlated photon pairs in this
context. Although imaging with entangled photons gener-
ated by spontaneous parametric down-conversion has been
proposed [1] and examined in some simple settings [2,3], it
has not been clear whether such experiments may, in prin-
ciple, be reproduced using a classically correlated source.

Single-photon imaging.— To set the stage for our analy-
sis of two-photon imaging systems, we begin with a brief
summary of the basic equations governing single-photon
imaging. It is well known [4] that a single photon travel-
ing through an optical system exhibits all the phenomena
of diffraction, interference, and imaging that are familiar
in classical optics. One needs only to repeat the single-
photon experiment and accumulate observations over a
sufficiently large ensemble. Consider, for example, a thin
planar single-photon source described by the pure state

jC� �
Z

dx w�x� j1x� , (1)

where j1x� �
1

�2p�2

R
dk eik?xj1k� is a position represen-

tation of the single-photon state in terms of the familiar
Fock state j1k� of the mode k, and the state probability
amplitude w�x� is normalized such that

R
dxjw�x�j2 � 1.

Assume now that this state is transmitted through a linear
optical system, described by an impulse response function
h�x1, x�, where x and x1 are the transverse coordinates on
the input and output planes, respectively, as illustrated in
Fig. 1. If a photon arrives in the output plane, the proba-
bility density of its registration at a position x1 is [5]

p�x1� ~

Ç Z
dx w�x�h�x1, x�

Ç2
, (2)
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where
R

dx1 p�x1� � 1. Equation (2) is the familiar rela-
tion describing a coherent optical system [6].

If the single-photon source is, instead, in a mixed state
described by a density operator

r̂ �
ZZ

dx dx0g�x, x0� j1x� �1x0 j , (3)

where
R

dx g�x, x� � 1 and g�x, x0� � g��x0, x�, then the
photon probability density is

p�x1� ~
ZZ

dx dx0 g�x,x0�h�x1, x�h��x1, x0� , (4)

which is the familiar equation describing a partially co-
herent optical system [6]. It therefore follows that the be-
havior of an optical system with a single-photon source in
an arbitrary mixed state is analogous to that of the same
system illuminated with partially coherent light. The in-
coherent limit is attained when g�x, x0� � g�x�d�x 2 x0�
whereas the coherent limit emerges when g is factorizable
in the form g�x, x0� � w�x�w��x0�, whereupon Eq. (2)
is recovered.

FIG. 1. Single-photon imaging. A single-photon source S
emits a photon from position x and sends it through an opti-
cal system described by its impulse response function, h�x1, x�.
A scanning single-photon detector D detects the photons and
thus measures the probability density of photon arrivals, p�x1�.
An unknown object (shaded region) is imbedded in the system.
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Two-photon imaging.—We now consider a planar
source that emits light in the pure two-photon state

jC� �
ZZ

dx dx0 w�x, x0� j1x, 1x0 � , (5)

where
RR

dx dx0jw�x, x0�j2 � 1 and j1x, 1x0 � is the two-
photon state at transverse coordinates x and x0. For full
generality, we assume that the emitted photons are trans-
mitted through different linear optical systems with im-
pulse response functions h1�x1, x� and h2�x2, x0�, where
x1 and x2 are transverse coordinates on the output planes
of the two systems, as depicted in Fig. 2. There are now
many options for the placement of objects as well as many
observation schemes. A single object may be placed in
either system, or objects may be placed in both systems.
The photon coincidences at x1 and x2 may be recorded,
yielding the joint probability density p�x1, x2� [5]

p�x1, x2� ~

Ç ZZ
dx dx0 w�x, x0�h1�x1, x�h2�x2, x0�

Ç2
.

(6)

This function is the fourth-order correlation function (also
called the coincidence rate) G�2��x1,x2� [5,7].

Two distinct single-photon probability densities.—We
now consider two distinct single-photon probability den-
sity functions associated with this two-photon system. The
first is the probability density of observing a photon at
x1, regardless of whether the other photon is detected (or
even whether there is another photon). This is called
the single-photon probability density p1�x1�. The sec-
ond is the probability density of observing a photon at x1

FIG. 2. Two-photon imaging. A two-photon source S emits
one photon from point x and sends it through the system
h1�x1, x� with an unknown object imbedded in the system, and
emits the other from x0 and sends it through h2�x2, x0�. Two
scanning detectors D1 and D2 record the singles, p1�x1� and
p2�x2�, and the coincidence rate p�x1, x2�. The shaded region
is an imbedded object.
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at the output of system 1 and a photon at any location
�2` , x2 , `� at the output of system 2. We call this
the marginal probability density p1�x1� [8]. We similarly
define p2�x2� and p2�x2�. We proceed to demonstrate that,
remarkably, these two probability densities are not always
identical.

The single-photon probability density, pj�xj�, j � 1, 2,
is obtained by taking the trace over the subspace of the
other photon. Each photon, considered separately from the
other, is in fact in a mixed state described by the density
operator provided in Eq. (3):

r̂j �
ZZ

dx dx0 gj�x, x0� j1x� �1x0 j, j � 1, 2 , (7)

where g1�x,x0� �
R

dx00 w�x, x00�w��x0, x00� and
g2�x, x0� �

R
dx00 w�x00, x�w��x00, x0�. The probabil-

ity density of a photon registration at the output of system
j is then given by

pj�xj� ~
ZZ

dx dx0 gj�x, x0�hj�xj, x�h�
j �xj , x0� ,

j � 1, 2 . (8)

This expression is similar to Eq. (4) for a single photon in
a mixed state. It follows that the optics of a single photon
from a two-photon source that is in a pure state exhibits
the behavior of a partially coherent system.

In contrast to Eq. (8), the marginal probability density
of detecting a photon at detector D1 is given by

p1�x1� �
Z

dx2 p�x1, x2� . (9)

This is the probability of observing one photon at x1,
at the output of system 1, and another at the output of
system 2 at any location. The detector at system 2 may
then be termed a “bucket” detector since it does not reg-
ister the arrival location of the photon. In this conception,
the bucket detector can serve as a “gating” signal for a
scanning detector at the output of system 1. The marginal
probability density p2�x2� may be similarly defined and
measured.

Based on classical probability theory one would intu-
itively expect that pj�xj� would be equal to pj�xj�. This
is not always the case, however. Indeed, in some situa-
tions, measurement of pj�xj� at the output of one system
can be used to extract information about an object placed
in the other system.

Probability densities for a nonentangled source.—Let
us examine a few special cases. We consider a nonen-
tangled two-photon source in which the state probabil-
ity amplitude is factorizable, i.e., w�x, x0� � w1�x�w2�x0�.
The joint probability density in this case is also factor-
izable. There is nothing to be gained by measuring the joint
probability density (coincidence rate) since all informa-
tion is contained in the single-photon probability densities
(singles rates). The photon arrivals are independent, and
123602-2



VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001
each is governed by a coherent imaging system [5,9].
Moreover,

pj�xj� � pj�xj�, j � 1, 2 , (10)

so that this factorizable state, therefore, does not permit
the transfer of information in one system to the other.

Probability densities for an entangled source.—
Consider now an entangled [10] two-photon source
described by the state probability amplitude w�x, x0� �
w�x�d�x 2 x0�, in which case the two-photon state is

jC� �
Z

dx w�x� j1x, 1x� , (11)

where the reduced density operators of the individual pho-
tons are r̂1 � r̂2 �

R
dxjw�x�j2j1x� �1xj, so that

p�x1, x2� ~

Ç Z
dx w�x�h1�x1, x�h2�x2, x�

Ç2
, (12a)

pj�xj� ~
Z

dxjw�x�j2jhj�xj, x�j2, j � 1, 2 , (12b)

pj�xj� ~
ZZ

dx dx0 w�x�w��x0�

3 gk�x, x0�hj�xj, x�h�
j �xj , x0� ,

j, k � 1, 2, j fi k , (12c)

with gk�x, x0� �
R

dx00 hk�x00, x�h�
k�x00, x0�, k � 1, 2. Evi-

dently pj�xj� fi pj�xj�, j � 1, 2. Whereas the expression
in Eq. (12b) is similar to that for an incoherent optical sys-
tem, Eq. (12c) is similar to that for a partially coherent
optical system. Moreover, measurement of p1�x1� con-
tains information about the system function h2�x2, x� via
the function g2�x, x0�.

The most accessible entangled two-photon source is
based on the process of spontaneous parametric down-
conversion (SPDC) from a nonlinear crystal [11]. For
a monochromatic pump, assuming the down-converted
beams are filtered with narrow band spectral filters, the
state probability amplitude for SPDC is given by [5]

w�x, x0� ~
Z

dx00 Ep�x00�j�x 2 x00, x0 2 x00� , (13)

where Ep�x� is the pump field at the input of the crystal
and j�x, x0� is a phase-matching function that depends on
the crystal parameters. In the limit j�x, x0� ! d�x�d�x0�,
the state function reduces to w�x, x0� � Ep�x�d�x 2 x0�,
which corresponds to an entangled state. This can be
achieved by reducing the thickness of the crystal. In this
limit, the joint probability density, the single-photon proba-
bility density, and marginal probability density, which
are given by Eqs. (6), (8), and (9), respectively, yield
Eqs. (12a)–(12c). The spatial coherence properties of
this source have been studied extensively [12]. Increasing
123602-3
the crystal thickness eventually leads to the limit of the
factorizable state.

Distributed quantum imaging.—To demonstrate the
utility of measuring the marginal probability density
p2�x2�, consider the following scenario. Let system 1
comprise a scattering object (see Fig. 2). The scattered
radiation impinges on detector D1. Such a system cannot
by itself yield an image of the spatial distribution of the
scattering object. However, if D1 is a bucket detector that
gates the photon arrival registered by scanning D2, one is
able to form a high quality image using this two-photon
scheme, as long as the scattering object is illuminated by
one photon at a time. Using SPDC, simple experiments
along these lines have been carried out [2,3].

However, the origin of this distributed quantum-
imaging phenomenon has not been adequately set forth
heretofore. Indeed, it was stated in Ref. [3] that “it is
possible to imagine some type of classical source that
could partially emulate this behavior.” To obtain a better
understanding of this effect we consider a two-photon
source in an arbitrary mixed state. Can similar results be
obtained by employing a two-photon source that exhibits
classical statistical correlations but not entanglement?
That is, can distributed quantum imaging be achieved
without entanglement?

To answer this question we take a mixed state that ex-
hibits the strongest possible classical correlations, i.e., one
for which

r̂ �
Z

dx g�x� j1x, 1x� �1x, 1xj , (14)

with
R

dx g�x� � 1. This state represents a superposi-
tion of photon-pair emission probabilities from various
locations x. [In contrast, the entangled state in Eq. (11)
represents a superposition of probability amplitudes.] The
density operators of each photon taken individually are
r̂1 � r̂2 �

R
dx g�x� j1x� �1xj, which are identical to

those of the entangled source if g�x� � jw�x�j2. In this
case, then,

p�x1, x2� ~
Z

dx g�x� jh1�x1, x�j2jh2�x2, x�j2, (15a)

pj�xj� ~
Z

dx g�x� jhj �xj , x�j2, j � 1, 2, (15b)

pj�xj� ~
Z

dx gk�x� jhj�xj, x�j2,

j, k � 1, 2, j fi k ,
(15c)

where gk�x� � g�x�
R

dx0jhk�x0,x�j2, k � 1, 2. The re-
sult in Eq. (15b) is similar to that in Eq. (12b), i.e., that of
an incoherent optical system, since the reduced density op-
erators are identical. The distinction is that Eq. (15c) has
the form of an incoherent optical system whereas Eq. (12c)
has the form of a partially coherent optical system. For
the special case of a shift-invariant (isoplanatic) system,
123602-3
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in which case hj�xj , x� is a function of xj 2 x, then
gk�x� ~ g�x�, k � 1, 2, and Eq. (15c) becomes identical
to Eq. (15b). As a result of Eqs. (15a)–(15c), the dis-
tributed quantum-imaging scheme truly requires entangle-
ment in the source and cannot be achieved using a classical
source with correlations but without entanglement. There
is, of course, a continuous transition between these two
extremes, so that partial distributed quantum imaging is
possible as entanglement enters the mixed state.

To appreciate the consequences of the imaging formulas
given in Eqs. (4), (12a)–(12c), (15a)–(15c), consider N
weak scatterers embedded in one of the optical systems (h
in the single-photon case or h1 in the two-photon case).
The impulse response function of the system including the
scatterers is then given by

h�x1, x� � h0�x1, x� 1

NX
j�1

´jh
� j��x1, xj� , (16)

where h0�x1, x� represents the system in the absence of
the scatterers, h� j��x1, xj� is the impulse response function
of the system following a scatterer at location xj, and ´j

is the strength of scatterer j. We assume that the system in
which the scatterers are contained is inaccessible. By sub-
stituting Eq. (16) in Eqs. (4), (12a)–(12c), (15a)–(15c),
it turns out that in the one-photon case the image of the
scatterers is in general blurred by a distribution that de-
pends on h� j��x1, xj�, as expected. In the entangled two-
photon case, however, one can always select an h2�x2, x0�
(see Fig. 2) such that the combination with h�j��x1, xj�
yields a diffraction limited imaging system for each scat-
tering plane. The correlated two-photon case, on the other
hand, offers no such benefit.

Conclusion.—We have considered a distributed
quantum-imaging system in which one photon is used to
probe a remote transmissive or scattering object, while
the other serves as a reference. A high-spatial-resolution
detector scans the arrival position of the reference photon,
while a bucket detector (which need have no spatial
resolution) registers the photon scattered by the object.
The scanned reference detector is gated by the photoevent
registered by the bucket detector, and an image is formed.
We have shown that if the two-photon source is in an
entangled state, the imaging is, in general, partially
coherent, and can possibly be fully coherent. On the other
hand, if the source emits unentangled, but classically
correlated photon pairs, then the imaging is incoherent.
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