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Multiphoton Stokes-parameter invariant for entangled states
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We consider the Minkowskian norm of thephoton Stokes tensor, a scalar invariant under the group
realized by the transformations of stochastic local quantum operations and classical commun(iSaDs).
This invariant is offered as a candidate entanglement measuredobit states and discussed in relation to
measures of quantum state entanglement for certain important classes of two-qubit and three-qubit systems.
This invariant can be directly estimated via a quantum network, obviating the need to perform laborious
guantum state tomography. We also show that this invariant directly captures the extent of entanglement
purification due to SLOCC filters.
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Entangled states of photon polarization have been of onpolarization rotations may parametrize the effect of birefrin-
going interest for their role in probing fundamental aspectggence during light propagation in optical fiber; those of the
of quantum theory, in the coding and manipulation of quan-hyperbolic polarization rotations may parametrize the effect
tum information and in practical applications of quantumof dichroism in the fibef5].
interferometry. In both classical and quantum optics, Stokes In the quantum case, the Stokes-parameter representation
parameters have proven to be intuitive and practical tools foof the single-photon ensemble is formally similar to that of
characterizing polarization states of light. Here, we examinelassical polarization optics, and will similarly be seen here
a group-invariant scalar measure on the space of generalizéd form a four-vector. To address the multiple-photon case,
Stokes parameters. We show that this norm, which is an inwe make use ofn-photon generalized Stokes parameters
variant under transformations of stochastic local quantunisee, for example, Ref7]),
operations and classical communicati¢86OCQ [1] on n
qubits, quantifies entanglement for certain important classes Sil___in=Tr(poil® e ®oin), i1, ...,4,=0,1,2,3,
of two-qubit and three-qubit systems, and potentially for 1)
similar classes ofi>3 qubits. Our results for several photon
states, together with their mathematical properties for all valwhere a'i=1, andx=0,1,2,3 are the three Pauli matrices
ues ofn, recommend this scalar as a candidate measure abgether with the identityro=1,, and%Tr(crﬂa,,)= Opv-
total entanglement for multiparticle pure states in generalThese parameters form a full set ofphoton generalized
This invariant has the valuable property of being directlyStokes tensorssﬁl.__in} that can be used to describe coher-
estimable via a quantum network, in principle obviating theence and entanglement properties of photon-number states.
need to perform quantum state tomography, an increasingtyne n-photon polarization density matrix can also be conve-

laborious task as the number of particles increases, to det€fiently written in terms of these generalized Stokes param-
mine the density matrix first in order to find the degree ofgtgrs:

entanglement. The invariant allows one to immediately iden-

tify the SLOCC filtering transformations as entanglement pu- 1 3
rifiers and directly captures the amount of purification p== > S 0.0 -0,
. . 2" i o 1n 1 n
achieved by these filters or any other process. T2, dn
i1, ...,ip=0,1,2,3. (2

|. DEFINITIONS AND THE GENERAL CASE
Under SLOCC, the initial system density matrix under-

In classical optics, the four Stokes paramet®ys where  goes transformations of the group @IC), while the multi-
1=0,1,2,3, are known to form a four-vector under thephoton Stokes parameters similarly undergo transformations
Oo(1,3) group of transformation@-5|. These four param- of the group Q(1,3), which we notates;  ; —Sj ; -
eters characterize the time-averaged electric-field intensityhe unitary subgroup diSU(2)] transformations of the two-
and the distribution of polarization among three orthogonakubit and three-qubit density matrices have been carefully
polarization directions in the Poincasphere. The associated studied(see, for example, Reff8]). These correspond to sub-
invariant length of the Stokes four-vector BZES%—Sf group of ordinary[SQ(3)] rotations of the quantum Stokes
—sg—sg (Ref. [4]). These transformations can be repre-tensor. The set of nonunitafysL(2,C)/SU(2)] transforma-
sented by an ordinary rotation, followed by a hyperbolic ro-tions of the density matrix have largely been overlooked in
tation, followed by another ordinary rotati¢6]. As a prac- the investigation of entanglemefwith a few notable excep-
tical example, we note that the angles of the ordinarytions[9—-11]). For the tensor of Stokes parameters, these lat-
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ter transformation§Oy(1,3)/SO(3) involve hyperbolic ro- The connection between our invariant and the basic
tation, corresponding physically to polarization-dependenBtokes parameters in the=1 case is simple. In that case,
loss and intensity reductior8, ,<1. For these transfor- the Stokes parameters form a vector of elemeSfs

: _ - 2 _ 2l 2 it
mations, the Stokes paramete&d$ ; must be renormal- =Tr(po,),#=0,123, andS;) =S~ 5~ S, S5, similar

ized due to the associated removal of a portion of the originatlozthe classical case. In this case, the only relevant quantity is

quantum ensemble, resulting in the renormalized, physicaﬁs(l)k One ::an relate the single-photon state purity to the
valuesS  ; =S /Sy . This will later allow us to Stokes scalar as

identify a class of filters that purify entanglement. Tr(p?)=1—S? (6)
- 1)+

For each finite numbem of entangled photons, let us ex-
amine the @(1,3) group-invariant length, namely, the while P?=S+ S;+S5=1-2S(), is the well-known degree
Minkowskian squared norm of the Stokes ten8r, i}, of photon polarization. Equivalently, we see tggY, is the
which we refer to as the "Stokes scalar.” For reasons ofsingle-photon linearized entropy,
convenience, we choose to normalize this quantity by the
factor 27" Sy=1-"Trp? @)

1 n 3 (see, for example, Ref13]). 8(21) allows us to understand the
S(Zn)E? (So.. 022 2 (So..iy...0° effect of Qy(1,3) transformations on state purity. Under or-
dinary polarization rotationsy, itself remains unchanged, so

n 3 the purity is unchanged. However, the hyperbolic polariza-

+ > > (SO...ik...i|...0)2 tion rotations filter the beam in a basis-dependent way, re-

ducing the quantum ensemble and diminishing the intensity

3 to Sy<<1. We notate the Stokes vector transformation under
)%t (3)  anelement of 1,3) asS,— S, . Recalling that it is there-

g =1 fore necessary to renormalize the st&g~ S, =S, /S;, we

see that these filtering transformations effectively increase

Here, we show this scalar to be useful for understanding statg , giyres scalar in the single-photon C‘ﬁ'é? 5(21)- since

purity and entanglement properties of multiphoton systems.,2 _ «/2 ;2 ., 12 _ 2 ; : 2
We note immediately that these satisfy the fundamental res)= S/ So” With S(1)= Sy due to the invariance d;,

quirement of entanglement measures that they should be iH_nder Q(1,3). In this way, th‘?se f||ter|ng transformauon_s
variant under local unitary transformations of @ since are seen to decrease the purity and increase the linearized

these are a subgroup of theo(@,3) transformations of entropy of single-photon polarization states, just as it does in

SLOCC, under which they are invariant, and since no renor'Ehe classical case.

malization is required after their action. We see that the
quantum state purity for a generaphoton state can be writ- Il. THE CASE n=2
ten simply in terms of the multiphoton Stokes parameters as o central interest here, however, is that of two or more

entangled photons. The generalized Stokes parameters that

1 . _ . .
= 2 S|2 =Trp?, 4) characterize the two-photon polarization quantum ensemble
2", Tiy=0 'thn are

which is seen to be the corresponding Euclidean norm of the Sw=Tr(po,®a,), ®

multiphoton Stokes tensor. More importantly, we see that the

Stokes scalar can be expressed in terms of density matricéé"ere #,v=0,1,2,3 (Refs. [7,14,13). This collection of
as tokes parameters has 16 elements, which are systematically

measurable, as is done in quantum state tomography to de-
> ~ termine the density matrix, and these elements capture all the
Sim=Tr(p12. .nP12..n), (5 polarization correlations present in a photon pair as well as
- single-photon polarization and beam intensity information
where  p;  =(0,00,® - ®0,)pT  (0,®0,® -+ [15]. Consider the scalar invariant for the case 2,
®2ch) is the “spin-flipped” density matrix. As we will show, , , . s
S(,y captures the entanglement of important classes of 1
m(u)ltiple-photon states. This relation makes the Stokes scalaﬁzf;{{ (S00?= 2, (S0)°= 2 (So)?+2 2 (Sij)z].
of exceptional interest as a candidate entanglement measure =t = st 9
since, as shown recently, functionals of the form pL,)
are directly estimable through the visibility of interference Note that the second and third terms of the right-hand side of
arising in an appropriate quantum netwd@], in addition  Eq. (9) pertain only to the one-photon subsystems, being the
to being indirectly measurable via the quantum tomograph¥quares of the polarizations of the individual particles 1 and
approach 7]. We note thalS(Zn) is of the required form, for 2 p2-g2 + 2 +S2) and P5=S3,+ S3,+ S35, while the fi-
example,p,=p12 andpb=7>12 in the casen=2. nal term refers only to the two-photon composite system
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[16]. Again, the state purity can be simply related to theother two bipartite decompositions A8C. By jointly con-
Stokes scaIaS(Zz): sidering the resulting expressions, one finds that

2y _p2 2
TPI=P S, (10 Ske=Cast Tasc/2, (16)
where P?=1(P3+ PJ) is the average of the squares of the
single-photon polarizations. More important, however, is the P 2 2
fac?th;ts(zz) cair)l be seento be a mean)ure of entanglement foa}nd similarly forSic andSBCé ; P
two-photon pure states. In fact, EB) and some algebra We see from Eq(16) thatS,, captures its contribution to_
show that in the case of pure sta’tes this scalar coincides withe three-particle entanglement as well as the two-particle
i ntanglement of the corresponding subsystem. Equéti®n
Yhows it to be an entanglement measure for three-photon
pure states, which includes entanglement not present in the
concurrence of its two-particle subsystems. We also see from
Eqg. (15 that, though the photon-pair contributions to the
total entanglement may differ as a result of their own internal
. entanglements, each of the pairing8 and AC can be
so the entanglement of formation is seen to WE[1  \iewed as also containing the three tangle of the three-
+V1=8)l), where h(x)=—xlogx—(1-x)l0gx(1-X).  photon statéW¥). This result is analogous to what one finds
However, the valuable property &, beyond its being for the entanglement of single-qubit subsystems of a two-
equal to the tangle for two-photon pure states, appears in itgubit system in a pure state, where the reduced states of the
application tomixedstates, which we consider next, where it two subsystems encode the tangle of the overall system.
is not equal to the square of the concurrence.
Consider now the class of mixed states that describe two
photons of a three-photon systzem in a pure quantum state. [ll. FILTERING OPERATIONS
For two-phot.on. mixed states3 is different from the Recall that, in order to be properly interpreted physically
tangle. For this important class of states, we ﬁ}ﬁg to be a fter filtering, the n-photon Stokes parametef N
specific sum of entanglement measures over the pertineﬁt 9 _ P ) , P §‘1---'n
subsystem and the larger, three-particle system. To see thi@ust be renormalizeds;  ; —S' ; /Sy.. 0. After a lo-

Stokes parameter¢cf. Ref. [15])—that is, the tangler
[17, 18

=S5, (12)

recall that any three-photon state can be written as cal filtering operation, one ha&3=S(5/S5 . The value
of S’(’g) thus monotonically increases with filtering. For the
AT n=2, this h lear meaning in terms of entangle-
|q,>:2 ailidalidslk)c. (17  case , this as, a csa. eaning in terms of entangle
ik ment. In that case§, ,— S, : after a filtering operation, one

o o has S(5=Sf,)/Sy5- The invariance of the scalar under
E)_<am|n|n_g the relationship of the entanglement of photon 0u(1,3) transformationsSMV—>S/;V, that is S(’22): (22),
with a pair of photon®3 andC, we have from Eq(5) means that the effect of these transformations on the invari-
2 > 2 ant is entirely captured by the total attenuation. The filtering

Sast Sac=Chaeo)» (13 operation thus results in an increase of entanglement, since

Spo<1, by virtue of Egs.(11) and (16). Such local opera-

tions can be implemented, for example, by dichroic optical

fiber, where they are associated with polarization-dependent

where Ci(BC) is the concurrence calculated for a bipartite
decomposition ofABC into subsystemA and (composite
subsystenB C [17], and whereSa ; andSa . are the values of losses(see, for example, Ref20]).

Sty for the tV\éO-phOtOQ subgystermsB and AC. Further- The Stokes scala8f,, allows us to identify and quantify
more, sinceChgc)y=Capt Cact Tasc, Where 7agc IS @ the peneficial effect of the SLOCC filtering operations on
three-particle entanglement measltee “three tangle)  entanglement for the classes considered above. Thus, we see
[17,19, we have how the attenuating transformatiof®,(1,3)/SO(3), to-
gether with the quantum ensemble renormalization they en-
gender, correspond to entanglement purifying transforma-
tions (see also Refs[9,10] and, in particular, Ref[11]).
These operations affect the invari@ﬁg) in exactly the same

way for general values at.

Saet Sac=Cas* CacT Tasc- (14
Thus, we have
Tasc=(Sag— Cag) + (Saic— Cac): (15

which shows that the sum of tl"fé(zz) values for the two-
photon subsystem&B and AC captures the contribution to
the total three-particle state entanglement encoded in these In summary, we have introduced a group-invariant Stokes
two-particle subsystems, as well as their own internal two-scalar for studyingi-photon entangled polarization states. In

particle entanglements as measured by the concurrencte case of two-photon pure states, this invariant is equal to
Similar expressions are obtained when one begins with ththe tangle. In the case of three-photon pure states, it mea-

IV. CONCLUSION
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sures entanglement in the total system through its photorgood candidate to measure entanglement for pure states of
pair subsystems, which are in general described by mixeghotons. In addition, it can be directly estimated, at least in
states. These results allow us to identify sets of optical eleprinciple, via a suitable quantum network. Finally, unlike the
ments that give rise to polarization-dependent filtering, suclproposedn-tangle measurgl9] for uniquely n-particle en-

as dichroic optical fibers, as entanglement purifiers, and ttanglement, which is ill-defined for odd values of this
quantify their entanglement-increasing effect on two-photorinvariant is well defined for all finite values of

and three-photon states. Such local transformations have a
similar effect on the invariant in the case of photon numbers
n greater than 3.

Because it satisfies the necessary condition of being in- This work was supported by the DARPA QuIST program,
variant under local unitary transformations for general valueshe National Science FoundatigNSF), the Center for Sub-
of n, and since it has a clear connection to the acceptedurface Sensing and Imaging Systef@enSSIS, an NSF
entanglement measures of tangle and three tangle charact&mnrgineering Research Centeand the David and Lucile
izing few-photon states, this invariant can be considered ®ackard Foundation.
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