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Linearly polarized classical light can be expressed in a vertical and a horizontal component. Geomet-
rically rotating vertically polarized light by 90± will convert it to the orthogonal horizontal polarization.
We have experimentally generated a two-photon state of light which evolves into an orthogonal state
upon geometrical rotation by 60±. Rotating this state by an additional 60± will yield a state which is
mutually orthogonal to the first two states. Generalizing this procedure, one can generate N 1 1 mutu-
ally orthogonal N-photon states that cyclicly evolve from one to another upon a geometric rotation by
180��N 1 1� degrees.

PACS numbers: 03.65.Bz, 03.67.–a, 42.50.Dv
Polarized light is often described in terms of its Stokes
parameters [1], which were introduced to classify the po-
larization properties of classical light in the middle of the
19th century [2]. With the advent of lasers and photon-
counting technology, it was natural to introduce the Stokes
operators [3], describing the polarization properties of
quantized fields. Some time later it became evident that
sensitive measurements of polarization were limited by the
inherent polarization noise of the fields [4], and soon there-
after several proposals of polarization squeezed light were
put forth [5]. The Stokes operators classify the second or-
der correlations only between orthogonal field modes [6],
but for quantized fields higher order correlations can lead
to interesting results. Therefore the classification of po-
larization has been extended to fourth-order correlations
[7]. Recently, operational definitions and their experimen-
tal implementations of quantum polarization have been
discussed [8]. In this paper we report an alternative ap-
proach to quantum polarization, where we find the eigen-
states of the generator of geometrical rotation and then
construct a complementary operator through the operator’s
eigenstates.
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Our starting point is to find states which are invariant
under geometrical rotation. This is much in the spirit of
Prakash and Chandra [9], and Agarwal [6] who defined
unpolarized quantum states of light as the states invariant
under any geometrical rotation and any differential phase
shift. (Later, and apparently independently, Lehner et al.
defined unpolarized states of light in the same manner
[10].) We expand the electromagnetic field in two plane
waves with horizontal-vertical linear polarization (indi-
cated by the subscript symbol 1) and expand the field
state in the number basis jm, n�1 � jm�1 ≠ jn�1. In this
expansion the operator generating geometric rotation is
given by

i�âyb̂ 2 âb̂y� � Ŝy , (1)

where â and b̂ are the annihilation operators for the first
and second mode, respectively, and Ŝy is the Stokes opera-
tor generating rotation around the direction of the wave
vector of the field. The associated unitary operator which
rotates a field an angle u is exp�iuŜy�. The operator (1) can
also be seen as the well-known Jaynes-Cummings interac-
tion Hamiltonian used extensively in atomic physics and
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in cavity quantum electrodynamics. It describes a linear
coupling between two oscillators, in this case, e.g., a verti-
cally and a horizontally polarized electromagnetic field of
the same frequency. We note that Ŝy commutes with the
total excitation operator âyâ 1 b̂yb̂ (which is the Stokes
operator Ŝ0) so the total excitation number is an invari-
ant under geometrical rotation. It therefore makes sense
to look at the field in each excitation manifold separately.
Let us look at a state in excitation manifold N spanned by
N 1 1 basis states j0, N�1, j1, N 2 1�1, . . . , jN , 0�1. It is
well known from the theory of linear coupling of bosonic
oscillators with total excitation N that the eigenstates to
the Jaynes-Cummings Hamiltonian (1) are dressed states
j±�N�

n � differing in eigenvalue by DE � 2. The states are
nondegenerate and orthogonal, and therefore provide an al-
ternative basis for expanding any state in excitation mani-
fold N . To exemplify, we explicitly express these states in
the N � 2 excitation manifold:

j±
�2�
1 � � �j0, 2�1 2 i

p
2 j1, 1�1 2 j2, 0�1��2 , (2)

j±
�2�
2 � � �j0, 2�1 1 j2, 0�1��

p
2 , (3)

j±
�2�
3 � � �j0, 2�1 1 i

p
2 j1, 1�1 2 j2, 0�1��2 . (4)

These states are eigenstates of Ŝy with eigenvalues 2�n 2

1� 2 N and are circularly polarized since they are invari-
ant under any geometrical rotation around the wave vector.
If the field represented by the left (right) index in the
kets in Eqs. (2)–(4) stands for the oscillation in the hori-
zontal (vertical) direction, then we can identify j±

�2�
1 � and

j±
�2�
3 � as left- and right-hand polarized states (assuming a

harmonic time dependence e2i�vt2kr�). Expanded in a cir-
cularly polarized mode basis (left, right), indicated by the
subscript ±, the states are j±

�2�
1 � � j2, 0�±, j±

�2�
2 � � j1, 1�±,

and j±
�2�
3 � � j0, 2�±. The state j±

�2�
2 � is symmetric with

respect to the two oscillation modes. This was already
noted in [10,11]. We suggest the state be called a neu-
trally polarized state (which should be distinguished from
unpolarized light [6,9,10]). We see that just like classically
polarized light, the left-hand polarized state will be trans-
formed into the right-hand polarized state under a relative
phase shift of p between the two modes, and vice versa.
This can be accomplished with a l�2 plate inserted at any
angle. The neutrally polarized state is invariant under this
transformation. (Similar rotational invariance, but in the
context of two polarization-entangled states, has already
been demonstrated [12].)

In classical optics the “complementary” polarization to
circular is linear. A linearly polarized field has the property
that vertical (horizontal) polarization evolves to horizontal
(vertical) polarization upon a geometrical rotation of 90±.
A set of states with similar properties can be constructed
in manifold N as

jz
�N�
k � �

1
p

N 1 1

N11X

n�1

eip�k21�n��N11�j±�N�
n � , (5)
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where k � 0, 1, . . . , N . The principle of construction is
identical to the construction of Pegg-Barnett phase states
and relative phase states [13]. (A somewhat similar con-
struction for excitation manifold 2 is proposed in [14] to
achieve a ternary logic based on two-photon states.) All the
N 1 1 states in the set are mutually orthonormal. Further-
more, state jz

�N�
k � evolves into state jz

�N�
k1l�, where k 1 l

should be taken modulus N 1 1, upon geometrical rota-
tion by an angle pl��N 1 1� around the wave vector. In
this sense the states are similar to classical linearly polar-
ized fields. However, in contrast to their classical counter-
parts, the states do not have their electric-field oscillation
confined to one spatial direction.

We note that any unitary rotation that leaves the cir-
cularly polarized states (2)–(4) invariant will transform
the states defined by (5) to states with identical properties
with the respect of rotation. Such a unitary transfor-
mation must have the form Û � exp�im� j±�2�

1 � �±�2�
1 j 1

exp�in� j±�2�
2 � �±�2�

2 j 1 exp�ix� j±�2�
3 � �±�2�

3 j. The choice
m � 0, n � p�2, x � 0 (this particular choice will be
motivated below) will generate the set of states

jz
�2�
1 � �

1 2 i
p

2
p

12
j0, 2�1 2

1
p

2
j1, 1�1

2
1 1 i

p
2

p
12

j2, 0�1 , (6)

jz
�2�
2 � �

p
2 1 i
p

6
j0, 2�1 2

p
2 2 i
p

6
j2, 0�1 , (7)

jz
�2�
3 � �

1 2 i
p

2
p

12
j0, 2�1 1

1
p

2
j1, 1�1

2
1 1 i

p
2

p
12

j2, 0�1 , (8)

in the second excitation manifold. It is straightforward
to show that geometrically rotating state jz

�2�
2 � by p�3

(2p�3) will make it evolve into the orthogonal state jz
�2�
3 �

(jz
�2�
1 �). The reason we made the particular choice m � 0,

n � p�2, x � 0 is that jz
�2�
2 � can be generated from the

state j1, 1�1 by the means of a phase plate.
The j1, 1�1 state can experimentally be generated by

spontaneous parametric down conversion (SPDC). In this
process a pump photon is converted into a pair of pho-
tons with lower energy. SPDC is possible in nonlinear,
birefringent materials via the conservation of energy vp �
vs 1 vi and momentum kp � ks 1 ki, where the sub-
scripts refer to the pump (p) and the down-converted pho-
tons, usually denoted signal (s) and idler (i). There are two
types of SPDC; in type-I SPDC the signal and idler have
the same polarization, whereas in type-II SPDC they are
orthogonally polarized.

Our experimental setup is outlined in Fig. 1. Similar
setups have been used for other measurements of fringe
visibility [12]. We use type-II SPDC so the state after
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FIG. 1. A photon pair produced in BBO via type-II sponta-
neous parametric down-conversion impinges on a compensator
plate C (used to make the two photons overlap in time) and then
on a filter F (used to narrow the spectral width of the pair). A
relative phase shift of h � 2 arccos�1�3� is applied in a basis
rotated by 45± from the vertical, so the outgoing state is the
jz

�2�
2 �3 state. A l�2 plate inserted at 22.5± gives the same state

in the horizontal and vertical basis. A second relative phase
shift of 2h is then applied between the horizontal and vertical
basis. A symmetric beam splitter is followed by two analyzers
aligned at 45± and 135±. The two detectors are connected to a
coincidence circuit that projects out the state j1, 1�3.

the nonlinear crystal is j1, 1�1. In a linear basis rotated
by 45± around the wave vector (indicated by the subscript
3), this state can be expressed �j0, 2�3 2 j2, 0�3�221�2.
Inserting a variable birefringence component (in our case
a birefringent prism pair) with its principal axes at 45± and
135±, a state of the form �j0, 2�3 2 exp�ih� j2, 0�3�221�2

will be generated. Specifically the state jz
�2�
2 �3 is generated

if the relative phase shift (indicated with the letters PS in
the figure) is chosen to be h � 2 arccos�1�3� 	 270.5±.

The generated state can subsequently be geometrically
rotated by a l�2-plate. If the plate’s fast axis is set at an
angle a�2 from the 45± direction, the state is geometrically
rotated by a degrees, e.g., if the fast axis is set at 22.5±

from the vertical, the state jz
�2�
2 � is rotated so that the bases

refer to the horizontal and vertical directions. (It should
be noted that a l�2 plate does not strictly correspond to a
geometrical rotation. For a general state expressed in some
linear basis it corresponds to a pure geometrical rotation
of the basis, followed by a relative phase shift of p in the
rotated basis. However, for the state jz

�2�
2 � which only has

components with an even number of photons, 0 or 2, this
particular phase shift is inconsequential as pointed out in
the paragraph following Eq. (4). In other cases it can be
canceled with the help of a second l�2-plate, succeeding
the first, oriented with its principal axes in the rotated basis
directions.)

To detect the state we transform it to a j1, 1� state which
subsequently can be detected using coincidence counting.
To this end a second relative phase shift of 2h is applied in
the horizontal-vertical basis. If the state in this basis prior
to the second relative phase shift is jz

�2�
2 �1, the state after

the phase shift is �j0, 2�1 2 j2, 0�1�221�2. Following the
second relative phase shift is a nonpolarizing beam splitter
(BS) and two polarization analyzers (A1 and A2), one for
each arm. The analyzer in the transmitted arm is oriented at
45± and the analyzer in the reflected arm is oriented at 135±.
When the l�2 plate is inserted at 22.5± we see a maximum
in the coincidences since at this angle we project the state
jz

�2�
2 � onto itself. By rotating the l�2 plate to 22.5 1 b�2

the coincidence rate is proportional to

j�z �2�
2 j exp�ibŜy� jz �2�

2 �j2 �
sin2�3b�
9 sin2�b�

. (9)

At b � 60 (b � 260) degrees this projection probability
is zero since the state jz

�2�
2 � evolves into the orthogonal

state jz
�2�
3 � (jz

�2�
1 �).

In the experiment our light source is a single-mode cw
argon-ion laser with a wavelength of 351.1 nm. The SPDC
crystal is b-BaB2O4 (BBO) with a length 0.5 mm. The
crystal is aligned so that collinear orthogonally polarized
photon pairs with equal energy are produced. The pump
is separated from the photon pairs by a dispersion prism.
Pinholes and one interference filter (F), with a bandwidth
of 10 nm and centered at 702.2 nm, further select pho-
ton pairs that have the same energy and that travel in the
same spatiotemporal mode. Because of the linear disper-
sion of the crystal the horizontally and vertically polarized
photons are separated in time. A birefringent crystalline
quartz plate (C) is used to compensate for the linear dis-
persion. The detectors (D1 and D2) are actively quenched
single-photon counting modules (EG&G SPCM).

The experimental data presented in Fig. 2 is just as col-
lected (raw data) without any background subtraction. The
achieved visibility is 90%. The minima are achieved for
rotations of approximately 45± 6 60± from the vertical as
predicted (corresponding to a rotation of the l�2 plate by
22.5± 6 30± from the vertical). The nonperfect visibility is
explained by the fact that the measurement requires care-
ful mode matching and alignment of 7 birefringent and
4 nonbirefringent optical components. Furthermore, the
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FIG. 2. Experimentally measured values of the coincidences
as a function of twice the rotated angle of the l�2 plate from its
original position at 22.5±. At b � 660±, the coincidence rate is
reduced to the background level. The dotted line indicates the
behavior of a classical state under the same geometrical rotation.
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compensator plate gives imperfect dispersion cancellation
between the vertically and horizontally polarized photon.
The state is then in a mixture between the desired state and
the states j0, 1�1 and j1, 0�1. These latter states slightly de-
teriorate the quality of the measurement.

The experiment described above is an experimental
demonstration of Heisenberg-limited polarimetry, al-
though not the first [12]. The rotation sensitivity of the
states defined by Eq. (5) scales as p��N 1 1�, clearly ex-
ceeding the standard quantum limit ~ 1�

p
N . A problem

with the scheme is that the states are highly entangled.
Therefore, in higher excitation manifolds, highly nonlinear
optical components will be needed to generate the states
from, e.g., two-mode number states. This is a difficulty
this scheme shares with many other applications where
entanglement is used to optimize the device performance,
such as quantum computing.

Let us now briefly discuss the difference between our
formalism and the traditional Stokes operator formalism.
Our starting point was finding the eigenstates of the
generator of geometrical rotation Ŝy . From these, we
constructed the eigenstates of a complementary operator
through Eq. (5). It is clear that the set of states is asso-
ciated with a Hermitian operator since in each excitation
manifold the set is complete. The complementary nature

of the operator follows from the fact that j�±�N�
k jz

�N�
l �j2 �

1��N 1 1� ; k, l � 1, 2, . . . , N 1 1. Complete knowl-
edge of the circular polarization state of a field precludes
any knowledge of its complementary polarization state
(all outcomes are equally probable), and vice versa. It
is also clear that the latter is not true for the eigenstates
of the Stokes operators, except in manifold N � 1.
The state j0, 2�1 is a linearly polarized state and is an
eigenstate of Ŝz � âyâ 2 b̂yb̂. However, the fact that
j�±�2�

2 j0, 2�1j
2 � 1�2 fi 1�3 shows that Ŝy and Ŝz are

not complementary in spite of the fact that they do not
commute. Similarly, j�z �2�

2 j0, 2�1j
2 � 1�2, showing that

Ŝz is not complementary to the polarization operator that
can be defined through Eqs. (6)–(8) either.

There are three noncommuting Stokes operators Ŝx , Ŝy ,
and Ŝz , and one Stokes operator Ŝ0 which commutes with
all the other three, defining a SU(2) algebra. So far, in our
theory of polarization rotation, we have talked about only
three Hermitian operators, Ŝy , Ŝ0, and the operator defined
by its set of eigenstates (5). However, as shown in [15],
in every manifold there exists (at least) one more operator,
defined through the set of states (11), (17), and (36) in [15],
which commutes with Ŝ0. In excitation manifold N � 1
the three noncommuting operators exhaust the set of mutu-
ally complementary operators, they define a SU(2) algebra
and therefore a choice can be made so that they coincide
with the Stokes operators. However, in a manifold N . 1,
defining a Hilbert space of dimension N 1 1, there exist
at least three, and sometimes (when N 1 1 is a prime or a
power of a prime [15]) as many as N 1 2, mutually com-
5016
plementary operators, all commuting with Ŝ0. Therefore
this algebra is richer than the SU(2) group. However, the
operators’ detailed properties, e.g., their commutation re-
lations, will have to be left out of this paper due to space
limitations. What is important to retain is that, except for
one photon state, linearly polarized states and circularly
polarized states are not eigenstates of complementary op-
erators. The set of complementary polarization operators
may include either Ŝy or Ŝz , but not both. In this paper
we made the choice to start from Ŝy , but we could just as
well have started from Ŝz . With the latter choice, the states
corresponding to Eqs. (6)–(8) would have been the two-
mode relative phase states [13].

Let us now briefly touch upon the difference between
the classical and a quantum mechanical definition of po-
larized light. In classical physics, polarization is a man-
ifestation of correlations between the two transverse field
modes defined in an Euclidian space. Therefore only sec-
ond order correlations are needed to fully classify the state
of polarization. A quantized transverse field with a fixed
number of photons N , on the other hand, is defined in a
Hilbert space of dimension N 1 1. In this case, the polar-
ization is a manifestation of correlations between N 1 1
quantum states. Therefore, if N . 1, the quantum de-
scription offers more degrees of freedom than the classical
description. Just as it is possible to use quantized fields
to improve the resolution of interferometers, it is possi-
ble to use quantized fields to increase the resolution of
polarimetry.

Finally, it may be noteworthy to point out that the quan-
tized polarization states derived in this paper defy the
correspondence principle. They will be increasingly non-
classical as the excitation N increases. They share this
feature with many modern applications of quantum me-
chanics such as quantum computers. The reason is that
the states are maximally entangled irrespectively of their
excitation, and therefore lack classical counterparts.
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