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Multiphoton Stokes-parameter invariant for entangled states
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We consider the Minkowskian norm of then-photon Stokes tensor, a scalar invariant under the group
realized by the transformations of stochastic local quantum operations and classical communications~SLOCC!.
This invariant is offered as a candidate entanglement measure forn-qubit states and discussed in relation to
measures of quantum state entanglement for certain important classes of two-qubit and three-qubit systems.
This invariant can be directly estimated via a quantum network, obviating the need to perform laborious
quantum state tomography. We also show that this invariant directly captures the extent of entanglement
purification due to SLOCC filters.
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Entangled states of photon polarization have been of
going interest for their role in probing fundamental aspe
of quantum theory, in the coding and manipulation of qua
tum information and in practical applications of quantu
interferometry. In both classical and quantum optics, Sto
parameters have proven to be intuitive and practical tools
characterizing polarization states of light. Here, we exam
a group-invariant scalar measure on the space of genera
Stokes parameters. We show that this norm, which is an
variant under transformations of stochastic local quant
operations and classical communications~SLOCC! @1# on n
qubits, quantifies entanglement for certain important clas
of two-qubit and three-qubit systems, and potentially
similar classes ofn.3 qubits. Our results for several photo
states, together with their mathematical properties for all v
ues ofn, recommend this scalar as a candidate measur
total entanglement for multiparticle pure states in gene
This invariant has the valuable property of being direc
estimable via a quantum network, in principle obviating t
need to perform quantum state tomography, an increasi
laborious task as the number of particles increases, to d
mine the density matrix first in order to find the degree
entanglement. The invariant allows one to immediately id
tify the SLOCC filtering transformations as entanglement
rifiers and directly captures the amount of purificati
achieved by these filters or any other process.

I. DEFINITIONS AND THE GENERAL CASE

In classical optics, the four Stokes parametersSm , where
m50,1,2,3, are known to form a four-vector under t
O0(1,3) group of transformations@2–5#. These four param-
eters characterize the time-averaged electric-field inten
and the distribution of polarization among three orthogo
polarization directions in the Poincare´ sphere. The associate
invariant length of the Stokes four-vector isS2[S0

22S1
2

2S2
22S3

2 ~Ref. @4#!. These transformations can be repr
sented by an ordinary rotation, followed by a hyperbolic
tation, followed by another ordinary rotation@6#. As a prac-
tical example, we note that the angles of the ordin
1050-2947/2003/67~3!/032307~4!/$20.00 67 0323
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polarization rotations may parametrize the effect of birefr
gence during light propagation in optical fiber; those of t
hyperbolic polarization rotations may parametrize the eff
of dichroism in the fiber@5#.

In the quantum case, the Stokes-parameter represent
of the single-photon ensemble is formally similar to that
classical polarization optics, and will similarly be seen he
to form a four-vector. To address the multiple-photon ca
we make use ofn-photon generalized Stokes paramete
~see, for example, Ref.@7#!,

Si 1 . . . i n
5Tr~rs i 1

^ •••^ s i n
!, i 1 , . . . ,i n50,1,2,3,

~1!

wheresm
2 51, andm50,1,2,3 are the three Pauli matrice

together with the identitys05I 232, and 1
2 Tr(smsn)5dmn .

These parameters form a full set ofn-photon generalized
Stokes tensors$Si 1 . . . i n

% that can be used to describe cohe
ence and entanglement properties of photon-number st
The n-photon polarization density matrix can also be conv
niently written in terms of these generalized Stokes para
eters:

r5
1

2n (
i 1 , . . . ,i n50

3

Si 1 . . . i n
s i 1

^ •••^ s i n
,

i 1 , . . . ,i n50,1,2,3. ~2!

Under SLOCC, the initial system density matrix unde
goes transformations of the group SL~2,C), while the multi-
photon Stokes parameters similarly undergo transformat
of the group O0(1,3), which we notateSi 1 . . . i n

→Si 1 . . . i n
8 .

The unitary subgroup of@SU~2!# transformations of the two-
qubit and three-qubit density matrices have been caref
studied~see, for example, Ref.@8#!. These correspond to sub
group of ordinary@SO~3!# rotations of the quantum Stoke
tensor. The set of nonunitary@SL~2,C)/SU~2!# transforma-
tions of the density matrix have largely been overlooked
the investigation of entanglement~with a few notable excep-
tions @9–11#!. For the tensor of Stokes parameters, these
©2003 The American Physical Society07-1
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ter transformations@O0(1,3)/SO(3)# involve hyperbolic ro-
tation, corresponding physically to polarization-depend
loss and intensity reduction:S0 . . . 08 ,1. For these transfor
mations, the Stokes parametersSi 1 . . . i n

8 must be renormal-

ized due to the associated removal of a portion of the orig
quantum ensemble, resulting in the renormalized, phys
valuesSi 1 . . . i n

9 5Si 1 . . . i n
8 /S0 . . . 08 . This will later allow us to

identify a class of filters that purify entanglement.
For each finite numbern of entangled photons, let us ex

amine the O0(1,3) group-invariant length, namely, th
Minkowskian squared norm of the Stokes tensor$Si 1 . . . i n

%,
which we refer to as the ‘‘Stokes scalar.’’ For reasons
convenience, we choose to normalize this quantity by
factor 22n:

S(n)
2 [

1

2n H ~S0 . . . 0!
22 (

k51

n

(
i k51

3

~S0 . . . i k . . . 0!
2

1 (
k,l 51

n

(
i k ,i l51

3

~S0 . . . i k . . . i l . . . 0!
2

2•••1~21!n (
i 1, . . . ,i n51

3

~Si 1 . . . i n
!2J . ~3!

Here, we show this scalar to be useful for understanding s
purity and entanglement properties of multiphoton syste
We note immediately that these satisfy the fundamental
quirement of entanglement measures that they should b
variant under local unitary transformations of SU~2!, since
these are a subgroup of the O0(1,3) transformations of
SLOCC, under which they are invariant, and since no ren
malization is required after their action. We see that
quantum state purity for a generaln-photon state can be writ
ten simply in terms of the multiphoton Stokes parameters

1

2n (
i 1 , . . . ,i n50

3

Si 1 . . . i n
2 5Trr2, ~4!

which is seen to be the corresponding Euclidean norm of
multiphoton Stokes tensor. More importantly, we see that
Stokes scalar can be expressed in terms of density mat
as

S(n)
2 5Tr~r12 . . .nr̃12 . . .n!, ~5!

where r̃1 . . .n5(s2^ s2^ •••^ s2)r1 . . .n* (s2^ s2^ •••
^ s2) is the ‘‘spin-flipped’’ density matrix. As we will show
S(2)

2 captures the entanglement of important classes
multiple-photon states. This relation makes the Stokes sc
of exceptional interest as a candidate entanglement mea
since, as shown recently, functionals of the form Tr(rarb)
are directly estimable through the visibility of interferen
arising in an appropriate quantum network@12#, in addition
to being indirectly measurable via the quantum tomogra
approach@7#. We note thatS(n)

2 is of the required form, for

example,ra5r12 andrb5 r̃12 in the casen52.
03230
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The connection between our invariant and the ba
Stokes parameters in then51 case is simple. In that case
the Stokes parameters form a vector of elementsSm

5Tr(rsm),m50,1,2,3, andS(1)
2 5S0

22S1
22S2

22S3
2 , similar

to the classical case. In this case, the only relevant quanti
S(1)

2 . One can relate the single-photon state purity to
Stokes scalar as

Tr~r2!512S(1)
2 , ~6!

while P25S1
21S2

21S3
25122S(1)

2 is the well-known degree
of photon polarization. Equivalently, we see thatS(1)

2 is the
single-photon linearized entropy,

S(1)
2 512Trr2 ~7!

~see, for example, Ref.@13#!. S(1)
2 allows us to understand th

effect of O0(1,3) transformations on state purity. Under o
dinary polarization rotations,S0 itself remains unchanged, s
the purity is unchanged. However, the hyperbolic polari
tion rotations filter the beam in a basis-dependent way,
ducing the quantum ensemble and diminishing the inten
to S08,1. We notate the Stokes vector transformation un
an element of O0(1,3) asSm→Sm8 . Recalling that it is there-
fore necessary to renormalize the state,Sm8 →Sm9 5Sm8 /S08 , we
see that these filtering transformations effectively incre
the Stokes scalar in the single-photon case:S(1)92 .S(1)

2 , since
S(1)92 [S(1)82 /S08

2 with S(1)82 5S(1)
2 due to the invariance ofS(1)

2

under O0(1,3). In this way, these filtering transformation
are seen to decrease the purity and increase the linea
entropy of single-photon polarization states, just as it doe
the classical case.

II. THE CASE nÄ2

Our central interest here, however, is that of two or mo
entangled photons. The generalized Stokes parameters
characterize the two-photon polarization quantum ensem
are

Smn5Tr~rsm ^ sn!, ~8!

where m,n50,1,2,3 ~Refs. @7,14,15#!. This collection of
Stokes parameters has 16 elements, which are systemat
measurable, as is done in quantum state tomography to
termine the density matrix, and these elements capture al
polarization correlations present in a photon pair as well
single-photon polarization and beam intensity informati
@15#. Consider the scalar invariant for the casen52,

S(2)
2 5

1

4 H ~S00!
22(

i 51

3

~Si0!22(
j 51

3

~S0 j !
21(

i 51

3

(
j 51

3

~Si j !
2J .

~9!

Note that the second and third terms of the right-hand sid
Eq. ~9! pertain only to the one-photon subsystems, being
squares of the polarizations of the individual particles 1 a
2, P1

25S10
2 1S20

2 1S30
2 and P2

25S01
2 1S02

2 1S03
2 , while the fi-

nal term refers only to the two-photon composite syst
7-2
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@16#. Again, the state purity can be simply related to t
Stokes scalarS(2)

2 :

Tr~r2!5 P̄21S(2)
2 , ~10!

where P̄2[ 1
2 (P1

21P2
2) is the average of the squares of t

single-photon polarizations. More important, however, is
fact thatS(2)

2 can be seen to be a measure of entanglemen
two-photon pure states. In fact, Eq.~9! and some algebra
show that in the case of pure states this scalar coincides
the concurrence squared, expressed in terms of two-ph
Stokes parameters~cf. Ref. @15#!—that is, the tanglet
@17, 18#:

t5S(2)
2 , ~11!

so the entanglement of formation is seen to beh( 1
2 @1

1A12S(2)
2 #), where h(x)[2x log2x2(12x)log2(12x).

However, the valuable property ofS(2)
2 , beyond its being

equal to the tangle for two-photon pure states, appears i
application tomixedstates, which we consider next, where
is not equal to the square of the concurrence.

Consider now the class of mixed states that describe
photons of a three-photon system in a pure quantum s
For two-photon mixed states,S(2)

2 is different from the
tangle. For this important class of states, we findS(2)

2 to be a
specific sum of entanglement measures over the perti
subsystem and the larger, three-particle system. To see
recall that any three-photon state can be written as

uC&5(
i jk

ai jk u i &Au j &Buk&C . ~12!

Examining the relationship of the entanglement of photonA
with a pair of photonsB andC, we have from Eq.~5!

SAB
2 1SAC

2 5CA(BC)
2 , ~13!

where CA(BC)
2 is the concurrence calculated for a bipart

decomposition ofABC into subsystemA and ~composite!
subsystemBC @17#, and whereSAB

2 andSAC
2 are the values of

S(2)
2 for the two-photon subsystemsAB and AC. Further-

more, sinceCA(BC)
2 5CAB

2 1CAC
2 1tABC , where tABC is a

three-particle entanglement measure~the ‘‘three tangle’’!
@17,19#, we have

SAB
2 1SAC

2 5CAB
2 1CAC

2 1tABC . ~14!

Thus, we have

tABC5~SAB
2 2CAB

2 !1~SAC
2 2CAC

2 !, ~15!

which shows that the sum of theS(2)
2 values for the two-

photon subsystemsAB andAC captures the contribution to
the total three-particle state entanglement encoded in t
two-particle subsystems, as well as their own internal tw
particle entanglements as measured by the concurre
Similar expressions are obtained when one begins with
03230
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other two bipartite decompositions ofABC. By jointly con-
sidering the resulting expressions, one finds that

SAB
2 5CAB

2 1tABC /2, ~16!

and similarly forSAC
2 andSBC

2 .
We see from Eq.~16! thatS(2)

2 captures its contribution to
the three-particle entanglement as well as the two-part
entanglement of the corresponding subsystem. Equation~16!
shows it to be an entanglement measure for three-pho
pure states, which includes entanglement not present in
concurrence of its two-particle subsystems. We also see f
Eq. ~15! that, though the photon-pair contributions to th
total entanglement may differ as a result of their own inter
entanglements, each of the pairingsAB and AC can be
viewed as also containing the three tangle of the thr
photon stateuC&. This result is analogous to what one find
for the entanglement of single-qubit subsystems of a tw
qubit system in a pure state, where the reduced states o
two subsystems encode the tangle of the overall system

III. FILTERING OPERATIONS

Recall that, in order to be properly interpreted physica
after filtering, the n-photon Stokes parameters$Si 1 . . . i n

%

must be renormalized,Si 1 . . . i n
8 →Si 1 . . . i n

9 /S0 . . . 0. After a lo-

cal filtering operation, one hasS(n)82 5S(n)92 /S0 . . . 0
2 . The value

of S(2)92 thus monotonically increases with filtering. For th
casen52, this has a clear meaning in terms of entang
ment. In that case,Smn8 →Smn9 : after a filtering operation, one
has S(2)92 5S(2)

2 /S008
2 . The invariance of the scalar unde

O0(1,3) transformationsSmn→Smn8 , that is S(2)82 5S(2)
2 ,

means that the effect of these transformations on the inv
ant is entirely captured by the total attenuation. The filter
operation thus results in an increase of entanglement, s
S008 ,1, by virtue of Eqs.~11! and ~16!. Such local opera-
tions can be implemented, for example, by dichroic opti
fiber, where they are associated with polarization-depend
losses~see, for example, Ref.@20#!.

The Stokes scalarS(2)
2 allows us to identify and quantify

the beneficial effect of the SLOCC filtering operations
entanglement for the classes considered above. Thus, we
how the attenuating transformations@O0(1,3)/SO(3)#, to-
gether with the quantum ensemble renormalization they
gender, correspond to entanglement purifying transform
tions ~see also Refs.@9,10# and, in particular, Ref.@11#!.
These operations affect the invariantS(n)

2 in exactly the same
way for general values ofn.

IV. CONCLUSION

In summary, we have introduced a group-invariant Sto
scalar for studyingn-photon entangled polarization states.
the case of two-photon pure states, this invariant is equa
the tangle. In the case of three-photon pure states, it m
7-3
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sures entanglement in the total system through its pho
pair subsystems, which are in general described by mi
states. These results allow us to identify sets of optical
ments that give rise to polarization-dependent filtering, s
as dichroic optical fibers, as entanglement purifiers, and
quantify their entanglement-increasing effect on two-pho
and three-photon states. Such local transformations ha
similar effect on the invariant in the case of photon numb
n greater than 3.

Because it satisfies the necessary condition of being
variant under local unitary transformations for general val
of n, and since it has a clear connection to the accep
entanglement measures of tangle and three tangle chara
izing few-photon states, this invariant can be considere
.V

ys

ev
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good candidate to measure entanglement for pure statesn
photons. In addition, it can be directly estimated, at leas
principle, via a suitable quantum network. Finally, unlike t
proposedn-tangle measure@19# for uniquely n-particle en-
tanglement, which is ill-defined for odd values ofn, this
invariant is well defined for all finite values ofn.
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